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ABSTRACT
Memory deduplication in virtualized systems is shown to be a very

useful memory optimization as it is simple to use and provides mem-

ory efficient cloud hosting. However, memory deduplication based

side channel attacks—information disclosure attacks and covert

channel construction across virtual machines—can be mounted

using the timing information available because of Copy-on-Write

(CoW) fault handling semantics. The CoW semantic has been a

necessary-evil with regard to deduplication as it plays a vital role in

supporting guest OS transparent deduplication but enables a timing

channel for exploitation. Thus to decimate the huge access time

difference between a normal write and a write to a shared page,

we propose CoWLight, a combination of hardware and software

techniques for handling the CoW page faults in an efficient manner.

In this work, we propose to address the security issues at its genesis

as opposed to mitigate the side-effects by offloading the CoW fault

handling to the hardware itself. Further, we show that CoWLight

can reduce the access latency differences significantly (by up to 30x)

which is within the noise thresholds in a moderately busy system.

CCS CONCEPTS
• Security and privacy→ Virtualization and security; • Com-
puter systems organization→ Architectures.
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1 INTRODUCTION
Cloud computing provides support for on-demand usage of comput-

ing resources and enables services with pay-on-use business models.

Virtualization solutions (a.k.a. hypervisors), the core enablers of

cloud computing, play an important role in realizing cloud com-

puting platforms by efficiently virtualizing the physical resources

across multiple virtual machines (VMs) and managing the resources

in an efficient manner. Memory is a precious resource in a multi-

hosting setup and most hypervisor designers target efficient man-

agement of memory as it determines the degree of multi-hosting in

a given physical machine.

For efficient memory management, most hypervisors implement

content based memory deduplication where memory pages with

same content are deduplicated by maintaining a single copy [2, 12,

15]. One of the approaches of memory deduplication is to scan all

memory pages used by the VMs periodically from within the hy-

pervisor, find and remove the duplicates by changing the memory

mapping of VMs (using the pages containing duplicate content) to

point to a single copy with read-only permissions [2, 15]. On a write

access from any of the VMs to a shared page, a page fault trap is

generated by the hardware. The hypervisor page fault handler pro-

vides an exclusive copy of the shared page to the VM, a technique

commonly known as Copy-on-Write (CoW) [2, 14]. Periodic scan

and merge based memory deduplication techniques are common

in both open source (e.g., KSM in Linux KVM) and commercial hy-

pervisors (e.g., VMWare ESX). Several research works have shown

the benefits of deduplication in terms of memory efficiency at the

cost of some additional CPU resource [3, 14, 16]. While memory

deduplication improves the memory efficiency of virtualized sys-

tems, it also creates serious security vulnerabilities [18]. In this

paper, we attempt to address the security issues related to memory

deduplication.

At the core of all security vulnerabilities arising due to dedupli-

cation lies the timing information leaked on write to shared pages i.e.,
write to a normal (not shared) page is orders of magnitude faster

than write to a shared page (See §2.1). For example, covert channel

construction [8, 17] relies on this timing differences to realize a

signalling mechanism (Refer §2.2 for details). Similarly, information

disclosure attacks try to exploit deduplication and the timing chan-

nel to gather the application profile of other VMs [8, 18]. Existing

approaches to mitigate the security issues [13, 18] either disable

the deduplication completely or employ a very cautious approach

to select the memory to deduplicate on explicit administrator in-

structions or implicit memory characterization. To the best of our

https://doi.org/10.1145/3337167.3337170
https://doi.org/10.1145/3337167.3337170


HASP ’19, June 23, 2019, Phoenix, AZ, USA Santhosh Kumar T, et al.

knowledge, this work presents the first approach to address the

issues at its origin by augmenting the CoW fault handling at the

architecture and the OS layers.

In the current system, the overheads of CoW faults can be attrib-

uted to three major components. First, on a write to a shared page,

the hardware page table walker generates a fault causing a pipeline

flush to ensure a precise state before jumping to the OS page fault

handler routine. Second, the OS fault handler handles the fault by

performing a full page copy irrespective of the memory operand

size of the faulting instruction. Third, on a return from fault, the

pipeline is flushed again impacting the instruction level parallelism

significantly. In this paper, we propose a prevention technique at the
root of the problem rather than mitigating the side-effects resulting
from the core issue. We address the first and the third issues by

avoiding a page fault in the first place. To achieve no page faults

on writes to shared pages, we propose a specialized hardware page

fault handling with minimal changes to page table translation logic

coupled with OS assistance. To address the second issue, we design

a solution that incurs write latency proportional to the operand

size (or a cache line) using minimal hardware enhancements at the

L2 cache controller.

