
CS 499 – B. Tech. Project

Reliability and Availability in Distributed Systems

by

Abhay Gupta (Y0002)

Santosh Kumar (Y0301)

Supervisors

Dr Bhaskaran Raman

Department of Computer Science and Engineering

IIT Kanpur

Dr Kishore S. Trivedi

Department of Electrical and Computer Engineering

Duke University

Acknowledgement

We would like to thank a number of people . We deeply appreciate valuable
contribution of each of them. We are first of all, grateful to our guides Dr.
Kishor S. Trivedi and Dr. Bhaskaran Raman. They volunteered many hours
of their valuable time to help us put our best. Their patientence and
encouragement have been the most important factors in meaningful
completion of our project. Further, we sincerely appreciate Dr. S.
Dharmaraja of Indian Institute of Technology, Delhi, who went out of his
way in offering his full fledged support at some very crucial moments
during this project. Our special thanks goes to all the researchers working
with Dr. Trivedi, who from time to time offered us invaluable advice, ideas
and corrections to our analysis. We would particularly like to mention, Wie
Xie, whose work we have been extending, and Kesari Mishra, who offered
us enormous help in installation and administration of polling agent at Duke.
Finally, we are thankful to our evaluation committee members, Dr. Deepak
Gupta and Dr. Dheeraj Sanghi, for helping us keep our focus and take this
project to a meaningful completion.

Modeling of Web User Behavior and User Perceived Website Availability

Abstract

Depending upon the user behavior user perceived availabil-
ity may differ from the actual system availability. Xei et al
[5] studied the relationship between the system availabil-
ity and the user-perceived availability and their distribu-
tion with change in system MTTF (Mean Time To Failure)
and MTTR (Mean Time To Repair) using 3 different mathe-
matical models of user-perceived unavailability,Au, called
SUSH, SUMH and DPF models respectively as shown in
Section 3. We corrected SUSH model and extended DPF
model to bring it closer to the real world. We found out that
unlike as claimed by Xie [5], CTMC analysis does not per-
sistently overestimates Au. For lower repair rate, µ, CTMC
analysis underestimates Au and at higer repair rate it over-
estimates. We verified our claims from data obtained for
user-server interactions with real web servers. We have
obtained encouraging results, however, we need to go for
more extensive data collection before drawing any conclu-
sions. We modified DPF model to bring it more closer to
real world by incorporating generally distributed transi-
tions. This is a very complex model and not amenable to
numerical solutions in its given form. So, we outlined so-
lution for a simpler model leaving more extensive model’s
analysis for future work.

1 Motivation

The demand for high availability and performance has be-
come critical to the success of e-business applications on
the web. Depending upon the user behavior, e.g. repeat
rate in the event of a failure, user perceived availability
may differ from the actual system availability. Xei et al
[1] studied the relationship between the system availabil-
ity and the user-perceived availability and their distribution
with change in system MTTF (Mean Time To Failure) and
MTTR (Mean Time To Repair) using mathematical models
of user-perceived availability.

The models built by Xie are Single-user-single-host
model, Single-user-multiple-host model and Single-user-
single-host model with different platform failures (namely
near-user, in-middle and near-host failures). Henceforth, we
call these models as SUSH, SUMH and DPF respectively.
Depending upon whether the transitions between different
states are taken to be all exponentially distributed or not,

these models can be analyzed using CTMC or MRGP tech-
niques.Xie in his study carried out both the analysis and
concluded that CTMC models tend to overestimate the user
perceived unavailability by 26% to 125% with MRGP as
the reference, and that fast recovery after a failure is more
important than higher component reliability in improving
user-perceived availability.

Raymakers et al [6] simulated SUSH model and tried to
verify the results. However, results of Raymakers et al [6]
were quite different from those obtained by Xie [5]. We out-
line and compare their claims in Section 4. In our endeavor,
we aimed to validate the hypothesis corresponding to the
claims made by Xie et. al as well as results of Raymakers
et al [6].

This report is organized as follows: Section 2 reviews
the theory of stochastic processes which lie at the heart of
mathematical modeling undertaken in this project. One can
skip the rich mathematical details of this section and just re-
fer to Section 5.1 where we outline the steps of solution as
applicable to our case. In Section 3, we outline the models
as given by Xie [5]. Later on we modify these models. A
related work done by Raymakers [6], provided motivation
for our work. We compare claims made by Xie vs Ray-
makers in Section 4. In Section 4.3, we have outlined our
contribution amidst contributions of others. In Section 5,
we begin our extensive analysis of SUSH model. One can
safely skip the details in subsections 5.1 to 5.5 and directly
go to Section 5.6. In Section 6, we have explained the is-
sues pertaining to collecting data for real world user-server
interactions. We outline our model of user-behavior in Sec-
tion 6.1. We did this data collection from IITK server, so
we account for behavior of proxy server in Section 6.2. In
the next Section, i.e. 7, we estimate values of parameters
from data we obtained. Results obtained from user-server
interaction data have been shown in Section 8. Next, we ex-
plain various aspects and difficulty in extensive analysis of
DPF model in Section 9. We outline solution for a simpler
model in Section 9.1. We end up with summary of our work
in Section ?? and give pointers for future work in Section
10.

1

2 Understanding of the Modeling
Paradigms

We approached the problem of user percieved availability
modeling from the beginning. First of all, we endeavored to
understand the work done by Xie et. al. and Raymakers et.
al.. A thorough understanding of analytical discrete mod-
eling methodologies, such as CTMC, SMP and MRGP, is a
precondition to this. Therefore, we studied relevant chap-
ters from the red book, [1] and [2]. We review them below.

2.1 Stochastic Processes and Markov Process

Stochastic Process: A stochastic process is a family of
random variables {X(t)|t ∈ T }, defined on a given
probability space, indexed by parameter t, where t varies
over an index set T .

The values assumed by the random variable X(t) are
called states, and the set of all possible values forms the
state space of the process. If the state space of a stochastic
process is discrete, then it is called a discrete-state process
or a chain. Similarly, a continuous state space process is
called continuous-state process or a stochastic sequence.
We will always be concerned with Markov chains.

Markov Process: A stochastic process {X(t)|t ∈ T }
is called a Markov process if for any t0 < t1 < t2 <
... < tn < t, the conditional distribution of X(t) for given
values of X(t0), X(t1), ..., X(tn) depends only on X(tn):

P (X(t) ≤ x|X(tn) = xn,X(t0) = x0)

= P (X(t) ≤ x|X(tn) = xn) (1)

In the conditional distribution function in above has the
property of invariance with respect to the time origin tn:

P (X(t) ≤ x|X(tn) = xn) = P (X(t− tn) ≤ x|X(0) = xn), (2)

then the Markov chain is said to be (time-)homogeneous.

2.2 Discrete and Continous Time Markov
Chains

Discrete Time Markov Chain: A stochastic process {Xn,
n ∈ IN} with countable state space Ω is called a discrete
time Markov chain(DTMC) with state space Ω if

• for all n ≥ 0, Xn ∈ Ω with probability 1,

• for all i, j ∈ Ω and n ≥ 0,
P{Xn+1=j|Xn = i, Xn11, ..X0}=P{Xn+1=j|Xn =
i}

If the above conditional probability is invariant with
respect to time, n, then the Markov chain is said to be
homogeneous. In this case, we denote by pij the probability
P{Xn+1=j|Xn = i} and P=[pij] the transition probability
matrix.

If the transitions between states can take place at any
instant then, the Markov chain is known as continuous time
Markov chain(CTMC). The formal definition is as follows:

Continuous Time Markov Chain: A stochastic process
{Xt, t ≥ 0} with countable state space Ω={0,1,2....} is
called a continuous time Markov chain(CTMC) with state
space Ω if for any s, t ≥ 0, j ∈ Ω,

P{X(t + s) = j|X(u); u ≤ t}=P{X(t + s) = j|X(t)}

The probability,

pij(t + s, t) =P{X(t + s) = j|X(t)},

for s, t ≥ 0, and i, j ∈ Ω, is called the transition
probability and the matrix

P(t+s,t)=[pij(t + s, t)]

is called the transition probability matrix of the CTMC.
Define,

qii(t) ≡
∂
∂t

pii(t + s, t)|s=0 for all i ∈ Ω, and
qij(t) ≡

∂
∂t

pij(t + s, t)|s=0 for all j ∈ Ω and i 6= j.

