To appear in SILM Workshop at 5th IEEE EUROS&P, 2020

Reverse Engineering the Stream Prefetcher for Profit

Aditya Rohan
MSE, IIT Kanpur
raditya@iitk.ac.in

Abstract—Micro-architectural attacks exploit timing chan-
nels at different micro-architecture units. Some of the micro-
architecture units like cache automatically provide the timing
difference (the difference between a hit and a miss). However,
there are other units that are not documented, and their in-
fluence on the timing difference is not fully understood. One
such micro-architecture unit is an L2 hardware prefetcher
named Streamer. In this paper, we reverse-engineer the
Stream prefetcher, which is commercially available in the
Intel machines. We perform a set of experiments and pro-
vide our observations and insights. Further, we use these
observations to construct a cross-thread covert channel using
the Stream prefetcher, with an accuracy of 91.3% and a
bandwidth of 54.44 KBps.

1. Introduction

Timing channels through different micro-architecture
units like branch predictors and caches are practical and
are a threat to many systems, including handheld de-
vices, clients/server systems, and clouds. Timing chan-
nels observe the fundamental property of “latency dif-
ferences between cache hits and misses” to infer about
the cache blocks that are accessed by the victim (crypto-
graphic) application. Attacks such as Flush+Reload [!]
and Prime+Probe [2] [3] use the timing difference of
accessing cache lines in order to communicate bits. How-
ever, the recent wave of disclosing microarchitectural at-
tacks has exploited most of the well-known units. Hence,
there is a need to reverse-engineer similar lesser-known
micro-architecture units that might be used to mount a
new side/covert-channel attack.

To attack a micro-architecture unit, we need first to
understand it properly. One such micro-architecture unit is
a hardware prefetcher, which is a popular off-chip memory
latency hiding technique employed in all the commercial
machines. Different kinds of prefetchers are employed at
different levels of cache catering to different kinds of
access patterns. One of the hardware prefetchers named
Streamer is employed in Intel machines.

The problem: Intel manual [4] does not provide
many details regarding the functioning of the stream
prefetcher. To that effect, we reverse-engineer the Intel
Stream prefetcher to discover the unknown properties and
construct a covert channel.

Our goal is to find out answers to the following
questions related to the Stream prefetcher: (i) Is it shared
between two hyper-threads. (ii)) How many entries are
there in a stream table? (iii) What is the range of prefetch

Biswabandan Panda
CSE, IIT Kanpur
biswap @cse.iitk.ac.in

Prakhar Agarwal
CSE, IIT Kanpur/Tower Research
prakhar.agrwl98 @ gmail.com

degree and distance that a Streamer uses? (iv) Is it possible
to create a cross-thread covert channel using the Streamer?
Our contributions are as follows: (i) We reverse-
engineer the Stream prefetcher answering the questions
mentioned above (Section 3). (ii) We propose a novel
inter-thread covert channel through the stream prefetcher.
Our covert channel provides a communication bandwidth
of about 54.44 Kbps with an accuracy of 91.3% (Section
4). To the best of our knowledge, this is the first paper
that attempts to reverse-engineer the Stream prefetcher.

2. Background

2.1. Hardware Prefetchers

Modern CPUs use data prefetching to reduce the costly
off-chip DRAM accesses and hide the miss latency at
various levels of cache. Some well known prefetching
techniques are the next-line prefetching, stream prefetch-
ing [5], and stride prefetching [6]. In next-line prefetching,
if a request for a cache line X is received, then the line
X+1 is prefetched. The stream prefetcher prefetches a
stream of lines at a varying prefetch distance from the
current line X. Stream prefetcher assumes a contiguous
access pattern in a particular direction and exploits the
spatial locality of such a pattern. The stride prefetcher
observes a stride in the access pattern and prefetches
lines at the observed stride. The stream prefetcher is the
prefetcher of interest for this paper.