We have implemented and evaluated our prototype on Gem5 [4]

full system architectural simulator and Linux kernel (§4). The eval-

uation results show that, our approach can reduce the effectiveness

of the timing channel by reducing the CoW fault handling latency

by up to 30x compared to state-of-the-art CoW handling latency

and is comparable to normal write latency (write to a page with

write access) in a noisy system. Moreover, efficient detection tech-

niques can be designed by leveraging the historical information

provided by the hardware without any additional overheads.

Our main contributions are,

• We establish the root-causes of the timing channel that ex-

poses various vulnerabilities in memory deduplication, an

essential optimization for efficient memory management in

virtualized systems (§2).

• We, design and implement CoWLight, a hardware-assisted

light-weight page fault handling technique to nullify the

timing information to a great extent otherwise available and

exploited through orchestrated Copy-on-Write exploitations

(§3 and §4).

• Experimentally validate the efficacy of CoWLight and its

effectiveness towards achieving secure deduplication (§5).

2 BACKGROUND AND MOTIVATION
In this section, we provide a brief overview of the memory dedu-

plication process, significance of Copy-On-Write mechanism in

realizing memory deduplication. We also show covert channel con-

struction on a cloud setup as an illustration of exploiting the timing

side-channel available as a side-effect of memory deduplication.

Specifically, the significant access latency difference between a

write to a non-shared page and a shared page where a write to

shared page results in a CoW fault. Further, we motivate CoWLight

by highlighting the noise-free and reliable timing information avail-

able in the systems employing memory deduplication. We also

present an analysis of the root-causes of the timing information

and lay down the basis of our proposed design.
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Figure 1: Scan-and-Merge based memory deduplication in
virtualized systems. GPA: Guest Physical Address and HPA:
Host Physical Address

2.1 Out-of-band scan and merge based memory
deduplication

In virtualized systems, a commonly used memory deduplication

technique is based on out-of-band scan and merge. A scanner dae-

mon, executing in the hypervisor or host OS, periodically scans all

the memory pages used by the VMs and locates the memory pages

with similar content. When a duplicate memory page is found,

the guest physical address (GPA) to host physical address (HPA)

mapping is updated to the unique copy and the old HPA is freed

(Figure 1). As the HPA is shared by multiple VMs after deduplica-

tion, write to the shared page (a.k.a. sharing break) is required to be

handled in manner such that the correctness is ensured. Therefore,

the GPA to HPA mapping of all VMs are marked as read-only such

that whenever a VM tries to modify the shared page, a page fault

is generated. The hypervisor handles the page fault by creating an

exclusive copy which is commonly known as Copy-on-Write (CoW).

Note that, in virtualized systems, there are two different page table

levels managed independently by the guest OS and the hypervisor.

Therefore, the page table updates and CoW fault handling to realize

the benefits of deduplication is transparent to the guest OS.

Hypervisors like VMWare ESX [15] and KVM [10] provide page

deduplication feature as a memory optimization in virtualized sys-

tems. The benefits of memory deduplication and the performance

overheads are well studied and it is widely accepted that the benefits

can not be ignored because of the guest OS transparent design and

non-trivial memory savings in real systems. The CPU overheads
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Figure 2: Write latency of a shared page vs Write latency of
a normal (non-shared) page.
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Figure 3: Noise in write latency under different load condi-
tions.

due to CoW faults because of sharing breaks is manageable from the

performance point of view by employing specialized amortizations.

For example, frequently updated memory pages may not be consid-

ered for deduplication to avoid the sharing break overheads [2, 14].

However, the timing information available from within a VM when

a shared page is written can be used by the attackers to perform

several attacks.

To study the nature and magnitude of timing difference between

normal writes and write to shared pages (resulting in a CoW fault

underneath), we performed the following experiment. Wemeasured

the time taken to write to a set of normal and shared pages in an

idle Linux system with a Intel-i7 processor. We also performed the

same experiment in Gem5 simulator. As shown in Figure 2, write to

a shared page results in ∼70x and ∼ 100x more latency compared

to a normal write, in the simulated system and the physical system,

respectively. To study the extent of noise introduced because of

other system activities, we measured the write latency for a nor-

mal page under varying load conditions. We created a number of

background threads which performed synthetic memory accesses.

