Long Distance 802.11b Links: Performance Measurement and Experience

802.11 to Bridge the Digital Divide

- Example Deployments
 - Akshaya, Kerala
 - Digital Gangetic Plains, Uttar Pradesh
 - Djurslands.Net, Denmark
 - Nepal Wireless

Src: http://nepalwireless.net/

- Several commercial products exist
- Important Issue
 - Understand link performance

The Ashwini Project

- West & East Godavari, Andhra Pradesh, India
- Deployment by Byrraju Foundation
- One link used in our tests

The antenna tower at Kasipadu

Questions

- What is the effect of received signal strength on packet error rate?
- What is the effect of packet size and transmit rate on packet error rate?
- Is there time correlation of packet errors? If so, at what granularity?

Questions

- What is the maximum achievable application throughput?
- What is the effect of interference?
- What is the effect of weather on link performance?
- What is the effect of MAC ACK timeouts on application throughput?

Outline

- Motivation & Background
- Methodology
- Packet error studies
- Throughput measurements
- Interference Analysis
- Some Lessons
- Conclusion
- Questions

Hardware Setup

Senao 2511CD plus ext2 PCMCIA cards

- Soekris platform with pebble Linux
 - Net 4521 and Net 4501

 12V battery with a capacity of 32AH with a voltage stabilizer circuit

Software Setup

- Open source HostAP driver
- Export per packet information via /proc system
 - PHY: Signal strength, noise level, data rate
 - MAC: CRC check status, MAC sequence, etc.
- Enable/disable MAC level Ack
 - Driver exports an interface for this

Digital Gangetic Plains

Sep 2006 Kameswari Chebrolu, Bhaskaran Raman, Sayandeep Sen, Indian Institute of Technology, Kanpur

Sites Used

Site Name	Notation	Tower arrangement	Mains power supply	Alternate power supply
IITK	Α	40m building	Available mostly	
Mohanpur	В	17m tower	Not available	12V battery + stabilizer circuit
Mandhana	С	40m tower	Available at times	12V battery + stabilizer circuit
MS3	D	30m tower	Unreliable, huge voltage fluctuations	12V battery + stabilizer circuit
Bithoor	Е	25m tower on roof of 15m building	Available at times	12V battery + stabilizer circuit
Banthar	F	25m tower	Available at times	12V battery + stabilizer circuit
Sarauhan	G	40m tower	Not available	12V battery + stabilizer circuit, solar panel
Bhimavaram	Р	45m tower	Available mostly	
Kesavaram	Q	30m tower	Available at times	Battery + inverter

Long Distance Links Used

Link	Length (km)	Antennae	RF cables	Remarks
A-B	3.5	ParG-ParG	50ft, 100ft	
A-C	5	Sec-ParG	50ft, 150ft	
C-D	1	ParG-Can	125ft, 50ft	Ant at 30m at C, 15m at D
E-D	7.5	ParG-ParG	125ft, 50ft	
A-F	23	ParG-ParG	50ft, 100ft	
A-G	37	ParG-ParG	50ft, 150ft	
A-E	12	ParG-ParG	50ft, 150ft	
P-Q	16	Sec-ParG	1ft, 1ft	Power-over-Ethernet for radio atop the tower

Measurement Methodology

- Metrics
 - Packet error rate
 - Signal Strength
 - Application throughput (UDP and TCP)
- Parameter space
 - Transmit power (4 settings)
 - Transmit rate (4 settings)
 - Packet size (3 settings) and inter-arrival (4 settings)

14

- Broadcast vs unicast
- Channel of operation: fixed for each link

Experiment Setup

- UDP experiment
 - Choose a specific value of transmit power, rate and packet size
 - Inter arrival: Saturation, 2ms, 100ms, 500ms
 - MAC ACKs are off (broadcast)
 - Receiver in monitor mode
- TCP experiment
 - Choose a specific value of transmit power and rate
 - Data transfer for 25 sec
 - With and without MAC ACKs

Data Collection Procedure

- Two ends of link form link with default settings
- One end determines which experiment to run and communicates the same to other end
- Two ends change settings, perform the experiment and record results
- Two ends store data collected during experiment via LAN or flash memory