2.2. Stream prefetcher

The stream prefetcher prefetches a stream of lines.
We can explain the functioning of the streamer in the
following three steps: (i) the first miss, say to cache line X,
initiates a stream, (ii) the second miss to cache line X+Y
defines the direction of the stream in this case, and (iii) the
third miss, at X+Z (where Z>Y), confirms the direction.
Prefetching begins at the next miss, X+D. The streamer
maintains a stream table, which is filled upon confirmation
of the direction of the stream. This table stores multiple
entries per OS page and stores prefetching-metadata for
several pages at once. A miss can only trigger prefetching
if such an entry exists for the same OS page.

The three-step process to decide and confirm the
direction of the stream helps improving prefetch accu-
racy. Higher accuracy is essential because prefetched lines
evict other lines already present in the cache, and if the
prefetched lines are never used, then it only pollutes the

cache. The degree to which an incorrect prefetch affects
the cache also depends on how many lines the prefetcher
prefetches. The “prefetch degree” is the number of lines
the streamer prefetches at a given point of time, and the
“prefetch distance” is how far ahead the prefetched cache-
line is from the trigger line.

2.3. Covert Channel

A covert channel is any usual information channel
that is used to share information in an unintended way,
violating the system’s security and privacy policies. All
shared resources can be possible covert channels. Covert
communication at the micro-architecture level uses one of
the following protocols:

Prime+Probe: [2], [3]: In a Prime+Probe covert chan-
nel, the receiver first fills all lines of a cache set with
its data. The sender process, if now accesses any of the
lines in that cache set, then it evicts the receiver data.
On subsequent access to the same cache set, the receiver
observes a cache miss. For a pre-decided line in the cache
set, the sender can send a 1 (receiver observes a hit) or O
(receiver observes a miss).

Flush+Reload [1]: Flush+Reload covert channel re-
lies on sender and receiver physically sharing memory
pages. The sender flushes a pre-decided cache line using
instructions like c1flush and waits for the receiver to
access the same cache line. The received bit is 1 if the
receiver measures a low access latency, otherwise it’s 0.
This information can be used to communicate between the
sender and the receiver process.

Building on the basics of the stream prefetcher and the
covert-channel, we now discuss the reverse engineering
experiments and observations.

3. Reverse Stream

Prefetcher

Engineering the

In this section, we experiment with the Stream
prefetcher to study its behavior. Intel manual contains only
a brief explanation on the behavior of hardware prefetch-
ers, but recently [7] Intel revealed a way to control the
hardware prefetchers. A user can now control the prefetch-
ers using bits 0 to 3 of the Model Specific Register (MSR)
present on every core at the address Ox1a4. We use these
bits to disable all prefetchers except the stream prefetcher
at the L2 cache. The test system for all experiments
described in the following sections, comprises of a dual-
core Intel Kabylake Core i5-7200U CPU, with a 64KB
L1 cache, 256KB L2 cache, and an LLC of 1.5MB/core,
with each core supporting simultaneous multi-threading
(SMT). All the experiments use two threads (T1 and T2)
that belong to the same physical core. We ensure the
experiments are free from any system noise by isolating
the physical core. This prevents any applications from
being scheduled on the experiment core. We perform all
experiments about 100 times, to ascertain the results. We
performed the experiments on Intel Skylake i7 processors
as well for testing. However, throughout the paper, we use
the Core i5 machine to discuss our results and observa-
tions.

1,500 - .

o H
N kD A6 L X \'l%\gﬁb‘
Number of Pages

=]
=]
=]
T
|

lines prefetched
g
[

Figure 1: Plot indicating that the size of Stream table is
16 entries. Refer 3.1 for the details.

3.1. Stream Table Size

In this experiment, we determine the size of the stream
table. We launch a program that accesses the first three
lines of an OS page. The number of pages increases in
every iteration by order of two ie., 1, 2, 4, 8, and so
on. By accessing the first three lines of all the pages,
we create a single stream table entry for each page, such
that future accesses to the same page would trigger the
prefetcher. After every iteration, we access the fourth line
of the first page in the sequence, which remains same
for every iteration. If a stream table entry exists for the
first page, then we expect to see some prefetch activity
(prefetched cache lines).