The matrix Q(t)=[qij(t)] is called the infinitesimal
generator matrix or just generator matrix.
For time-homogeneous CTMC, the transition probability
pij(t + s, t) depends only on the time difference s. There-
fore, the transition rates are independent of t. Hence, the
generator matrix Q is a constant. Further, for a finite and
irreducible(i.e. every state is reachable from every other in
finite number of steps) time-homogeneous CTMC, it can
be shown that the limits
πi = limt→∞pij(t) = limt→∞pi(t)
exist and are independent of the initial state j. These are
called the steady state probabilities and if π represents the
vector of these probabilities, then, it can be obtained by
solving the equations

πQ = 0 and πe = 1 (3)

where, e represents column vector with all enteries being 1.

In our case, we will encounter only finite, irreducible
and time-homogeneous CTMCs and we will be interested
in the steady state analysis. Hence, the strategy to solve

2

them is as follows:

1. Obtain the generator matrix Q, which will be a con-
stant matrix.

2. Solve Eq. 3 to obtain the steady state probabilities.

2.3 Markov Regenerative Process

In this section we will provide a brief review of the theory
behind Markov Regenerative Process and its solution tech-
niques.

2.3.1 Markov Regenerative Theory

Consider a stochastic process in which there exist time
points where the process satisfies the Markov property.
These time points are called regeneration points. In a
Markov regenerative process(MRGP) the stochastic evolu-
tion of the process between two successive regenerations
depends only on the state at regeneration and not on the
evolution before regeneration. Further, due to the time-
homogeneity of the embedded Markov renewal process, the
evolution of the MRGP becomes a probabilistic replica af-
ter each regeneration. As a result, all memory except the
state must be reset at a regeneration point. The concepts of
MRGP are elucidated in the following definitions.
Markov Renewal Sequence: A sequence of bivariate ran-
dom variables {(Yn, Sn), n ≥ 0} is called a Markov re-
newal sequence if

• S0 = 0, Sn+1 ≥ Sn; Yn ∈ Ω′ ⊂ Ω = {0, 1, 2, ..}

• for all n ≥ 0

P (Yn+1 = j, Sn+1 − Sn ≤ t|Yn = i, Sn, Yn−1,, Y0, S0)

= P (Yn+1 = j, Sn+1 − Sn ≤ t|Yn = i)

(MarkovProperty)

= P (Y1 = j, S1 − S0 ≤ t|Y0 = i)

(T imehomogeneity)

Then, the MRGP is defined as follows
Markov Regenerative Process:A stochastic process,
{Z(t), t ≥ 0} on Ω is called a MRGP if there ex-
ists a Markov renewal sequence{(Yn, Sn), n ≥ 0} of
random variables such that all conditional finite di-
mensional distributions of {Z(Sn + t), t ≥ 0} given
{Z(u), 0 ≤ u ≤ Sn, Yn = i} are the same as those of
{Z(t), t ≥ 0} given Y0 = i, i ∈ Ω′ ⊂ Ω.

Note that the above definition implies that in this
case{Z(S+

n), t ≥ 0} or {Z(S−

n), t ≥ 0} is an embedded

discrete time Markov chain(DTMC) or just embedded
Markov chain (EMC) in {Z(t), t ≥ 0}, and also that Sn is
a stopping time(regeneration points) of {Z(t), t ≥ 0}.

We denote the conditional probability in Eq 2. by Kij(t),
i, j ∈ Ω′. The matrix K(t)=[Kij(t)] is called the global
kernel of the Markov renewal sequence. Define the matrix
E(t)=[Eij(t)],i ∈ Ω′, j ∈ Ω, as follows
Eij(t) = P (Z(t) = j, S1 > t|Y0 = i). This matrix de-
scribes the behavior of the MRGP between two transitions
epochs of the EMC i.e over the time interval (0, S1). This
matrix is known as the local kernel.

2.3.2 Steady State Solution of MRGP

In most of the problems as ours, steady state solution is
of prime interest. Fortunately, this is also more tractable.
We will consider the steady state behavior of MRGP by
taking t → ∞. For this we need to define two variables,
α = [αij] and the steady state probability vector ν = (νk).
αij represents the mean time that the MRGP spends in state
j between two successive regeneration points, given that it
started in state i after regeneration. Hence,

αij =

∫

∞

0

Eij(t)dt (4)

We define steady state probability vector as solution of
the following set of equations

ν = νP and νe = 1 (5)

From these steady state probabilities one can obtain the
user-perceived unavailability for SUSH model and for
SUMH model as given in Section 3. where e is a vector
with all enteries 1 and P = K(∞) is the one state transition
probability of the EMC. The Theorem 1 of [2] describes
the limiting behavior of MRGPs which we state below

Theorem 1: Let {Z(t), t ≥ 0} be a MRGP on Ω with
Markov renewal sequence {(Yn, Sn), n ≥ 0} with Kernel
K(.). Let N(t) denote the total number of state changes by
time t, i.e. N(t)=sup{n ≥ 0 : Sn ≤ t}. Suppose that

• the sample paths of {Z(t), t ≥ 0} are right continuous
with left limits,

• the semi-Markov process, {YN(t) ∈ Ω′ ⊂ Ω, t ≥ 0} is
irreducible, aperiodic and positive recurrent,

• ν = (νk), is a positive solution of Eq. 5,

then the steady state probability of the MRGP is given by

3

πj = limt→∞P (Z(t) = j) =

∑

k∈Ω′ νkαkj
∑

k∈Ω′ νkβk

(6)

where βk =
∑

l∈Ω

αkl

Limiting probabilities can, under some restrictions, be in-
terpreted as the long run proportion of time the Markov
chain spends in state j. Because those restrictions are triv-
ially satisfied in our case, above theorem provides us with a
method to obtain limiting probability vector from data col-
lected for real world user-server interactions. From the data,
we obtain the time spent by users in various states, sum
them up and take ratios to obtain the limiting probabilities,
which in turn are equal to steady state probabilities.

3 User Perceived Availability Models

In this section we briefly outline the models as given by Xie
[5]. Later on we modify these models, however, here we
give them as it was given by Xie. Xie et. al. [5] developed
3 models for capturing user-perceived availability two of
them being MRGP models while the third being Stochastic
Petri net(SPN) model. We briefly describe these models and
unavailability definition applicable to each below.

3.1 Single-User-Single-Host: SUSH

This model captures the first scenario, where there is one
online user, who is interested only in one host. Hence
the name, Single-User-Single-Host(SUSH) model. Here,
the user is dedicated to the host in a sense that, he will
not switch to another site if the site of interest fails. He
will keep retrying. In this model, failures occuring in
different part of the system have not been distinguished.
This is shown in Fig 1.Here, a state is designated by a
tuple (server state, user state). Server state can be ei-
ther Up or Down, while user state can be Active (when
user has sent a request to the server and it is being ful-
filled), Thinking (when user has recieved his desired ob-
jects and is going through them without making any fur-
ther requests) and Failure (when user request could not be
fulfilled and the user knows that the server is down. We
use the bold lettered alphabets to designate these states
of server and user. We, thus, obtain state space to be
Ω = {(U, A), (U, T), (D, A), (D, T), (D, F), (U, F)} for
this model as shown in the figure. We also denote a particu-
lar state in Ω by its index in the set, starting at 1. Futher, the
server’s failure and recovery is assumed to have exponen-
tial time distribution with rates λ and µ respectively. These
states are joined by transitions, F(.), G(.), R(.) and T(.). We

explain these transitions and their nature in Section 8. The
definition of availability used for this model is as follows:

Au ≡
πU,F + πD,F + πD,A

πU,F + πD,F + πD,A + πU,A

(7)

where πU,A etc represent the limiting probabilities as ex-
plained in Section 2.3.2. Although, there are other defini-
tions of availability, this seems to be the most suitable and
widely accepted in the present context.

R(.)

R(.)

T(.)

F(.)

G(.)

