
1

PBC: Prefetched Blocks Compaction
Raghavendra K., Student Member, IEEE, Biswabandan Panda, Student Member, IEEE, and Madhu

Mutyam, Senior Member, IEEE

Abstract—Cache compression improves the performance of a multi-core system by being able to store more cache blocks in a
compressed format. Compression is achieved by exploiting data patterns present within a block. For a given cache space, compression
increases the effective cache capacity. However, this increase is limited by the number of tags that can be accommodated at the cache.
Prefetching is another technique that improves system performance by fetching the cache blocks ahead of time into the cache and
hiding the off-chip latency. Commonly used hardware prefetchers, such as stream and stride, fetch multiple contiguous blocks into the
cache. In this paper we propose prefetched blocks compaction (PBC) wherein we exploit the data patterns present across these
prefetched blocks. PBC compacts the prefetched blocks into a single block with a single tag, effectively increasing the cache capacity.
We also modify the cache organization to access these multiple cache blocks residing in a single block without any need for extra tag
look-ups. PBC improves the system performance by 11.1% with a maximum of 43.4% on a 4-core system.

Index Terms—Memory Structures, Cache Memories, Compression, Compaction, Cache Design, Prefetching.

F

1 INTRODUCTION

Last-level-cache (LLC) is one of the critical resources in a
multi-core system. Effective management of the LLC plays
a key role in improving the system performance. Micro-
architectural techniques that provide more cache hits at the
LLC are the key. Two such techniques are cache compression
and hardware prefetching.

A cache compression technique increases the effective
cache capacity1 without increasing the cache size. The in-
crease in the cache capacity provides additional cache space
that can hold a larger working set resulting in performance
improvement. Cache compression is based on the observa-
tion that significant amount of data accessed/generated by
a program share common patterns that can be represented
(stored) using fewer number of bits. Some of the common
patterns are: repeated values [7], zeros [6], narrow values2

[5], and the recently proposed base-delta immediate [1] that
exploits the narrow differences between the data values
stored within a cache block.

Hardware prefetching, on the other hand, hides the off-
chip DRAM latency. Instead of waiting for a cache miss
to fetch data from the DRAM, a prefetcher trains itself to
identify such misses ahead of time and prefetches data into
the cache, thereby converting the cache miss into a potential
cache hit. One of the key features of the addresses generated
by commonly used prefetchers, such as stride and stream, is
that these addresses correlate in space due to spatial locality,

• Raghavendra K. is with the Department Computer Science and Engi-
neering, Indian Institute of Technology Madras, Chennai, India. E-mail:
raghu@cse.iitm.ac.in

• Biswabandan Panda is with the Department Computer Science and
Engineering, Indian Institute of Technology Madras, Chennai, India. E-
mail: biswa@cse.iitm.ac.in

• Madhu Mutyam is with the Department Computer Science and Engi-
neering, Indian Institute of Technology Madras, Chennai, India. E-mail:
madhu@cse.iitm.ac.in

1. Effective cache capacity = #valid compressed cache blocks × block
size.

2. small value stored in a large size data type. Example - 1 bit/byte
stored in a 4 byte integer data type.

i.e, multiple contiguous cache blocks are fetched from the
DRAM by the prefetcher.

Our Goal: We observe that the key features of prefetch-
ing can be used for compression, which can further increase
the effective cache capacity. Our goal in this work is to de-
sign a mechanism that can exploit the features of hardware
prefetching for compressing multiple prefetched blocks into
a single block.

Our Approach: We treat multiple contiguous prefetched
cache blocks that share common higher-order address bits
as one single cache block, and exploit the data patterns
present across these blocks. In effect, multiple prefetched
blocks are compacted into a single block, which we refer
to as compact block. In a generic compressed/uncompressed
LLC, these prefetched cache blocks would spread across dif-
ferent cache sets. We modify the LLC organization to access
these prefetched blocks (having different set indices, but
compacted into a single cache block), without incurring any
additional tag look-ups. Note that we use the word compaction
and not compression as the later is used in prior techniques
which compress data within a block and not across the blocks.
A compact block is also different from a super block [4], [8]
because in the latter only blocks that share a common tag
are put together to reduce tag store overhead.

To the best of our knowledge, for multi-core systems, this
is the first work that compacts multiple prefetched cache
blocks into a single cache block at the shared LLC.
The contributions of this paper are as follows:
(i) We propose prefetched blocks compaction (PBC), a low-
cost and practical compaction technique that compacts mul-
tiple prefetched blocks into a single cache block called com-
pact block, by taking into account the data present across
these blocks. (Section 3.2)
(ii) We implement PBC by modifying the cache organization
and using different hash functions to index into a cache set
such that the compacted prefetched blocks share a common
set index. Through this effective mechanism, PBC does not
incur any additional delay when accessing a cache set. PBC

2

	
 	
 	
 	
 	
 	
 	
 base	

0x00000889	
 	
 	
 	
 0	
 	
 	
 	
 1	
 	
 	
 	
 2	
 	
 	
 	
 	
 3	

delta	
 in	
 hex	

	
 	
 	
 	
 	
 	
 	
 	
 8-­‐bytes	

compressed	
 block	

0x00000889	
 	
 	
 	
 	
 0x00000889	
 	
 	
 	
 0x00000889	
 	
 	
 	
 	
 0x00000889	

4-­‐bytes	

uncompressed	
 block	
 X	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 16-­‐bytes	

	
 	
 	
 	
 	
 	
 4-­‐bytes	

compressed	
 block	

	