If the number of pages accessed in an iteration is more
than the number of entries in the stream table, then the
entry made by the first page will be evicted from the table,
assuming the least recently used policy for eviction of the
entries of the stream table. If the entry for the first page
is evicted, further accesses to that page will not trigger
the prefetcher, resulting in the absence of any prefetch
activity. From Figure 1, we can see the total number
of lines prefetched reduces abruptly after 16 pages. This
indicates that on accessing more than 16 pages, the stream
table entry for the first page is evicted from the table.

Observation: The L2-stream prefetcher maintains a
table of 16 entries to track the prefetch behavior of various

pages.
3.2. Stream Prefetcher: Is it Shared?

We experiment to find out whether two SMT threads
of a single physical core share the stream prefetcher at L2
cache. We run a program that spawns two threads, each
bound to one of the SMT threads of the physical core 0
of the test system. Each thread accesses a large array of
size 4MB, large enough to cover all three levels of caches.
Each thread accesses every cache line within an OS page,
either in the +ve or -ve direction. For example, for an
OS page X, accesses to cache lines X+1, X+2, and X+5
constitute a +ve direction stream and accesses to cache
lines X+7, X+3, X+1 constitute a -ve direction stream.
We run the following four experiments: (i) both threads
accessing in the +ve direction, (ii) both threads accessing
in the -ve direction, (iii) one thread accessing in the +ve
direction and other one accessing in the -ve direction, and
(iv) one thread accessing in the -ve direction and other
one accessing in the +ve direction.

If the stream prefetcher is shared among threads, then
threads running on the same physical core can use the

Trigger

2,000 -
1,500 -

1,500 -

Ll L

1,00(

3

5

=]
3

Casel‘1‘2‘345‘6‘7‘8‘22000

Stream Trigger ;'0 1,500

=

Casell‘1‘2‘345‘6‘7‘3‘§1A000

Stream Trigger ::::‘ 500
CaseIII‘l‘2‘3‘4""‘19‘20‘ 1 2345 6 7 8 91011 1213

Cache Line Number
Stream () (b) Case I

1234567809 1 23456 7202122
Cache Line Number Cache Line Number
(c) Case II (d) Case III

Figure 2: (a) Three cases of prefetch trigger. (b),(c), and (d) show the number of OS pages that got hits for the given
cache line numbers, for case-1, case-II, and case-III, respectively. Cross-hatched lines represent trigger lines.

TABLE 1: Effect of stream direction on execution time
(in terms of average cycles over 100K runs).

Stream direction Avg. completion cycles
Thread-1 Thread-2 Thread-1 Thread-2
+ve -ve 44045 42700
+ve +ve 37922 34697
-ve +ve 46194 45142
-ve -ve 43280 39971

same stream table entry. Therefore, if a thread makes an
entry in the stream table, then the next thread can start
prefetching from the first miss, and the execution time of
the second thread will be lower than the first one. The
second thread will start prefetching after the first access
(skipping the need to train the prefetcher). However, if
the threads do not share the stream table entry, then the
execution time for either thread will not improve.

Observation: Table 1 shows the result of this exper-
iment and supports our hypothesis. Threads with same
direction access pattern, do use the same stream table
entry, which we can see in the reduced number of cycles
required for completion for two pairs: (i) +ve/+ve and (ii)
-ve/-ve as compared to +ve/-ve and -ve/+ve pairs.

At this point, we know that SMT threads on the same
physical core share the stream prefetcher at L2 cache.

3.3. Unraveling the Prefetch Aggressiveness

Now that we know that the stream prefetcher is shared
between logical cores on the same physical core, we
can proceed to unravel some other features regarding the
distance and degree (aggressiveness) of the prefetcher.