G(.)

U,F U,A U,T

D,TD,AD,F

1 2

3 45

6

Figure 1: Single-User-Single-Host Model by Xie

3.2 Single-User-Multiple-Host: SUMH

This scenario includes one online user and a large number
of hosts. Each of these hosts provide some service that the
user is interested in. The user is not dedicated to a sin-
gle host and therefore, in face of a failure of some host, he
readily switches over to another host. Hence, the name sin-
gle user multiple host(SUMH) model. To simplify analysis,
it is assumed that the failure and recovery behavior of all the
hosts in the pool is identical. In case an individual web host
fails, the user may switch to another web host providing the
service of interest. Switching time is assumed to be gener-
ally distributed with mean 1/ λ. Since, the unavailability of
all web hosts is As, the new web host may be down with
probability of As and up with a probability of (1-As). This
model is shown in Fig 3.2. Note the transitions from (D,F)
to (U,A) and (D,A) have aforesaid mentioned probabilities
as a factor. The definition of availability used for this model
is,

Au ≡
πD,F + πD,A

πD,F + πD,A + πU,A

(8)

where πU,A etc represent the limiting probabilities as ex-
plained in Section 2.3.2.

4

Figure 3: Single-User-Single-Host with Different Platform Failures

(1−As

T(.)

F(.)

G(.)

G(.)

)

A
S

U,A U,T

D,TD,AD,F

1 2

3 45

Figure 2: Single-User-Multiple-Host Model by Xie

3.3 Single-User-Single-Host with Different
Platform Failures: DPF

In this model, we distinguish among failures occuring in
different parts of the system namely, near-user, in-middle
and near-host failures. This model of Xie is based on SPN
and was an all exponential model. This is shown in Fig 3.3.
Because of difficulty of MRGP analysis and large number
of states in this model, we had to simplify this model in
order to make it more amenable to MRGP analysis. The
details on this model are given in Section 9.

4. Previous Work
In this section we state the conclusions of work done by Xie
[5] and Raymakers [6] for objective comparision. Later we
outline the work that we have done in this project.

4.1 Xie’s Study

Following is the list of claims made by Xie et. al.

1. The user percieved system unavailability, Au, is differ-
ent from actual system unavailability. User perceived
system unavailability is a function of system’s failure
and recovery behavior as well as the user behavior.

2. The relationship between user retry rate, λR, and Au

is of the nature as shown in Fig. 4.1(a).

3. For a given system unavailability As, we have the fol-
lowing relationship

λ = µAs (9)

where λ and µ represent failure and retry rate of the
system. The equation says that to maintain the same
actual platform unavailability, if µ is increased then λ
must be increased and vice-versa. Xie et. al. con-
cluded that for a given fixed As, Au decreases as mean
time to failure, MTTF(λ−1) & mean time to repair,
MTTR(µ−1) decrease. This conclusion can provide
the web services administrators with handles to im-
prove upon their system’s user perceived availability
while optimizing the costs.

5

4. Finally, CTMC analysis is not sufficient for user per-
cieved platform availability results in much higher un-
availability values. Therefore, MRGP analysis be-
comes essential.

sweet spot

(a) (b)

(a) depicts the expected system unavailability as concluded by Xie et. al.
(b) depicts the observered system unavailability by Raymakers et. al.

for the case of fixed platform availability but variable MTTR and MTTF

retry rate
retry rate

user
percieved

unavailability

Figure 4: Fig 1

4.2 Raymaker’s Study

In their simulation experiments, Raymakers et. al. made the
following claims:

1. We can find a ”sweet spot”, for a given system avail-
ability, beyond which higher user repair rates yield lit-
tle benefit. Au at a fixed As varies in the way shown
in (b) above in fig 4(b), with decreasing MTTR i.e. the
increasing µ.

2. For a given system, we can determine whether improv-
ing MTTR or MTTF will yield more user visible ben-
efits.

4.3 Our Contributions

The three models of user interactions with servers were
developed by Xie et al [5]. Xie et al [5] carried out the
CTMC analysis as well as MRGP analysis of Model
1(SUSH) and Model 2(SUMH) and compared the results
with CTMC analysis. For Model 3(DPF), they only carried
out analysis using an all exponential assumption for the
transitions between the states.
Raymakers et al [6] simulated Model 1(SUSH) with same
parameters as those used by Xie et al [5]. They obtained

results which were different from those of the later.

Our contributions are as follows:

• We have found out some problems with the Model
1(SUSH) by Xie et al [5]. We developed the new
Model 1 as shown in Fig 5 and carried out MRGP anal-
ysis for the same. With this modification we were able
to obtain results which were more similar to those of
Raymakers [6].

• Further, we collected data from real world user and
server interactions to evaluate the accuracy of claims
made by Xie et al. [5].

• For DPF model, we have modified the model in a
way so that it could be more tractable and carried out
MRGP the analysis.

A quick summary of this is given in Table 1.

5 Single User Single Host (SUSH)

This model captures the first scenario where there is one
online user who is interested only in one host. Hence the
name, Single-User-Single-Host(SUSH) model. Here, the
user is dedicated to the host in a sense that, he will not
switch to another site if the site of interest fails. He will
keep retrying. In this model failures occuring in different
part of the system have not been distinguished.
An analysis of Xie’s model 1(SUSH) revealed that certain
facts were overlooked in the analysis of the model using
MRGP. The fact that the exponential transitions with rates
λ and µ between states (U,T)→ (D,T) (refer to Figure 3.1
& 5) and (U,F)← (D,F) respectively, are of concurrent na-
ture(refer to Appendix 11.3), modifies the generator matrix
of the EMC of the MRGP. Hence, the local kernel E(t) and
the global kernel K(t) also differ. We took notice of this
fact which has been ignored in Xie’s analysis and repeated
the analysis.

5.1 Steps of Solution

We have carried out steady state analysis of the MRGP
model 1 (SUSH) to find out the limiting probabilities from
which the user perceived availability can be evaluated as
shown in Section 3.1. Below we outline the steps to obtain
the steady state probabilities:

1. Obtain the branching probability matrix ∆ where
∆(i, k) = P (next marking is mk | current marking
is mi and t which is an enabled transition in mi, fires)

6

Table 1: Contributions of major groups in this project
SUSH/Model 1 SUMH/Model 2 DPF/Model 3

Xie MRGP Analysis MRGP Analysis CTMC
Raymakers Simulation – –
Our Work Correction & MRGP & Data Collection - MRGP

R(.)

R(.)

T(.)

F(.)

G(.)

G(.)

U,F U,A U,T

D,TD,AD,F

1 2

3 45

6

Figure 5: Corrected Single-User-Single-Host Model

2. Obtain the infinitesimal generator matrix Q of the sub-
ordinated CTMC of the MRGP.

3. Obtain the local kernel E(t) using Theorem 4 of [1].

4. Obtain the global kernel K(t) using Theorem 5 of [1].

5. Obtain matrix α where
αmn = E[time spent in a state before a renewal | Y0 =
m] =

∫

∞

0
Emn(t)dt

6. Obtain steady state probability vector ν = (νk) using
the equations
ν = νP

∑

k∈Ω′ νk = 1

7. Obtain the steady state probability of the MRGP given
by

πj = limt→∞P (Z(t) = j) =

∑

k∈Ω′
νkαkj

∑

k∈Ω′
νkβk

where βk =
∑

l∈Ω αkl

5.2 Branching Probability Matrix

There can be two kinds of states in MRGP: tangible, in
which the process spends time > 0 with a non-zero prob-
ability and vanishing, in which the process spends time
> 0 with zero probability. These vanishing marking are re-
moved by merging all tangible states with vanishing states
following it and reassigning the probabilities. This reas-
signment needs the branching probability matrix ∆. Since
in our case, there are no vanishing states, therefore its a ma-
trix with all enteries 1.