As shown in Figure 3, 99
th

percentile write latency for a normal

host 
vm

Sender

P1 P2 P3 P4 P5 P6 P7 P8

① Initial State: 8 pages shared between two VM
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Figure 4: Covert channel construction by exploiting mem-
ory deduplication.

page under moderate load conditions (8 threads) is 2.8 times of the

average latency in an idle system. From the above experiments, it

is clear that there is a noise free timing channel exposed because of

memory deduplication. We demonstrate construction of a covert

channel [17] between two VMs exploiting the timing side-channels.

2.2 Covert channel construction
To create a covert channel, two collaborating processes in two sep-

arate VMs on the same physical host try to communicate with each

other (without being detected) using the timing based side channel

available as a consequence of memory deduplication. As an attacker

can detect the write-time differences between a merged page and

a normal page (shown previously), the attacker could utilize this

behavior as a signalling mechanism (See Figure 4). First both the

communicating entities in two different VMs fill-up memory pages

with unique pre-negotiated signatures. Depending on the message,

the sender VM can construct a message by writing to the page

numbers corresponding to the bit positions of the message. For

example, as shown in the Figure 4, the sender VM writes to P1 and
P8 in order to encode a byte value 0x81. This will result in a CoW

fault for P1 and P8, exclusive copies (P
′

1
and P

′

8
) will be provided

to the sender while all other pages (P2 to P7) remain shared. The

receiver writes to all the pages and interprets values 0 or 1 based on
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Figure 5: Role of hardware and OS in CoW fault handling.

the time taken to write the particular page. In this example, write

to P1 and P8 will take less time compared to write to other pages.

There are several other attacks like information disclosure [9, 18],

DirtyCow exploits [1] etc. based on the CoW fault based timing

channels have been proposed. Next, we present our analysis related

to the sources of latency for handling a CoW page-fault in the

current systems.

2.3 Analysis of CoW fault handling in X86_64
systems

In paging enabled systems, when a memory request to a virtual

address is issued from the processor, the virtual address (VA) needs

to be translated to its corresponding physical address (PA) before

the request can be passed down to the memory hierarchy. The

Translation Look-aside Buffer (TLB) performs this translation and

caches the recently used translations. On a TLB miss, the Page

Table Walker (PTW) traverses the page tables (4-levels in x86_64)

to determine the physical address at the last level of page table (a.k.a.

the Page Table Entry or PTE). The translated entry is inserted into

the TLB after performing access permissions and privileges before

initiating the memory access.

Figure 6: Break down of Copy-on-Write latency.

A schematic diagram of CoW fault handling process is shown in

Figure 5.When a shared page (with read-only permission) is written

(Step 1), a page fault is triggered (Step 2 to 4) as there is an access

permission violation. The page fault handler, registered by the OS

during virtual memory subsystem initialization, ascertains if the

fault is recoverable by validating that the mapping was previously

made read-only to realize deduplication (Step 5). In such a scenario,

a new page is allocated, the contents of the accessed page are

copied to the new page and the PTE is updated to point to the new

page with write access (Step 5). The OS also performs other house

keeping tasks like updating the reverse page map (rmap) etc. before

returning from the fault. After returning from the fault, the faulting

instruction is re-executed by the processor. Therefore, compared

to a normal write (i.e., write to a non-shared page), there are three

additional processing steps—a fault raised by the hardware, the OS

handles the page fault by performing a full page copy irrespective of

the write operand size, and, return from the fault—each contribute

to the increased latency for a write to a shared page as shown

earlier.

To isolate the sources of the write latency, we characterize and

quantify the operations involved in serving the write request to

a shared page. To isolate the page fault entry and exit overheads,

we augmented the page fault handler to skip over the faulting in-

struction by updating the instruction pointer before returning from

the fault handler. We calculated the page to page copy overhead

and the total CoW fault handling time separately. The break-up of

overheads measured on Gem5 architectural simulator is shown in

Figure 6. Most of the overheads is due to page copy (73%), page fault

validation and book keeping overheads (shown as fault recovery

overheads in the Figure 6). Further, switching to and from the OS

page fault handler and the hardware consumes more than 5x time

compared to the time taken for a normal write access. In short,

the fault generation followed by software fault handling which

includes a full page copy incurs the maximum overheads and are

potentials for optimizations. In an ideal scenario, if these overheads

are removed, the write access latency will come down significantly,

even below the noise thresholds shown before.