Case I: In this experiment, thread-1 (T1) accesses
the first three cache lines of a page. Next, thread-2 (T2)
accesses one line from that page. In this case, T2 accesses
the 4th line within that page. This case exhibits our com-
mon understanding of the stream prefetcher’s behavior.
The expectation is that since three accesses can define a
stream direction, T1’s accesses make an entry in stream
table for +ve direction prefetching. T2’s access then acts
as a trigger and prefetches a set of lines according to the
streamer’s distance and degree. Next, T1 reloads all the
64 cache lines (numbered 1 to 64) within that page in
64 different iterations. Note that a 4KB OS page consists
of 64 cache lines, each of 64 bytes. Case I of Figure 2
(a) shows that T1 accesses the first three lines in the +ve
direction and T2 accesses the 4th line as a trigger.

To avoid triggering the prefetcher unintentionally, we
reload only one line per page in one iteration. For a given
page, T1 iterates 64 times, monitoring the effect of the
experiment on each line. We repeat this for all 2048 pages,
and show (Figure 2 (b)) the count of the pages in which we

get L2 cache hits for a specific cache line. For example,
if we want to monitor the nth line for L2 hits/misses,
we repeat T1’s access-pattern for every page and observe
whether this causes the nth line to get a hit or a miss.
In case, the nth line is a hit in all the pages, then the
count will be 2048. We repeat this experiment for each
line within the monitored page. In Figure 2 (b), the first
four lines show almost perfect hit count out of 2048.

Subsequent lines indicate a significant number of hits
as well. However, the hit count varies depending on the
distance and the degree. Note that for line nos. 14 to 64,
the count is zero, which shows that the prefetcher does
not prefetch any lines beyond line no 13. We can use
this experiment to estimate distance and degree. We also
perform a similar experiment in the -ve direction. In the
reverse experiment, T1 accesses lines 64, 63 and 62, to
create a stream table entry for -ve direction. Accessing
line 61 triggers the prefetcher, and prefetches some lines
in the -ve direction. We see results similar to the +ve
direction stream table entry here as well.

Observation: The distance and degree in Case I is
dynamic, ranging from one to four and four to eight lines,
respectively.

3.4. Understanding the Stream Trigger

Case II: We now know that three consecutive cache
misses in a particular direction create an entry in the
stream table, and the fourth miss triggers the prefetching.
We were also able to verify this for both +ve and -ve
directions. The first two misses decide the direction, and
the third miss ascertains it. We find anomalies to this rule.
We run an experiment similar to Case I, using only one
line access before T2’s access. Case II of Figure 2 (a)
shows this experiment. We expect to see a higher number
of hits for the first two lines and near-zero hits for the
rest of the lines. Our experiments show that this is not the
case. The prefetcher was getting triggered even after only
two accesses in the same direction. Figure 2 (c) shows the
count of pages that got the hits. We can see a significant
number of hits for lines up to line number nine.

Observation: One inference that we can draw from
this experiment is that the trigger line accessed by T2
helps in deciding and confirming the direction and works
as a trigger to prefetch more lines.

Case III: In this experiment, T1 accesses the first line,
and T2 accesses the 20th line (it can be any line number).
From the previous experiment, we only expect to see some
lines prefetched after line number 20. However, we see
that the prefetcher prefetches six lines after the first line,
as well. Figure 2 (d) shows the results for the same. This

Trigger

-+ 2,000 - 8
{1500} 1
on H H

- 1,000 |-

1 so0l

3
3

1l

E 2,000 -
i [15) - [R[S[] }
o0 1,500 (-
— =
Stream Stream =
— o 1000
i5)
cn
won [aa] - [aalo]w] £ -|
Trigser 12345
28 c

@

6 7 8 910111244454647
ache Line Number
(b) Part T

1920212223 53545556575859 6061626364
Cache Line Number
(c) Part IT

Figure 3: (a) Case IV: Effect of stream directions in two parts. (b) and (c) shows the number of OS pages that got hits
for the given cache line numbers, and for the two parts. Cross-hatched lines represent trigger lines.