5.3 Infinitesimal Generator Matrix

Between any two renewals, the process behaves as a CTMC
which can be solved after obtaining its generator matrix
as explained in Section 2.2. This is one of the steps in
obtaining the final solution of MRGP process as shown in
Section 5.1. For this CTMC which underlies MRGP, the
behavior will be dependent also on its initial state. The
generator matrix with initial state m is called Q(m). The
various Q(m)s are given in 11.1. All these Q(m)s can be
compactly represented as given below:

Q =

















−λ 0 λ 0 0 0
0 −λ 0 λ 0 0
µ 0 −µ 0 0 0
0 λ 0 −λ 0 0
0 0 0 0 −µ µ
0 0 0 0 λ −λ

















(10)

5.4 Local Kernel E(t)

Local Kernel, as defined and explained in Section 2.3, for
SUSH model, is the following matrix:

E(t) =

















E11(t) 0 0 0 0 0
0 E22(t) 0 E24(t) 0 0
0 0 E33(t) 0 0 0
0 E42(t) 0 E44(t) 0 0
0 0 0 0 E55(t) E56(t)
0 0 0 0 E65(t) E65(t)

















(11)
E(t) represents the behavior of embedded stochastic
process between two consecutive regenration points of an
MRGP, which is a CTMC process.
A generalized method to obtain the local kernel is outlined
in [1]. In our special case, it can also be obtained by
analyzing the system as a two state continuous time
Markov chain(CTMC). It’s analysis as a CTMC yields the
following results.

E11(t) = e−λt(1− F (t)) (12)

E22(t) = (1−G(t))
(

µ
µ+λ

+ λ
λ+µ

e−(λ+µ)t
)

(13)

E24(t) = (1−G(t)) λ
λ+µ

(

1− e−(λ+µ)t
)

(14)

E31(t) = (1− T (t))e−(µ)t (15)

7

E42(t) = (1−G(t)) µ
λ+µ

(

1− e−(λ+µ)t
)

(16)

E44(t) = (1−G(t))
(

λ
µ+λ

+ µ
λ+µ

e−(λ+µ)t
)

(17)

E55(t) = (1−R(t))
(

λ
µ+λ

+ µ
λ+µ

e−(λ+µ)t
)

(18)

E56(t) = (1−R(t)) µ
λ+µ

(

1− e−(λ+µ)t
)

(19)

E65(t) = (1−R(t))
(

µ
µ+λ

+ λ
λ+µ

e−(λ+µ)t
)

(20)

E66(t) = (1−G(t)) λ
λ+µ

(

1− e−(λ+µ)t
)

(21)

The generalized method for obtaining local kernel yields
the following expressions:

E11(t) =
[

eQ(1)t
]

11
(1− F (t)) (22)

E22(t) =
[

eQ2(t)
]

22
(1−G(t)) (23)

E24(t) =
[

eQ2(t)
]

24
(1−G(t)) (24)

E33(t) =
[

eQ3(t)
]

33
(1− T (t)) (25)

E42(t) =
[

eQ4(t)
]

42
(1−G(t)) (26)

E44(t) =
[

eQ4(t)
]

44
(1−G(t)) (27)

E55(t) =
[

eQ5(t)
]

55
(1−R(t)) (28)

E56(t) =
[

eQ5(t)
]

56
(1−R(t)) (29)

E65(t) =
[

eQ6(t)
]

65
(1−R(t)) (30)

E66(t) =
[

eQ6(t)
]

66
(1−R(t)) (31)

Here owing to their simplicity, eQ(m) can be exactly evalu-
ated. We evaluated these matrices in 11.2. From them we
re-evaluated the local kernel. We obtained results by this
general method which were identical to those obtained pre-
viously, hence confirms the correctness of our analysis.

5.5 Global Kernel K(t)

Next, we proceeded to the global kernel, K(t). This captures
the behaviour of the embedded discrete time Markov chain
formed by the regeneration instants, refer to Section 2.3.

Theorm 5 of [1] outlines the general method for ob-
taining global kernel. Using this method we obtain the
following expressions for the global kernel

K12(t) =

∫ t

0

[

eQ(1)x
]

11
dF (x) (32)

K13(t) =
[

eQ(1)
]

13
(1− F (t)) +

∫ t

0

[

eQ(1)x
]

13
dF (x)(33)

K21(t) =

∫ t

0

[

eQ(2)x
]

22
dG(x)) +

∫ t

0

[

eQ(2)x
]

24
dG(x))(34)

K23(t) = K21(t) (35)

K31(t) =
[

eQ(3)
]

31
(1− T (t)) +

∫ t

0

[

eQ(3)x
]

31
dT (x))(36)

K35(t) =

∫ t

0

[

eQ(3)x
]

33
dT (x)) (37)

K41(t) =

∫ t

0

[

eQ(4)x
]

42
dG(x)) +

∫ t

0

[

eQ(4)x
]

44
dG(x))(38)

K43(t) = K41(t) (39)

K51(t) =

∫ t

0

[

eQ(5)x
]

55
dR(x)) +

∫ t

0

[

eQ(5)x
]

56
dR(x))(40)

K53(t) = K51(t) (41)

K61(t) =

∫ t

0

[

eQ(6)x
]

65
dR(x)) +

∫ t

0

[

eQ(6)x
]

66
dR(x))(42)

K63(t) = K61(t) (43)

In case, R(t) is an exponential distribution then we have

K51(t) = 0 (44)

K53(t) =
λR

λR + µ
(1− e−(λR+µ)t) (45)

K61(t) =
λR

λR + λ
(1− e−(λR+λ)t) (46)

K63(t) = 0 (47)

With these expressions in place we compute the numer-
ical values of various other matrices mentioned in 5.1 for
various parameters and plot the graphs in the next section.

5.6 Results of Theoritical Analysis

The theoritical analysis of this model with same parameters
as those used by Xie is being carried out. For this we first
pin down the specific distributions assumed for F (.), G(.),
R(.) & T (.). F (.) represent the ON period for a user in-
teracting with a server. This has been assumed to follow a
Weibull distribution, refer to Section 6.1, with pdf and cdf
given as follows:

f(t) = k
θ

(

t
θ

)k−1
e−(t

θ)
k

t ≥ 0 (48)

F (t) = 1− e−(t
θ)k

t ≥ 0 (49)

G(.) represent the OFF period for a user interacting
with a server. This has been assumed to follow a Pareto
distribution, refer to Section 6.1, with pdf and cdf given as
follows:

g(t) =

{

Cαmα/tα+1 m ≤ t ≤ n,
0, otherwise,

G(t) = 1−
(

m
t

)α
m ≤ t ≤ n (50)

8

R(.) represents the user retry time distribution after
he witnesses a failure. This has been assumed to have an
exponential distribution with parameter λr. Finally, T (.),
which represents the HTTP retry time of the user agent, has
been taken to be a constant with value T = 10seconds.
Hence, its cdf is

T (t) =

{

0 0 ≤ t < T,
1 T ≤ t

We obtain the solution of the MRGP model following
the steps 5,6 & 7 of 5.1 using same values of parameters as
those used by Xie. These parameters have been tabulated
in Table 2. In Table 3, we tablulate the unavailabilities ob-
tained for different µ and λ at a constant platform failure of
Au=0.007.

−3.8 −3.6 −3.4 −3.2 −3 −2.8 −2.6 −2.4 −2.2 −2 −1.8
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

Our MRGP Analysis

Xie’s CTMC Analysis

Xie’s MRGP Analysis

log(mu)

User
Perceived
Unavailability

Figure 6: Unavailability Vs Repair Rate(log scale)

0 0.002 0.004 0.006 0.008 0.01 0.012
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

Retry rate (mu)

User Perceived
Unavailability

Our MRGP Analysis

Xie’s CTMC Analysis

Xie’s MRGP Analysis

Figure 7: Unavailability Vs Repair Rate

The results obtained were markedly different from the
results obtained by Xie. This is explained in 8

6 Data Collection for Experimental
Verification of Results

Our next task was to collect data for verification of claims
made by Xie [5] and Raymakers [6]. To accomplish this we
decided to collect user data of the campus community for a
set of 500 most highly accessed servers. We prepared this
list on the basis of access logs of Vsnlproxy at IITK. We
needed the following things for this purpose.