We try to ask the following design questions and seek answers

in our proposed system. First, can the page fault be avoided in the

first place? This will save the context switching overheads and OS

processing delays in the critical path. Second, as the write operation
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requires a cache line at best, can there be an asynchronous copy

operation not impacting the critical path? In short, we intend to

offload the page fault handling to the hardware and try to reduce

the overheads in the critical path.

3 DESIGN
Our approach to reduce the CoW fault handling latency is based on

masking and avoiding some of the major bottlenecks in the existing

systems. An efficient handling of page fault resulting because of

writes to shared pages should perform only the bare-minimum

activities synchronously (by the hardware) to realize fast critical

path processing. To avoid the page fault entry/exit overheads and

other software processing in the critical path, the hardware should

handle the page faults. Further, to hide the latency of page copy,

the hardware must serve only the demand request and perform the

rest of the copy operation in an asynchronous manner, as much as

possible. Towards this objective, we present the high-level design of

CoWLight (Figure 7). The major components of CoWLight spanning

across the hardware and the OS are described below.

3.1 Architectural modifications
We propose hardware extensions to add a per-core communication
bufferwhich is used to communicate between the hardware and the

OS, and, exchange the necessary details for CoWLight page fault

handling. The OS accesses the communication buffer to provide

information about the free pages which is used by the hardware dur-

ing CoW fault handling. The OS also accesses the communication

buffer to perform several book keeping procedures after a page is

consumed. The size of the communication buffer is proposed to be

4KB, implemented using a SRAM based buffer or a set of registers.

CoWLight hardware fault handler modifies the functionalities of

per-core TLB and PTW to handle the CoW faults in hardware by

avoiding a OS trap. To avoid OS page fault trap, the modified page

table walker logic uses one of the free pages preallocated by the

OS through the communication buffer. Then, it maps the free page

as the destination for the faulting virtual address by updating the

corresponding PTE. The CoWLight fault handler also copies the

demand cache line from the old target page (read-only and shared)

into the newly allocated page. For example, a translation request

to serve a write to virtual address V with a read-only (and shared)

mapping to page P does not trigger a page fault. Rather, a new

page Q is used from the free list (communication buffer) and the

corresponding cache line in Q is filled by reading same cache line

offset of P . This step is necessary to avoid full page copy in the

critical path and avoid multiple rounds of DRAM access latency in

the worst case. Therefore, the thread of execution waits for com-

pletion of the above steps and resumes. Next, the hardware fault

handler initiates the hardware page copy mechanism to replicate

the remaining cache lines of the page in the background. Before

finishing the virtual to physical translation process, the communica-

tion buffer is populated with information needed by the CoWLight

post-fault handler.

The CoWLight page replicator logic (part of L2 cache) performs

asynchronous copy to complete the CoW fault handling in a de-

ferred manner. The page replication mechanism keeps track the

state of all the CoW faults handled by the hardware and fills up the

remaining cache lines of the new page (Q from the last example).

There are subtle design considerations regarding the aggressive-

ness of the page copy mechanism and handling subsequent demand

requests to yet to be filled memory addresses. To address the first

issue, we propose a conservative approach where the number of

outstanding memory requests depend on miss status holding regis-

ter (MSHR) occupancy. For the second issue, we modify the read

target to the old page address (P from the last example) and use the

read response to fill the corresponding cache line of Q .

3.2 CoWLight OS modifications
The CoWLight pre-fault initializer is part of the OS that performs

two major functions. First, it initializes a per-core communication

buffer provided by the hardware and prepares the communication

buffer by providing a list of free physical memory pages. The free

pages provided by the initializer is used to serve CoW faults from

the hardware. Second, it demarcates the shared pages by setting a

reserved bit in the PTE (referred as Cow-bit) so that, the hardware

fault handler can distinguish and apply the optimization during the

virtual to physical translation. Note that, read-only permission in a

PTE can not be used as an indicator as there can be other read-only

mappings that are not shared because of deduplication (e.g., text

area of a process)

CoWLight Post-Fault Handler is a per-core OS thread which is

responsible to perform the house-keeping activities carried out

by a normal page fault handler during CoW faults. In most of the

OSs, a reverse mapping from the physical page (PFN) to the virtual

address is maintained to implement functionalities like swapping

and deduplication. During a normal CoW fault handling by the OS,

the old page reverse mappings are updated to remove the faulting

process virtual address and reverse mapping to the new page is

added. In our design, as the hardware handles the fault and it is

impractical for the hardware to update the software states like

reverse mapping, CoWLight post fault handler perform these steps

in a deferred manner. The per-core OS threads periodically scan

all the consumed pages and the consumer information from the

core’s communication buffer and update the reverse mappings.