Trigger Trigger
et [1]2]3]3]4]5] - [m[es]a] - [@]a]e] |retn [1]2]3] - [B]20]z] - [s]a]e]e]e]w]
" Stream 1 Trigger Stream 2 “Stream 2 Trigger Stteam 1
PartIII‘l‘Z‘3‘3‘4‘5‘ ‘44|45‘46‘ ‘62‘63‘64‘ PartIV‘l‘Z‘3‘ ‘19|20‘21‘ ‘59‘60‘61‘62‘63‘64‘
“Stream 2 sfream 1 “Strear 1 Siream 2

Figure 4: All parts of Case V with the stream access direction and the trigger line number.

é 2,000 - 2,000 |-
S
80 1,500 | 1500
5
k=
~ 1,000 | 1,000 | y
L
2
S, 500| 4 s00f y
: N I
12345678 910111244454661626364 1 2 3 4192021225455565758596061 6263 64
Cache Line Number Cache Line Number
(a) Part I (b) Part IT
2 2000 | 2,000{ N
S
80 1,500 1| 1500} N
s
5
o 1.000| 1 1000} 8y
(5]
2
8. 500 4 s00f y
* H 0 0
1 2 3 4444546475455565758596061 6263 64 12345678 910111920212261626364

Cache Line Number
(c) Part IIT

Cache Line Number
(d) Part IV

Figure 5: The plots show the number of pages that got hits for Case V. Cross-hatched lines represent trigger lines.

case is also shown in Case III of Figure 2 (a).
Observation: This raises some questions about our
understanding of the stream prefetcher. According to this
experiment, on a trigger access, prefetching happens at
the trigger line as well as the previous cache miss. Case
Il and Il suggest the possibility that there is another
undocumented hardware unit that behaves as a prefetcher.
However, we cannot control it with the MSR bits.

3.5. Dominant Stream Direction

Case IV: In the first three cases, we see some unex-
pected behavior with the degree and trigger of the stream
prefetcher. The direction of the stream table entry can be
yet another point of variance in the prefetcher behavior,
and we do the following experiment to establish the same.

As we can see from Figure 3 (a), T1 does two sets
of accesses, one in +ve direction ... one in -ve direction,
and accesses the 20th line from both the directions. Part
I of the Figure 3 (a) shows stream access from the +ve
direction and access to line number 45 (the 20th line from
the reverse direction) as the trigger. In Part II, T1 accesses
the stream in the -ve direction and accesses line number
20 as a trigger.

Observation: This makes the two experiments equivalent
in all respects except for the access direction. The ex-
pected behavior would be laterally inverted plots in terms
of page count that got hits. Figure 3 (b) shows that the
stream prefetcher prefetches lines only in the +ve direction
from the trigger line 45. However, in Part II, lines are
prefetched in both the directions from the trigger line
number 20 (Figure 3 (c)). This experiment suggests that
the prefetchers in +ve and -ve direction do not behave the
same. Next, we explore this difference in functionality.

Case V: In this experiment, we test the effect of stream
table entries that are accessed in both the directions, on the
prefetch behavior. Part I of Figure 4 shows the first, where
T1 accesses the first three lines of each page, creating a
stream table entry in the +ve direction. Then T1 accesses
the last three lines of the same page in reverse order to
create a stream table entry for the -ve direction. T2 then
comes in and accesses the trigger line, line number 45 for
Part 1. Figure 4 marks the first access sequence as stream
one and the other access sequence as stream two.

The first and the second parts of the experiment are
lateral inversions of each other. In Part I of Figure 4,
stream one is the +ve stream, and stream two is the -
ve stream and the trigger line is the 20th line from stream

two, i.e., line number 45. Whereas in Part II, stream one
is the -ve stream, and stream two is the +ve stream. The
trigger for part two is the 20th line from the +ve direction.

For this experiment, we expect inverted plots for Part
I and Part II. However, as we can see from Figure 5 (a)
and (b), this is not the case. Figure 5 (a) shows that lines
around the trigger line, the 45th line is this case, show
a negligible number of hits. Whereas Figure 5 (b) shows
significant hits around the trigger line (cache line number
20) in either direction. This experiment suggests the +ve
stream-table entry is dominant compared to the -ve entry.