1. Knowledge of UP and DOWN states of servers being
monitored

2. Knowledge of timing and duration of user requests to
these servers

For the first part, it was necessary that we poll the servers
from more than one location otherwise inaccessibility of the
server from user’s point of view will mostly coincide with
the DOWN state of the server. Therefore, we set up pollers
at Duke University. The working of the pollers is described
in Section 6.3. We were able to collect 3 sets of data in this
way, which we call data set 1, 2 & 3. There were many
issues pertinent to real data collection for measuring user
behavior. We throw some light on them in the following
sections.

6.1 User Behavior

An empirical and tractable ON-OFF model of web user be-
haviour was proposed by Deng. The ON period follows a
Weibull distribution with probability density function given
by

f(t) =
k

θ

(

t

θ

)k−1

e−(t
θ)

k

(51)

Here constants k and θ are referred as the shape parameter
and scale parameter of the Weibull distribution. Their
typically used values are k = (0.77− 0.91) and θ =
(

e4.4 − e4.6
)

. The OFF period follows a Pareto distribution
with pdf

g(t) =

{

Cαmα/tα+1 m ≤ t ≤ n,
0, otherwise,

Here, α, m, n are constants with typical values of α =
(0.5− 0.9) (α is called the shape parameter of the Pareto
distribution.) m is called the ”ON-OFF” threshold and is
also called the shape parameter of Pareto distribution which
means that a series of requests arriving with an inter-interval
times within m will be considered to be an ON period while
the requests seperated by more than m time constitute an
OFF period between them. n is called session threshold
which indicates that the requests separated by more than n
time are considered to be of different sessions.

9

Table 2: Summary of SUSH Model Parameters
parameter value Comments
k 0.88 shape parameter of Weibull distribution
θ e4.5 scale parameter of Weibull distribution
α 0.5 shape parameter of Pareto distribution
m 60 seconds scale parameter of Pareto distribution

(ON-OFF threshold)
n 6000 seconds truncation point of Pareto distribution

(session threshold)
1/r 100 seconds Mean time between user retries upon failures
T 10 seconds HTTP Retry rate

Table 3: Au Vs Platform Repair rate µ with AS=0.007 in SUSH model
µ Our Au Xie’s MRGP Au Xie’s CTMC Au

0.00019372 0.067029 0.03589534 0.04520818
0.00030059 0.055061 0.03313437 0.04359795
0.00046642 0.042960 0.02997184 0.04142308
0.00072373 0.032062 0.02647339 0.03865829
0.00112299 0.023094 0.02291812 0.03541084
0.00174250 0.016211 0.01963503 0.03195471
0.00270377 0.011197 0.01676101 0.02869206
0.00419535 0.007683 0.01434502 0.02604848
0.00650979 0.005288 0.01234880 0.02437117
0.01010101 0.003690 0.01068826 0.02389412
0.02020202 0.003620 – –

To start with, we will use this model with a slight modifica-
tion.

Thinking/OFF Period

Active/On Period

No Session Period

Server UP Server DOWN Server UP DOWN UP

time in seconds

1 2 1 2 3 5 3 5 6 1 2 1User State

in SUSH model

Figure 8: User State Determination Diagram

We will assume that an ON period is the period between
two subsequent non-overlapping requests within a time
interval of < n. We will merge all over-lapping requests
into a single request. Hence, we do have m = 1 in our
model. Two request separated by more than n units will be
considered to be belonging to two different sessions and

only a small portion of this time is considered to be the
OFF period, and is called the thinking time threshold (it
partly plays the role of m). For this we need to estimate two
parameters i.e. n and the thinking time threshold, which
we do in 7.3.

Now, it’s quite simple to deduce the state transition se-
quence for a given user-server pair from the knowledge of
timing and duration of user requests to these servers (ob-
tained from access.log proxy files) and the knowledge of
UP and DOWN states of servers being monitored (obtained
from data of polling agents). We show this using diagram in
Fig. 8. This is quite simple and intuitive and can be easily
understood from this diagram. Here, states (U,A) etc are de-
noted by their index in set Ω, as explained in Section 3.1. In
this figure, filled vertical bars, in shades of blue, represent
user requests. This figure is not to scale however.

data collected

6.2 Summary of Proxy Server Behavior

In Appendix 11.4, we outline the behavior of proxy server
to the three kinds of requests made by an user. From
this analysis we conclude that we need to retain only the
following enteries in the access log files obtained from the

10

proxy server

1. TCP MISS

2. TCP REFRESH MISS

3. TCP CLIENT REFRESH MISS

6.3 Server Polling Agent

We will call the agent that will poll the servers for their
UP and DOWN state as Server Polling Agent or SPA. This
agent will poll a set of predefined servers at regular inter-
vals. We will use HTTP HEAD request to poll the servers.
Previously, people have used the ubiquitous ping program,
ICP ping, rpc.statd[1] to find out whether a particular server
is up or down at a given instant of time. All these methods
are much more efficient than polling using HTTP HEAD
request. However, in each of these earlier studies the aim
was just to see whether the system was up or down. We are
interested in Web-User behavior modeling. In this context,
UP state of a server is that state in which the user is getting
a response from the server which belongs to a category of
HTTP requests other than the 5xx response (5xx responses
imply that there was some server error due to which the
server could not complete the request of the user). Whether
the server is in UP state or not can only be found out only af-
ter analyzing the response of the server (or browser in cases
such as that of request time outs).
Its working is follows:

Send a HTTP HEAD request to the server
parse the response
if response code is obtained before time out then

if response code is one corresponding to UP state then
store the current time instant to be an UP instant for
the server

else
store the current time instant to be a DOWN instant
for the server

end if
else

store the current time instant to be an DOWN instant
for the server (this corresponds to time out of responses
such as Requested URL could not be retrieved)

end if

6.4 Servers To Be Polled

Our work is being is done within the boundary of an ed-
ucational campus. This might not be the representative of
the web user behavior in general. However, since most of
the people using internet heavily are related to academics,

Table 4: Characterization of Poller’s Behavior
Time Diff Avg Time for HTTP Trans Avg # of Conn
5 8.78 1.33
4 7.74 1.92
3 7.45 2.44

therefore, the user behavior of the limited set of users on
the campus will be representative of user behavior for some
specific sites related to academics such as citeseer.com,
dblp.com etc. However, this approach can be generalized to
a wider study of web user behavior. We will outline some
scalability issues with our approach and ways to deal with
them later on. To get a list of servers to be polled we will
analyze the web logs of proxy server at IIT Kanpur. From
this a list of 500 most highly accessed sites will be short-
listed (these numbers are arbitarily decided and subject to
changes). Time Synchronization

6.5 Issue of Time Synchronization

We installed the polling agent at different locations to ob-
tain more reliable data regarding UP and DOWN states of
the servers being polled. The log files of up and down times
thus generated will be merged off-line in order to generate
the more actual up and down time behavior of the server.
This brings us to time synchronization problems as the sys-
tems on which we run our programs may differ in their time.
To deal with this, we will use the Network Time Protocol
and inquire about the UTC time at a chosenNTP Server.
We will a poll a stratum 2 NTP server or a secondary NTP
server as primary NTP servers take longer to respond and
the differences between the two is of the order of a second
at most, which is bearable in our case atleast for now.

6.6 Time difference between polling

We will use separate threads to poll different servers of in-
terest. However, this might lead to a large number of si-
multaneous TCP connections. To prevent this we will run
threads for different servers at a separation of a few sec-
onds. Below in the table we give the mean time taken to
get a response to HTTP HEAD request and average num-
ber of TCP connections for different values of time inter-
val between starting of polling threads. The analysis was
done for a about 500 servers and average values gathered
over 100 runs. This table helped us in determining the
optimum time interval. Its first column contains the dif-
ference between starting of consecutive request threads (in
seconds), second column contains average time taken for
HTTP HEAD request-response transaction to complete(in
seconds) and the last column contains the average number
of simultaneous TCP connections opened by SPA.

11

6.7 Scalability

The current system of server polling agents have not been
optimized to scale to the size of the web. However, there
are tools to do this well. [2] mentions of one such hardware
tool that can effectively deal with huge amounts of traf-
fic and corresponding log records without encurring much
overheads. Hence, we hope that our efforts at modeling the
user behavior can be scaled over larger networks by replac-
ing this subsystem with a more efficient and dedicated hard-
wares.