Further, they also refill the communication buffer with a fresh set
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of free pages. Note that, compared to the memory savings through

deduplication, the memory pages provided to hardware is negligible

and the rate of consumption depends on the number of sharing

breaks. Therefore, in the worst case, if the free list size is set to be

128, then (#o f cores × 128) pages will be reserved.
To handle corner cases, several minor modifications to the OS

virtual memory subsystem is required. First, the OS unmap logic—

for a virtual address which resulted in a recent CoW event where

the post fault handler is yet to perform the necessary book keeping—

is required to be modified. Second, in a scenario when the hardware

page fault handler does not find a free page, it should raise a fault

(like a normal system) which should be used as an indication to

refill the communication buffer. Therefore, the scheduling interval

of the post processing thread plays a vital role for efficient hardware

CoW fault handling.

4 IMPLEMENTATION
As the CoWLight hardware fault handler and page replicator require

additional hardware functionalities to the existing x86 architecture,

we have used the Gem5 full system simulator platform to implement

and test the proposed modifications to the TLB + PTW logic and L2

cache. We have implemented the OS modification in Linux Kernel.

We have used a normal DRAM page as the communication buffer

in our implementation which is referred to as the communication
page fromnowon. The communication page is allocated during boot

time by the CoWLight pre-fault initializer and filled up with a list

of three tuples—free page physical address, faulting virtual address

and shared page physical address. The OS provides the free page

physical address, which is consumed by the hardware fault handler.

The hardware fault handler fills up the faulting virtual address and

the shared physical frame number i.e., the PFN used by the faulting

page before sharing break. The OS post processing thread consumes

the hardware filled information to update the reverse mappings as

explained before. For cache efficiency, we have aligned every entry

in the communication page to 32-bytes. The communication page

is mapped to a fixed kernel virtual address so that it can be accessed

from any software context without performing any (temporary)

virtual to physical mapping.

4.1 CoWLight hardware fault handler
The CoWLight hardware fault handler logic is integrated into the

Gem5 page table walker module to handle write to shared pages

without generating faults and trigger asynchronous copy using the

CoWLight replicator (Figure 8).

Whenever the PTW encounters a CoW mapping (set by OS pre-

fault initializer) for a write access, the hardware fault handling

logic is triggered. The free list manager checks the communication

page to find a free page for further processing. If the free list is

empty, the free list manager triggers a page fault trap to the OS (not

shown in Figure). A cache line copy request corresponding to the

demand request is generated. This copy request packet from the

PTW is marked with a special bit for signaling the CoWLight page

replicator to initialize the state for deferred copying. Finally, after

the copy operation corresponding to the demand request finishes

and a response is received from the L2 cache (not shown in the

figure), the PTE of the faulting VA is updated with the new page.

Figure 8: CoWLight architectural modifications

Therefore, in addition to setting the accessed bit and the dirty bit

in the PTE, we also update the page mapping, write permission bit

and unset the CoW bit.

4.2 CoWLight hardware page replicator
We have implemented the asynchronous copy mechanism in the L2

Cache controller because in Gem5 simulation of the X86 system, L2

cache is directly connected to the page table walker ports. When

the page replicator receives a request with the special bit set by

the fault handler, it initializes a state tracking through a bitmap.

The cache line bitmap represents the cache lines in the new page

which are yet to be replicated. The demand request is forwarded

to the cache after setting the corresponding bit position and the

rest of the cache line copy is performed asynchronously. The page

copy logic keeps on sending new copy requests starting from the

demand request point till all the cache lines are copied.

To handle demand requests for the same page originating from

the processor while executing subsequent instructions, the page

replicator checks those requests and forwards them after setting

the corresponding bit in the cache line bitmap. In the current im-

plementation, we change the order of asynchronous copy when a

demand request is encountered which is yet to be copied. The space

required to store the cache line bitmap depends on the number of

incomplete asynchronous copy operations. Based on our observa-

tions, we have chosen the threshold value to be 16. If all the cache

line bitmaps are busy, we notify the CoWLight fault handler to

raise a page fault to the OS by piggybacking an indicator bit in the

demand response packet.