Outline

- Motivation & Background
- Methodology
- Packet error studies
- Throughput measurements
- Interference Analysis
- Some Lessons
- Conclusion
- Questions

Error Rate

Sep 2006 Kameswari Chebrolu, Bhaskaran Raman, Sayandeep Sen, Indian Institute of Technology, Kanpur

Sep 2006 Kameswari Chebrolu, Bhaskaran Raman, Sayandeep Sen, Indian Institute of Technology, Kanpur

Time Correlation of Errors

- Allan Deviation
 - Given a series of values

$$\sqrt{\frac{\sum_{i=2}^{N} (x_i - x_{i-1})^2}{2N}}$$

Allan Deviation

Sep 2006 Kameswari Chebrolu, Bhaskaran Raman, Sayandeep Sen, Indian Institute of Technology, Kanpur

A Few Other Results

- Error rate is independent of time
- At high SNR, error rate variation is very small and under 0.1%
- At low SNR, error rate variation is high:
 - Steep region of Error-Rate vs. SNR curve
 - 1.5% to 45%
- Weather does not seem to effect link performance!

Implications

- Link abstraction holds
 - Links can be planned such that error rates are low
- No sophisticated routing is required
- Transmit rate adaptation based on SNR

Bottlenecks & Implications

- Neither HostAP driver nor PCMCIA card support DMA
- Net4521 has a 133MHz processor
- 11Mbps, 100 byte packets
 - Achieved: 0.77Mbps, Theoretical: 1.53Mbps
 - Rate of interrupt to clear buffer is small
- There are system bottlenecks other than wireless interface
 - VOIP calculations

Sep 2006 Kameswari Chebrolu, Bhaskaran Raman, Sayandeep Sen, Indian Institute of Technology, Kanpur

TCP Throughput

- Effect of ACK timeout on 37 km link
 - MAC unicast: 0.5Mbps, MAC broadcast: 1.9Mbps
- TCP evaluation
 - Inter-packet gap was 10-20ms
 - Exponential rise in contention window
 - Collision between TCP Data and ACK
- Hardware quirk:
 - MAC receiving same sequence number packets
- Implications
 - Need selective acknowledgment mechanism

Outline

- Motivation & Background
- Methodology
- Packet error studies
- Throughput measurements
- Interference Analysis
- Some Lessons
- Conclusion
- Questions

Sep 2006 Kameswari Chebrolu, Bhaskaran Raman, Sayandeep Sen, Indian Institute of Technology, Kanpur

Inter Link Interference: Setup

Setup Details

- Transmitter
 - Sends beacons every 100ms, txpower = 20dbm
 - Operates in Channel 1
- Sniffer
 - Listens in monitor mode, scans channel 1-11
- Four configurations
 - Both transmitter and sniffer are up the tower (20m)
 - Transmitter is up, Sniffer is down
 - Both transmitter and sniffer are down, 1m apart
 - Both transmitter and sniffer are down, 5m apart

Sep 2006 Kameswari Chebrolu, Bhaskaran Raman, Sayandeep Sen, Indian Institute of Technology, Kanpur

Implications

- External interference can significantly degrade application performance
- Issue of RF pollution needs immediate attention
 - Technical: Mechanisms to detect and diagnose causes of interference
 - Non-Technical: Some legal or semi-legal mechanism to control interference across deployments
- Need to be aware of inter-link interference
 - Use of RF cables recommended

Outline

- Motivation & Background
- Methodology
- Packet error studies
- Throughput measurements
- Interference Analysis
- Some Lessons
- Conclusion
- Questions

Some Lessons Learnt the Hard Way

- Tricky txpower/channel settings
 - Must be set *after* setting the mode
- Use hardware register directly for txpower
- Cannot force association!
- Check for possible interference at remote site
 - Can affect log size
- Beware of kernel UDP buffer
- Account for RF leakage during calibration

Conclusion

- Long distance links can be planned well for predictable performance
- Interference can cause drastic reduction in performance: planning necessary
- Beware of bottlenecks other than wireless interface
- Future directions:
 - Network planning
 - Detecting interference sources, network mgmt.
 - Link perf. in 200-3000m distances in village settings

Thanks You!

Questions?