7 Data Analysis & Results

In this section, we do the analysis of data collected and es-
timate their parameters. We have assumed that the data col-
lected follows the distributions assumed for them. We have
verified this for distributions of F(.) and G(.). For other dis-
tributions we did not have enough data. In the first subsec-
tion we estiamate parameters of exponential distributions
involved i.e λ, µ and λR. In next subsection we estimate
parameters of Weibull distribution F(.). Refer to chapter 10
of Trivedi’s book for details [4]. We plot pdf using our esti-
mates and show their extent of overlap in Fig. 9 for the first
data set. We do the same for Pareto distribution in subsec-
tion 7.3 and plot the graph in Fig. 10

Figure 9: Distribution of User-ON periods, F(.)

Figure 10: Distribution of User-OFF periods, G(.)

7.1 Estimating Parameters of Exponential
Distributions λ, µ & λR

We use maximum likelihood estimates for obtaining these
parameters. This involves defining a likelihood function
and finding its maximum value by partially differentiating
it with respect to the parameters, refer to chapter 10 of [4].
We, thus, obtain the following estimate for λ

λ =
n

∑n
i=1 Xi

(52)

This is applicable for estimating µ and λR, but not for λ.
This is so because our period of data collection is not large
and in this period we could not witness failure of most of
the servers we polled. Therefore, we will use the method of
truncated life tests for estimating these parameters as out-
lined in chapter of 10 of [4]. This analysis gives the follow-
ing estimate of λ

λ =
r

∑r
i=1 Ti + (n− r)Tr

(53)

where T1, T2, ..., Tr are the observed times to failure so
that T1 ≤ T2 ≤ ... ≤ Tr and r is the number of servers
which failed during the observation period out of the total n
servers polled. The values of λ estimated using this method
has been tabulated in Table 5. Similarly, estimates of µ and
λR using Eq. 52 have been tabulated in the same table.

12

Table 5: Estimation of Parameters From Data
Set # λ(sec−1) µ(sec−1) λR(sec−1) k θ α Au(Theory) Au(Data) η
1 1.3596 ∗ 10−4 1.0392 ∗ 10−2 5.802 ∗ 10−3 0.2738 1.94 ∗ 104 0.04712 0.1734 0.1389 1.24838
2 5.2348 ∗ 10−4 9.863 ∗ 10−3 8.242 ∗ 10−3 0.2456 4.55 ∗ 104 0.0615 0.1368 0.2015 0.67890
3 7.984 ∗ 10−3 4.0238 ∗ 10−2 6.563 ∗ 10−3 0.3456 7.23 ∗ 103 0.0598 0.2568 0.2356 1.08998

7.2 Estimating Parameters of Weibull Distri-
bution

For estimating the parameters of Weibull distribution, we
follow the maximum likelihood estimation method outlined
in chapter 10 of Trivedi’s book [4]. We obtain the following
set of equations in terms of parameters θ and k

n

θk
−

n
∑

i=1

T k
i = 0 (54)

n

k
+

n
∑

i=1

lnT k
i − θk

n
∑

i=1

T k
i lnTi = 0 (55)

There are no closed-form solutions for θ and α. These
have to be solved iteratively.

7.3 Estimating of Parameters of Pareto Dis-
tribution

For estimating the parameters of Pareto distribution, we fol-
low the maximum likelihood estimation method outlined in
Trivedi [4]. We obtain the following equation in terms of
parameters m and α

α =

[∑n
i=1 lnTi

n
− ln(k)

]−1

(56)

These are again to be solved using iterative numerical
techniques. The values obtained for the different data
sets have been tabulated in Table 5. For this distribution,
the session threshold time has been assumed to be 6000
seconds as these values were used by Xie [5] in his analysis.

7.4 Results

We plotted the graphs corresponding to estimated parame-
ters for F(.) and G(.) along with the real distribution ob-
tained from data in Fig 7 and 7 respectively for data set
1. However, our values for the parameters are quite differ-
ent from those given in Xie [5]. This should be anticipated
as the campus community is not the representative of the
web user community in general. The close agreements be-
tween them show that our assumptions regarding nature of
F(.) and G(.) are valid.

Our next task was to compare the theoritically obtained user
perceived unavailibities values with those obtained from
real data. For this we made use of Theorem 1 of [2], which
we have stated in Section 2.3. The theorem and the fact that
limiting probabilities under suitable conditions, which are
satisfied for our models, are same as the long run propor-
tion of time a Markov chain spends in state j, can be used to
evaluate limiting probabilities. We assume that our period
of observation of data is long. Therefore, we obtain limiting
probabilities by evaluating long run proportion of time spent
in various states by users and from these using unavailabil-
ity definition of Section 3.1, we obtain actual values of un-
availibilities. This we have tabulated against the steady state
probabilities obtained by theoritical analysis using parame-
ters estimated from data in Table 5.We found good agree-
ments betweent the user-perceived availability values ob-
tained by theoritical analysis and from data. This is quite
encouraging given the short time interval of data collection,
which increases discrepancies. More extensive study can
establish the fact that our methodology is indeed quite reli-
able.

8 Conclusions

We have plotted the graphs showing variation of user un-
availability, Au, versus increasing repair rate, µ, in Fig.
6(log µ) and Fig. 7of section 5.6. We have also plotted
the values obtained for MRGP and CTMC analysis by Xie.
The results obtained by us are quite different from those of
Xie [5]. Our analysis clearly establishes the following facts:

• Insufficiency of CTMC Analysis: CTMC analysis is
not sufficient for the purpose of user-perceived avail-
ability analysis because of large difference in estimates
obtained by the two methods. This establishes that we
must do MRGP analysis for DPF model inspite of its
difficulties.

• Presence of sweet spot: There does exist a sweet
spot in the graph of Au vs µ, which implies that ef-
forts to improve MTTR (µ−1) beyond sweet spot, at a
given system availablity, does not provide much divi-
dends, because afterall its the user-perceived availabil-
ity thats important and not actual system avalibility.
This can serve as a useful handle for web administra-

13

tors to fine tune their efforts to improve overall avail-
ability of webservers.

• Close agreements with real data: We were able to
establish that distributions of F(.) and G(.) are in-
deed of the kind assumed in the theoritical analysis.
Moreover, we found good agreements betweent the
user-perceived availability values obtained by theoriti-
cal analysis and from data as shown in Table 5. More
extensive study can establish the fact that our method-
ology is indeed quite reliable.

9 Single User Single Server With Dif-
ferent Platform Failures

This scenario includes one web user and one service
host. The user is dedicated to the host, meaning that the
user will not switch to other sites even in the presence of
service outage. The model distinguishes the near-user,
in-middle and near-host failures. Due to the complexity
of the model, originally it was proposed and solved by
Xei et al [5] as a Stochastic Petri Net (SPN) as shown in 3.3.

Assume there are two components in each of the
near-user, in-middle, and near-host subsystems, which are
independent of each other. Places U1, U2 and U3 represent
the ”up” place of the near-user, in-middle and near-host
components, respectively. Places D1, D2 and D3 represent
the ”down” place of the near-user, in-middle, and near-host
components, respectively. Transitions F1, F2 and F3 are the
corresponding failure transitions, and transitions R1, R2
and R3 are the corresponding repair or recovery transitions.
The user could be in any of the Active, Think and Failure
places, and there are guard functions that control the
transitions among them.
The limitation of a SPN is that we have to let all transitions
have exponentially distributed firing times. To overcome
this limitation in the originally proposed model, we have
constructed a Markov Regenerative Process (MRGP) to
represent the system. MRGP allows us to have at most one
non-exponentially distributed transition from every state in
the model. We denote a state of the MRGP by the 4-tuple
(U1, U2, U3, U), where U1, U2, U3 denote the number
of ”up” components in near-user, in-middle and near-host
parts and U denote state of the web user. Since there are
two independent components in each part of the network,
there are three possible values for each of U1, U2 and U3,
i.e. each can be 0, 1 or 2 depending upon the number
of components ”up” in each part of the network. Also,
user can be either Active, Thinking or seeing a Failure so
there are three possible values for U, denoted A, T or F
respectively. So the MRGP model has a total of 81 states

and 405 transitions.
Due to complexity of the model, a simplified version is
shown in the figure below. The simplified model assumes
only 1 component in each platform, thus, leading to total
number of states being reduced to 24 and transitions to 96.
A state labeled 010A above denotes all components down
in near-user part as well as near-host part, 1 component
up in in-middle part and the user is in Active state. All
transitions among the states, in which user is in thinking
state, are concurrent transitions since user does not get to
know about these transitions and hence, the clock is not
reset on any of these transitions. A similar argument could
be given for all transitions among states in which user is
seeing a failure. The transitions among those states in
which user is in active state, while all the components in
one or more platforms are down, are also concurrent. This
holds since the user’s request does not get completed and
the clock for T(.) starts as soon as user enters any of these
7 states and it is not reset on any of these transitions. All
of these concurrent transitions have exponential distribu-
tion. Hence, in the above model we have 3 subordinated
CTMCs. But in the original model, there exists another
such subordinated CTMC consisting of those states in
which user is in active state and at least one component is
up in each part of the network thereby allowing for the user
request to be completed.