4.3 Linux kernel modifications
We have implemented the pre-processing logic by modifying the

boot-time initialization code of Linux kernel to allocate and map the

communication page to a fixed kernel virtual address. Note that, due

to the monolithic nature of the kernel, all processes in the system

share the kernel mappings and therefore, the communication page

can be accessed from any context in privileged mode. To demarcate
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the special CoW bit in the PTE when a copy-on-write mapping

is created, we hooked into two call paths in Linux kernel. They

are—(i) when KSM (deduplication thread) finds a duplicate and tries

to merge by modifying the mappings, (ii) On a fork() system call

where the child and parent mappings are converted to read-only.

To implement CoWLight post processing, we have implemented

a kernel thread which is scheduled on two conditions. First, when

a thread interval timer (configurable) expires. Second, when a CoW

page fault is triggered by the processor to notify either empty free

list or to indicate overwhelming number of CoW faults resulting

in crossing the cache line bitmap threshold. We have modified the

kernel page fault handler to find out the fault reason from the error

code (with new error codes for CoWLight) and notify the post

processing thread to perform necessary actions.

5 EVALUATION
Setup: For the experimental evaluation, we have used Gem5 full

system architectural simulator to simulate a 64-bit X86 bit system in

full system simulation mode with a single core TimingSimpleCPU.

The simulated machine was configured with 2GB DRAM, 64KB

L1 dcache, 32KB of L1 icache and 2MB of L2 cache. We have used

Linux Kernel version 3.4.112 with CoWLight modifications. Note

that, deduplication depends on memory footprint and can not be

deterministically controlled for arbitrary workloads. Therefore, we

have used micro benchmarks to emulate sharing (by setting the

CoW bit) and performing write to the shared pages.

5.1 CoWLight efficiency
To analyze the effectiveness of CoWLight, we performed an ex-

periment where we write 1000 different memory pages with three

scenarios—(i) write to writable pages (NoCoW), (ii) write to shared

pages with CoWLight fault handling (CoWLight) and, (iii) write to

shared pages with normal CoW fault handling (VanillaCoW). We

present the average write performance relative to normal write

latency in Figure 9. To compare the implications of different write

behavior (within a page) we have used five different kinds of write

Operation Percentage Cycles

Access free page from list 70

Copy demand cache line 29

Update PTE 1

Table 1: Operation-level breakdown of different CoWLight
hardware operations in the critical path.

Write Copy time Demand request
Pattern (nanosecs) overtake (perc.)
memset 5429 100

Random-4CL 1332 100

Random-8CL-Comp 1812 57

Random-16CL-Comp 1987 46

Seq-16CL-Comp 2095 6.7

Table 2: Demand request overtake of page replicator.

operations (Figure 9). They are: (i) write to a random cache line

(Random-1CL), (ii) write to two random cache lines (Random-2CL),
(iii) Write to four random cache lines (Random-4CL), (iv) write to
four sequential cache lines (Seq-4CL) and, (v) write to the full page

using memset (memset). Note that, for CoWLight and VanillaCoW,

these different write patterns trigger a single CoW fault.

For a single write to a random cache line (Random-1CL), CoW-

Light improves the write performance by∼ 30x compared to Vanilla-

CoW and is 2.8x slower than a normal write (NoCoW), respectively.

For Random-4CL, CoWLight results in 1.34x slower write perfor-

mance compared to NoCoW. By considering the latency variance

we had previously measured for motivation experiment, where in a

moderately loaded system the write access latency was 2.8x times

the idle system latency, we can see from the evaluation results that

CoWLight fault handler is capable of handling a CoW with laten-

cies of 2.8x to 4.3x depending on the access pattern of the cache

lines. In case of memset, owing to the inherent prefetching-like

mechanism of CoWLight hardware page replicator, the latency is

faster that that of a vanilla memset operation on Gem5 (by 1.15x).

Due to the simulation environment, we found very little variance

in the results. A more accurate extrapolation to a real system could

be made by implementing sophisticated prefetching mechanisms

that are CoWLight aware.