The third and fourth parts also present similar experi-
ments (Part III and Part IV of Figure 4). In Part III, stream
one is the -ve stream and stream two the +ve stream. The
trigger line is the 20th line from the first stream, i.e., line
number 45. In Part IV, stream one is the +ve stream, and
stream two is the -ve stream, and the trigger line is the
20th line from the first stream, line 20. Plots in Figure 5
(c) and (d), show that the streamer prefetches more lines in
either direction from the trigger line when the first stream
is a -ve stream, as in Part III.

Observation: (i) If the first stream is in the +ve
direction, then the second stream’s prefetch degree gets
suppressed to a higher degree compared to when the first
stream is in the -ve direction. In Figure 4, Part I and
Part 1V, we can see that Stream 2 only accesses the last
three lines, which show a significant number of hits in
the individual plots. In contrast Part Il and Part IlI, the
first four lines are getting a considerable number of hits
(Figure 5 (b) and (c)), but Stream 2 accesses only the first
three lines. We can also say that the distance of the trigger
line from the first stream affects the degree of prefetch at
the trigger line. When the trigger is closer to Stream 1 as
in Part III and Part IV, the prefetch degree is higher in
both directions when compared to Part I and Part II.

3.6. Limitations of the Streamer

From the previous experiments, we can see that two
threads running on the same physical core can share the
stream table entries for the same shared pages. Sharing of
physical pages between the hyper-threads defeats the point
of a possible side-channel, as the threads can easily share
information via the memory. We perform an experiment to
study the effect of huge pages on the stream prefetcher to
find a way to overcome the aforementioned shortcoming.

We allocate a huge amount of memory in five huge-
pages of size 2MB each. We then create a stream table
entry by accessing the first three lines of the first huge-
page. We then access a trigger line, which keeps incre-
menting over iterations. For every trigger line, we monitor
the prefetch activity due to the same stream table entry
created by accessing the first three lines. To monitor the
prefetch activity, we use the approach from Case I, Figure
2. We reload ten lines in front of the trigger, one in each
iteration. We keep increasing the trigger line until there is
no observable prefetch activity. Our experiments show that
no activity can be observed after the trigger line crosses
64, which is the page boundary of a 4KB OS page. This
experiment, after multiple runs, shows the same results,
indicating that each stream table entry is only valid for a
4KB OS page, even when the huge-pages are enabled.

Interestingly, when huge-pages are not enabled, a

Receiver

1y, ~—, —> M
[12]3]a] [1]2]3]a] [1]2]3]4]
step-1: FLUSH step-2: PREFETCH step-3: RELOAD

Sender Receiver Sender Receiver Sender

Figure 6: Step-1: Sender flushes all lines of the shared
page.

Step-2: Sender then accesses first three lines, in either +ve
(for 1) or -ve (for 0) direction, triggering the prefetch.
Step-3: Receiver reloads line four, hit means 1, miss
means 0.

stream table entry created for a 4KB OS page can prefetch
lines into the next 4KB page if the trigger line is one
among the first two lines of the next page. For any
subsequent lines, no prefetch activity can be observed
if a stream table entry does not exist for that page.
This resembles the next page prefetcher (NPP) [8], which
demonstrates the ability to prefetch across page bound-
aries, but to a limited degree. On enabling huge-pages,
this cross-page prefetching effect cannot be seen at all.
Observation: The stream table entries are only valid

for the 4KB OS pages that they were created for, even

when huge-pages are enabled. For normal 4KB OS pages,
cross-page prefetching can be seen for the first two lines
of the page.

Next, we discuss the construction of a covert channel
as a proof of concept, using the findings of this section. To
the best of our knowledge, this is the first paper to show
a stream trigger activity-based covert channel.