In the above model, the transitions from active states
to corresponding thinking states are prohibited when at
least one platform has all components down. This is in
accordance with the guard function g1 in the original SPN.
Similarly, the transitions from active to failure states when
there is at least one path are disallowed by guard function
g2 in the SPN.

In the above model, the only way to enter a thinking
state from a non-thinking state is through transition from
”111A” to ”111T”. Since the distribution for this transition
is general and for all other transitions with at least one
platform with all components down, the distribution is
exponential hence we conclude that, all the states in which
user is in thinking state and there is at least one platform
with all components down are Non-Regenerative (NR)
states. Now, since any state in which user is thinking and
at least one component is up in every platform, can be
reached from a state having same number of components
up in respective platforms and with user in active state,
through a non-exponentially distributed transition, hence
all such states are regenerative at the instant of occurrence
of that transition and hence are Regenerative (R) states.
These statements are also true for the original model with
81 states. A similar argument can be given for states in
which user sees a failure, but then those states in which

14

there is at least one path from user to host are NR while
all the remaining failure states are regenerative states. Any
active state can be reached through a non-exponentially
distributed transition from corresponding thinking or failure
state with same number of components up in each part of
the network. Hence, all the active states are regenerative.
Each of the subordinated CTMCs for the original model
with 81 states is shown below. The model for subor-
dinated CTMC within those states in which the user is
in thinking mode is same as that in which user sees a failure.

A state labeled ”xyz” here denotes the state when user is
in thinking state (or failure for CTMC for failure states) and
x components are up in near-user part, y components up in
in-middle and z components are up in near-host platform in
the network.
The CTMC above consists of all those states in which user
is active and there is at least one path for user request to
reach the host, and all the transitions among these states in
the original model.
The CTMC above consists of all those states in which user
is active and all components are down in at least one part
of the network, and all the transitions among these states in
the original model.

9.1 Solution of Model 3

To solve the model, we need to construct the local kernel
matrix E(t) and global kernel matrix K(t) as for SUSH
model. Since the MRGP model had 81 states, K(t) and
E(t) are 81X81 square matrices. Although most of the en-
tries in the kernel matrices are zero, there are 2059 non-zero
entries in K(t) and 1883 in E(t). These entries in-turn de-
pend upon distributions of [eQ(i)t]ij for states i,j, which can
be obtained by alternatively by solving Kolmogorov’s equa-
tion

P ′(t) = QP (t) (57)

for each subordinated CTMC.

For instance, for the subordinated CTMC formed by the
concurrent transitions in the thinking states in the simpli-
fied model (1 component in each platform), we obtain the
following set of 8 differential equations:

P000′(t) = −(r1 + r2 + r3)P000(t) + f1P100(t)

+f2P010(t) + f3P001(t) (58)

P001′(t) = −(r1 + r2 + f3)P001(t) + f1P101(t)

+f2P011(t) + r3P000(t) (59)

P010′(t) = −(r1 + f2 + r3)P010(t) + f1P110(t)

+r2P000(t) + f3P011(t) (60)

P011′(t) = −(r1 + f2 + f3)P011(t) + f1P111(t)

+r2P001(t) + r3P010(t) (61)

P100′(t) = −(f1 + r2 + r3)P100(t) + r1P000(t)

+f2P110(t) + f3P101(t) (62)

P101′(t) = −(f1 + r2 + f3)P101(t) + r1P001(t)

+f2P111(t) + r3P100(t) (63)

P110′(t) = −(f1 + f2 + r3)P110(t) + r1P010(t)

+r2P100(t) + f3P111(t) (64)

P111′(t) = −(f1 + f2 + f3)P111(t) + r1P011(t)

+r2P101(t) + r3P110(t) (65)

Similarly, we will get a system of 27 differential equa-
tions for corresponding subordinated CTMC for our origi-
nal MRGP. On solving this system of equations, we can get
the analytical solution for Pij(t) or equivalently [eQ(i)t]ij
for states i,j. This can be then used to calculate the kernels.
But, finding analytical solution by solving such a system
of equations for subordinated CTMCs with a large number
of states does not seem promising. This coerced us to in-
stead find the numerical solution for Pij(t), for which sev-
eral tools are available. We used SHARPE for this purpose.
We were able to construct the model using tool SHARPE
and find Pij(t) for some states i,j. But solving the model
completely could not be possible considering the immense
number of transitions and time constraints.

10 Future Work

The problems with the structure of the models were discov-
ered much later during the project and after that we had to
start from almost the begining. There are many more things
that we need to do. We outline them below:

1. More Extensive Data Collection We would like to
carry out more extensive data collection and thereby
verifying our models for the extent of accuracy with
the real world. This should be easy now, as we have all
the infrastructure and tools in place to do this.

2. SUMH Model’s Analysis This model is very similar
to SUSH model. However, due to short of time we
could not carry out its analysis.

3. DPF Model’s Enhancements We had to simplity this
model to render it mathematically tractable. We would
like to carry out its analysis in its original form using
MRGP techniques.

15

Figure 11: DFP model for reduced number of parameters (components in each part of the network).

11 Appendix

11.1 Generator Matrices

Between any two renewals, the process behaves as a
CTMC. The generator matrix with initial state m is called
Q(m). Following the method outlined in [1], we obtain
various Q(m)s to be as follows:

Q(1) =

















−λ 0 λ 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

















(66)

Q(2) = Q(4) =

















0 0 0 0 0 0
0 −λ 0 λ 0 0
0 0 0 0 0 0
0 µ 0 −µ 0 0
0 0 0 0 0 0
0 0 0 0 0 0

















(67)

Q(3) =

















0 0 0 0 0 0
0 0 0 0 0 0
µ 0 −µ 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

















(68)

Q(5) = Q(6) =

















0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 −µ µ
0 0 0 0 λ −λ

















(69)

11.2 Exponentiation of Generator Matrices

In this section we show that owing to their simple structure
eQ(m)t indeed can be obtained in a closed form for all the
Q(m) matrices. We use power series to define exponentia-
tion of a matrix as follows:

eQ = I +
Q

1!
+

QQ

2!
+

QQQ

3!
+ ... (70)

We show how we obtained Q(2), rest can be done by fol-
lowing the reckoning.

Q(2) =

















0 0 0 0 0 0
0 −λ 0 λ 0 0
0 0 0 0 0 0
0 µ 0 −µ 0 0
0 0 0 0 0 0
0 0 0 0 0 0

















(71)

16

Figure 12: DPF model: Subordinated CTMC formed due to concurrent transitions in user thinking states. (Similar model for
Failure States.)