To evaluate the effectiveness of CoWLight hardware fault han-

dler in mitigating the critical path write latency, we profiled the

execution time to deduce operation-level breakdown. As shown in

Table 1, significant amount of time (70%) is spent to access the com-

munication page and locate a unused free page. This is primarily

because we need multiple memory access cycles which if avoided

can result in further optimizations of CoWLight.

To evaluate the efficiency of CoWLight asynchronous page repli-

cator, we profiled the number of demand request (referred to as

demand request overtakes) whose replication are yet to be com-

pleted by the CoWLight asynchronous page replicator. Note that,

the demand request overtake also counts the outstanding memory

requests already initiated from the L2 cache by CoWLight. Along
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withmemset and Random-4CL, we introduced three new access pat-

terns where minimal computation (decrementing a random num-

ber to zero) is performed between accesses to random cache lines.

Random-8CL-Comp, Random-8CL-Comp and Seq-16CL-Comp repre-
sent access to eight random cache lines, access to sixteen random

cache lines and access to sixteen sequential cache lines, respec-

tively, where computation is performed between each consecutive

accesses. The percentage demand requests which could not be im-

mediately fulfilled as the CoWLight asynchronous page replicator

had not copied the corresponding cache lines is presented in Table 2.

Copy time represents the time between the first demand request

(originated in critical path) and the last cache line copy. For write

patterns interleaved with compute, the effectiveness of asynchro-

nous copy is comparatively better than burst memory operations

(e.g., memset). Further, CoWLight replicator acts like a prefetcher

for sequential write patterns interleaved with computation (only

6.7% overtakes).

To determine the ideal scheduling interval for CoWLight post-

fault handler thread, we performed an experiment where the CoW

fault rate is varied from 10/sec to 250/sec. As discussed earlier,

if all free pages are consumed when the hardware CoW handler

requires one, a page fault is raised. The objective of finding a right

scheduling interval is to avoid any such faults. We found that 20ms

scheduling interval results in no page faults for all CoW rates.

6 RELATEDWORK
Memory deduplication in virtualized systems was proposed by

VMware [15] latter implemented in open source hypervisors like

KVM-Linux [2, 10] as a OS-level daemon (KSM). Several research

works show the benefits of deduplication in terms of memory sav-

ings [6, 14, 16] and the cost of scan-and-merge along with CoW

overheads [14]. XLH [11] proposes optimizations to vanilla KSM

by providing hints to the KSM scan for efficient deduplication. Sim-

ilarly, Catalyst [7] offloads the hash computation (required to find

the duplicates) to the GPU and provides scanning hints to KSM.

Security attacks like FLUSH + RELOAD [19] use the memory

deduplication side-channels as a noise removal measure while other

attacks are used for information disclosure [5, 9] and covert channel

construction [17]. There are a very few attempts to mitigate the

vulnerability. As a consequence, memory deduplication is disabled

resulting in memory wastage. Vusion [13] proposed an alternate

deduplication technique designed considering the security aspects

of deduplication along with deduplication efficiency. Vusion com-

promises the deduplication efficiency in favor of security and there-

fore, yet to gain wide acceptance. Moreover, because of additional

software logic, Vusion incurs more CPU overheads compared to

KSM. On the other hand, CoWLight tries to address the issue at its

origin and provides secure and efficient deduplication.

7 CONCLUSION AND FUTUREWORK
Memory deduplication in virtualized systems is shown to be a very

useful memory optimization as it is simple to use and provides

memory efficient VM packing. However, many side channel attacks

exploiting the CoW semantic of realizing memory deduplication are

possible. At the core, the timing difference between write access to

a normal page and a shared page remains the gateway for attackers.

To bridge the huge access time difference between a normal

write and a write to a shared page, we proposed CoWLight, a com-

bination of hardware and software techniques for handling the

CoW page faults in an efficient manner. We discussed the design

considerations and presented a prototype implementation of CoW-

Light using Linux kernel and the Gem5 architectural simulator.

We evaluated CoWLight with different write patterns and showed

that CoWLight can improve the write latency to shared pages by a

factor of 30x. Further, effectiveness of different CoWLight features

were experimentally analyzed. We plan to extend the CoWLight

implementation for multi-core systems and explore several possi-

ble optimizations. For example, as shown in §5, the performance

overhead of memory page based communication mechanism is sig-

nificant and we plan to design alternate approaches in the future.

Further, we also plan to characterize the fault-handling performance

improvements of CoWLight in real-world scenarios.
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