4. Covert Channel Construction

Threat Model: For the covert channel, we assume
that the attacker is able to trick a third-party to run the
malicious code by poisoning a third-party library. The
attacker can also pin the Sender and Receiver processes to
the same physical core. The two programs, now running
on the two hyper-threads, have access to a shared stream
prefetcher. The sender and receiver are trying to commu-
nicate covertly using the stream prefetcher, which cannot
be accessed using any specialized instructions. Our threat
model is similar to the one proposed in [9].

Flush+prefetch+reload:We propose a way to use the
stream prefetcher as a covert channel with a sender-
receiver model. The three-step communication process is
also shown in Figure 6. The sender is pinned to thread-0
of physical core-0 and always accesses the first three lines
of a pre-decided page in the shared memory. For sending
a bit value 1, it triggers prefetching of lines in the +ve
direction following line number three. For sending a bit
value 0, the sender always accesses the first three lines
in the -ve direction, prefetching no lines in front of line
number three. The receiver, pinned to thread-1 of physical
core-0, always accesses line number four and measures
the access latency. If the sender accesses lines in the +ve
direction then line number four will be present in the cache
due to prefetching. When the receiver reloads the fourth
line, it will observe a hit. On the other hand, if the sender
accesses the first three lines in the -ve direction, then the
prefetcher will be trained for the -ve direction prefetching.
However, the prefetcher can only prefetch within the page

x
*Bits Sent Bits received correctly

+ . . .
* Bits received incorrectly

(300000 3000 300 0K 3000 K KK SOOOOC 30K 3K KK X x ¢

—

=]

3 XOOK X OO OOOK X XK B0000K K X X SO/OO0 S00BEOH 300K

Bit values

SO K KKK KR X

HO0C X 50K XA 20K HBOK K BOOK K 3K

0K S KRR X0 KK 0K K HRK KK S K FIRHAR SKHAASRRK) S

B XX %

10 20 30 40 50 60 70 80 90

100 110 120 130 140 150 160 170 180

Length of message(in bits)

Figure 7: A snapshot of 200 random bits sent over the stream prefetcher as a covert channel.

boundary, and the fourth line will not be prefetched. Now
when the receiver reloads the line, it will see a miss.

A cache hit on accessing the fourth line indicates
bit value 1, and a miss indicates bit value 0. We use
a calibration tool [10] to determine the L2 cache miss
threshold. After the receiver receives a bit, the sender
flushes all the cache lines of the same page to reduce
noise while sending the next bit.

Synchronization: We performed this experiment by
sending random bit strings, as shown in Figure 7, on an
isolated physical core of Intel Skylake i5 processor.

To synchronize the bit communication, we implement
a simple while loop lock using two shared variables (S &
R) initialized to -1. The sender updates the first variable
(S), and the receiver updates the second variable (R). For
receiving the ith bit, the receiver waits till the sender sets
the value of S to i. The sender sets the value of S to i only
after training the stream table entry for the ith bit. After
that, the sender waits until the receiver updates the value
of R to i. The receiver only updates the value of R after
receiving the ith bit. The sender then proceeds to send the
(i+1)th bit, and the receiver waits until the sender updates
the value of S again.

Accuracy, bandwidth, and error-rate: Through this
covert channel, we achieve an accuracy of up to 91.3%
at a bandwidth of 54.44 KBps, and an error rate 4.73
KBps (represents the number of bits lost due to erroneous
transfer of bits). The error rate, though small but existent,
can be explained with the help Case V from Section 3.5.
Flushing all lines of the page from the cache after sending
each bit does not flush the stream table entries for the
given page. Thus after sending a ‘1’ and a ‘0’ bit, the
stream table has entries for both +ve and -ve directions.
As shown in Case V (Figure 4), if both +ve and -ve stream
table entries exist for a page prefetching can happen in
either direction from the trigger line. To ascertain this
hypothesis, we run the same covert channel by sending
1000 ‘I’ and ‘0’ bits, to achieve an accuracy on 99.9%.