Q(2)Q(2) =

















0 0 0 0 0 0
0 λ(λ + µ) 0 −λ(λ + µ) 0 0
0 0 0 0 0 0
0 −µ(λ + µ) 0 µ(λ + µ) 0 0
0 0 0 0 0 0
0 0 0 0 0 0

















(72)
We obtain the general formula for Q(2)n as follows

Q(2)n =

















0 0 0 0 0 0
0 Q2

22 0 Q2
24 0 0

0 0 0 0 0 0
0 Q2

42 0 Q2
44 0 0

0 0 0 0 0 0
0 0 0 0 0 0

















(73)

where,

Q2
22 = (−1)nλ(λ + µ)n−1 (74)

Q2
24 = (−1)n−1λ(λ + µ)n−1 (75)

Q2
42 = (−1)n−1µ(λ + µ)n−1 (76)

Q2
44 = (−1)nµ(λ + µ)n−1 (77)

Now, using equation 70 we have

eQ(2) =

















0 0 0 0 0 0

0 [eQ(2)]22 0 [eQ(2)]24 0 0
0 0 0 0 0 0

0 [eQ(2)]42 0 [eQ(2)]44 0 0
0 0 0 0 0 0
0 0 0 0 0 0

















(78)

where,

[eQ(2)]22 =
µ

λ + µ
+

λ

λ + µ
e−(λ+µ) (79)

[eQ(2)]24 =
λ

λ + µ
(1− e−(λ+µ)) (80)

[eQ(2)]42 =
µ

λ + µ
(1− e−(λ+µ)) (81)

[eQ(2)]44 =
µ

λ + µ
+

λ

λ + µ
e−(λ+µ) (82)

Similarly, we obtain other exponentiations.

17

Figure 13: DPF model: Subordinated CTMC formed by concurrent transitions in Active Up states.

11.3 Concurrent and Competitive Transi-
tions

11.4 Proxy Server Behavior

In IITK system, almost all computer users on the campus
lan access Internet through the proxy server. Users route
all their requests to servers outside IITK lan through this
proxy server. Some user-server interactions get modified
due to presence of the proxy server depending upon the
kind of user request and also, whether the proxy server has
the required data object in its cache or not. To capture real
user-server interaction behavior, we need to avoid taking
into consideration those interactions which are modified
due to presence of the proxy server. We identify such
requests and purge them from the access log files given to
us. We outline the way to do it in this section.

There are three kinds of requests that clients send to the
squid proxy server which are normal tcp fetch requests,

IMS (if-modified-since) fetch requests and requests involv-
ing pragma issued by client. The motivation behind differ-
ent kinds of request can be many such as the need to access
data quickly or to access the latest version of data or to op-
timize the network resources. Corresponding to each such
request there will be an entry made in the access log file, ac-
cess.log, of the proxy server. An entry has many fields, one
among which is the result code. The first of its two parts,
i.e. the cache result of the request contains information on
the kind of request, how it was satisfied, or in what way it
failed. Please refer to section Squid result codes for valid
symbolic result codes [3]. A study of these result codes and
circumstances in which these are produced, provide us with
a handle to purge many of the request enteries in access.log
because these requests are served from the server’s cache.
We outline below various steps taken by a proxy server in
response of each client request and give the description in
an algorithmic form. We enclose comments between /* and
*/ . We have further marked whether an entery containing a
particular squid result code will be useful for us or not. In

18

the access.log files that we obtained from IITK server, we
retained only those enteries which have been marked useful
in the algorithm below.

• normal tcp fetch requests
if desired object is present in cache then

if object present in the memory then
it’s a TCP MEM HIT; /* not useful */

else
TCP HIT; /* not useful */

end if
else

TCP MISS; /* useful */
end if

• IMS (if-modified-since) fetch requests
Here, the client(browser on client’s machine) has a
locally cached copy of the object that it needs and this
object contains its last modification time, LMT client
alongwith it. So, the client(browser) sends an IMS
request that contains the time of last modification of
the desired object. now, the proxy server checks for
presence of the desired object on its cache. If present,
then it checks last modification time, say LMT squid,
for the object in its own cache and the response is per
the algorithm below:

if desired object is present in cache then

if locally cached object is NOT stale then

if LMT client == LMT squid then
TCP IMS HIT; /* not useful */

else
TCP IMS MISS; /* not useful */
/*since the proxy server always contains the
latest of all copies that any of the clients can
have, therefore, this ought to be the most re-
cent copy.*/
send the locally cached copy on squid server
to the client;

end if
else

send an IMS request to the origin server with
LTM squid embedded into it;

if request succeeds then

if LMT origin server == LMT squid then
TCP REFRESH HIT; /* not useful as
server DOES NOT need to send the newer
copy of the object */

else

TCP REFRESH MISS; /* useful */
server sends the newest copy of the object
to the squid server;
this new copy is delivered to the client;

end if
else

the IMS request to the origin server failed
TCP REF FAIL HIT; /* not useful */
deliver the stale copy of the object present
on the squid server to the client;

end if
end if

else
TCP MISS;/* useful */

end if

• the client issues some pragma such as ”no cache”
pragma, due to which the squid proxy server HAD
to refetch the object.
TCP CLIENT REFRESH MISS; /* useful */

From above we can conclude that we need to retain only
the following enteries in the access log files obtained from
the proxy server

1. TCP MISS

2. TCP REFRESH MISS

3. TCP CLIENT REFRESH MISS

References

[1] H. Choi , V. G. Kulkarni , K. S. Trivedi, ”Markov regen-
erative stochastic Petri nets,” Proceedings of the 16th IFIP
Working Group 7.3 international symposium on Computer
performance modeling measurement and evaluation, p.337-
357, May 1994, Rome, Italy

[2] S. Dharmaraja, K. S. Trivedi, D. Logothetis, ”Perfor-
mance modeling of wireless networks with generally dis-
tributed handoff interarrival times,” Computer Communica-
tions 26(15): 1747-1755 (2003).

[3] http://squid.bilkent.edu.tr/Doc/FAQ/FAQ-6.html Section 6.7
Squid Result Codes.

[4] K. S. Trivedi, ”Probability and Statistics with Reliability,
Queueing and Computer Science Applications,” John Wiley,
second edition, 2002.

[5] Wei Xie, PhD thesis, ”Availability and Performance Evalua-
tion of E-Business Systems,”Chapter 1,2 and 3 (through per-
sonal communications).

[6] J. Raymakers et al, ”Impact of Failure and Recovery Times
of Web Servers on User Perceived Availability”,(through per-
sonal communications).

19

[7] A. Fox and D. Patterson, ”When does fast Recovery trump
high reliability”, In Proceedings of the Second workshop on
Evaluating and Architecting System Dependability, San Jose,
October 2002.

[8] Howard F. Lipson & David A. Fisher, ”Survivability:A New
Technical and Business Perspective on Security”.

[9] Dongyen Chen, PhD Thesis, ”Analysis and Mitigation of
Failures in Communication Systems with Discrete and Fluid
Models,” Chapter 1: Topics on Failures and Survivabil-
ity and Chap 3:Network Survivability Performance Evalua-
tion: A Composite Measure of Performance and Availability.
(through personal communications).

[10] R. J. Ellision, D. A. Fisher, R. C. Linger, H. F. Lipson, T.
Longstaff, N. R. Mead, ”Survivable Network Systems: An
Emerging Discipline”.

[11] B. Randell, ”Facing Up to Faults,” Alan Turing Memorial
Lecture, Jan 2001.

[12] J. Payne ,”Downtime Dangers: Stock Market
Outages Highlight Software Availability Issues,”
The Payne Report, Vol. 2, No. 6, July/August
2001. http://www.cigital.com/paynereport/archive/jul-
aug2001.php.

[13] Merideth M. G. and Narsimhan P., ”Metrics for Evaluation
of Proactive and Reactive Survivability,”

[14] Ellison R. J., Linger R. C., Longstaff T. and Mead N. R.,
”Survivable Network Syste/pm Analysis: A Case Study,”
IEEE Software, 16(4):70-77, July/August 1999.

[15] D. Long, R. Golding, A. Muir, ”Longitudnal Survey of Inter-
net Host Reliability”, HPL-CCD-95-4, 22 February, 1995.

[16] RFC 2068: HTTP1.1 www.faqs.org/rfcs/rfc2063.html

[17] Network Time Protocol www.ntp.org

[18] www.kloth.net: Softwares related to Simple Network Time
Protocol and traceroute.

[19] www.squid-cache.org/ FAQ, Configuration.

20

Figure 14: DPF model: Subordinated CTMC formed by concurrent transitions in Active Down States.

21