5. Related Work

From the past few years, there have been a couple of
papers exploring possible side and covert channel attacks
using hardware prefetchers. Bhattacharya et al. [1 1] study
the effect of next-line prefetching in the context of infor-
mation leakage. Cronin et al. [9] use the stream table size
to communicate covertly between processes and achieve a
41.6 KBps transmission speed. A process ‘A’ creates a few
stream table entries while executing, then yields the CPU,
process ‘B’ then takes over and trains a few stream table
entries of its own. If the total number of entries created by
‘A’ and ‘B’ exceeds the size of the stream table, then by
an LRU replacement policy some of ‘A’s entries will be
evicted. When it’s time for ‘A’ to run again, it’ll have to
retrain the prefetcher, thus the increased time of execution.

This time difference can be used to communicate bits
covertly. However, this covert channel is different from the
one proposed in this paper since we observe the prefetch
activity on a page to communicate bits. Our covert channel
also provides higher communication bandwidth. Shin et al.
[12] use another hardware prefetcher, the IP-based stride
prefetcher, to perform a side-channel attack that is specific
to the OpenSSL crypto-library [13].

6. Conclusion

In this paper, we proposed a set of experiments to
reverse-engineer the stream prefetcher at the L2 cache.
These experiments provide insights into the previously
unknown subtle issues related to the stream prefetcher. We
also propose a novel way to exploit the stream direction,
trigger, and prefetch degree of the prefetcher to construct
a covert channel. Future work involves mounting a side-
channel using the stream prefetcher. The experiments and
insights of this paper can be used to present more potent
side-channel attacks in the future.

7. Availability

https://github.com/car3s/Whispering-Streamers.

8. Acknowledgement

We would like to thank all the anonymous reviewers
for their helpful comments and suggestions. This work is
supported by the SRC grant SRC-2853.00.

References

[1] Yarom et al., “Flush+ reload: a high resolution, low noise, 13 cache
side-channel attack,” in Usenix Security 14), pp. 719-732, 2014.

[2] Osvik et al., “Cache attacks and countermeasures: the case of aes,”
in Cryptographers’ track at the RSA conference, pp. 1-20, 2006.

[3] Liu et al., “Last-level cache side-channel attacks are practical,” in
2015 IEEE S&P, pp. 605-622, 2015.

[4] Intel Corporation, Intel® 64 and IA-32 Architectures Software
Developer’s Manual. No. 253669-033US, March 2018.

[5] Tendler et al., “Power4 system microarchitecture,” IBM Journal of
Research and Development, vol. 46, no. 1, pp. 5-25, 2002.

[6] Baer ef al., “An effective on-chip preloading scheme to reduce data
access penalty,” in Supercomputing’91, 1991.

[7]1 V. Viswanathan, “Disclosure of h/w prefetcher control on some
intel processors,” in Intel SW Developer Zone, 2014.

[8] “Inconsistency in tlb miss counter.” Intel Developer Zone, 2015.

[9] Cronin et al., “A fetching tale: Covert communication with the
hardware prefetcher,” in 2019 HOST, pp. 101-110, 2019.

[10] Gruss et al., “Cache template attacks: Automating attacks on
inclusive last-level caches,” in Usenix Security 15), pp. 897-912,

2015.

HOOCOOOK X -

190 200

https://github.com/car3s/Whispering-Streamers

[11] Bhattacharya et al, “A formal security analysis of even-
odd sequential prefetching in profiled cache-timing attacks,” in
HASP@ISCA 2016, pp. 6:1-6:8, 2016.

[12] Shin et al., “Unveiling hardware-based data prefetcher, a hidden
source of information leakage,” in ACM CCS, pp. 131-145, 2018.

[13] OpenSSL, “Cryptography and ssl/tls toolkit,” 2018.

	Introduction
	Background
	Hardware Prefetchers
	Stream prefetcher
	Covert Channel

	Reverse Engineering the Stream Prefetcher
	Stream Table Size
	Stream Prefetcher: Is it Shared?
	Unraveling the Prefetch Aggressiveness
	Understanding the Stream Trigger
	Dominant Stream Direction
	Limitations of the Streamer

	Covert Channel Construction
	Related Work
	Conclusion
	Availability
	Acknowledgement
	References