4-­‐bytes	

uncompressed	
 block	
 Y	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 16-­‐bytes	

0x00000889	

0x00000889	
 	
 	
 	
 	
 0x00000890	
 	
 	
 	
 0x00000891	
 	
 	
 	
 	
 0x00000892	

(a) Compression

0x00000889	
 	
 	
 	
 	
 0x00000889	
 	
 	
 	
 0x00000889	
 	
 	
 	
 	
 0x00000889	

4-­‐bytes	

uncompressed	
 block	
 X	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 16-­‐bytes	

	
 	
 	
 	
 	
 	
 4-­‐bytes	

compact	
 block	

	

	
 	
 	
 	
 	
 	
 	
 base	

0x00000889	
 	
 	
 	
 0	
 	
 	
 	
 1	
 	
 	
 	
 2	
 	
 	
 	
 	
 3	
 	
 	
 	
 	
 4	
 	
 	
 	
 5	
 	
 	
 	
 6	
 	
 	
 	
 	
 7	

delta	
 in	
 hex	

	
 	
 	
 	
 12-­‐bytes	

compact	
 block	

0x00000889	
 	
 	
 	
 	
 0x00000889	
 	
 	
 	
 0x00000889	
 	
 	
 	
 	
 0x00000889	

uncompressed	
 block	
 X+1	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 16-­‐bytes	
 4-­‐bytes	

4-­‐bytes	

uncompressed	
 block	
 Y	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 16-­‐bytes	

uncompressed	
 block	
 Y+1	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 16-­‐bytes	
 4-­‐bytes	

0x00000889	

0x00000889	
 	
 	
 	
 	
 0x00000890	
 	
 	
 	
 0x00000891	
 	
 	
 	
 	
 0x00000892	
 0x00000893	
 	
 	
 	
 	
 0x00000894	
 	
 	
 	
 0x00000895	
 	
 	
 	
 	
 0x00000896	

(b) Compaction

Figure 1: An example illustrating the benefits of compaction.

also does not require additional tags. (Section 3.1)
(iii) We evaluate PBC across a wide variety of workloads
and compare its performance to a baseline system with
no compaction. On an average (geomean), PBC improves
the system performance (in terms of harmonic speedup) by
11.1% and 13.6% for 4- and 8-core systems across seventy
and twenty five workloads, respectively. (Section 4)

2 BACKGROUND AND MOTIVATION

Hardware Prefetching: In this work, we consider three
different hardware prefetching techniques: stream [3], stride
[19], and one of the state-of-the-art techniques, Spatial Mem-
ory Streaming (SMS) [18].

Stream: A stream prefetcher keeps track of multiple
access streams. Once trained, it issues k prefetch requests at
a time, where k is the prefetch degree3. Stream prefetchers
are employed in many commercial processors such as IBM’s
POWER series [3] and Intel’s Nehalem [21].

Stride: A stride prefetcher attempts to learn simple stride
(distance between the memory addresses referenced by a
program counter) based memory accesses, on the basis of
the past behavior of the program counter. It also stores the
last-address referenced by the program counter. In future,
on a miss, the prefetcher issues prefetch requests to last-
address+k×stride, where k is the prefetch degree. Similar
to stream prefetching, stride prefetching is also widely used
for its low hardware overhead and simplicity in design.

SMS: SMS is also one of the widely used hardware
prefetchers because of its high-performance, practically im-
plementable design and low hardware overhead. SMS lever-
ages the spatial locality present over a large memory region
(spatial region). It exploits code based correlation to exploit
the data locality by using the program counter to train the
accesses within the spatial region. For a given spatial region,
SMS predicts and prefetches the future access pattern based
on the history of access patterns triggered by that program
counter in the past.
The prefetch addresses generated by the above prefetchers
being contiguous provide an opportunity to compact multi-
ple prefetched blocks into a single block.

3. Determines the number of prefetches to be issued in one instant.

Cache Compression: Prior works on cache compres-
sion, such as [1], [5], [6], and [4] are successful in dou-
bling/quadrupling cache capacity. The basic premise of
these techniques is that a significant amount of data values
generated/accessed by a program share a common pattern.
For example, if all the words in a cache block store a value
of zero or the words have the same value, then a single
bit/word is enough to represent the entire block depending
on the compression algorithm.

BDI: Base-delta-immediate (BDI) [1] is one such com-
pression technique that not only compresses zero and re-
peated values but also exploits the case where the relative
difference between the values stored in a cache block is
small. For the ease of illustration, we consider a 16-byte
cache block Y as shown in Figure 1a. The cache block is
logically divided into a set of fixed size words, in this case
four 4-byte words. The relative difference in values (deltas)
between a chosen base and the words are stored along with
the base. For block Y, 0x00000889 is the base and 0x00, 0x01,
0x02, and 0x03 are the deltas. Additional bits, referred to
as encoding bits, which represent the compression pattern
exploited, the size of the base, and the size of the words
are stored along with the compressed block. It follows that
the position of each word within a compressed block (which
can be inferred using encoding bits) is independent of other
words, which makes the decompression process parallel,
leading to low decompression latency. When a processor
requests for the block, the encoding bits are used to decom-
press the block and the request is serviced. Table 1 shows
the encoding bits used in BDI for a 64 byte cache block.

S.No. Name Base Delta Size Encoding bits
1 Zeros 1 0 1 0000
2 Rep Values 8 0 8 0001
3 B8-D1 8 1 16 0010
4 B8-D2 8 2 24 0011
5 B8-D4 8 4 40 0100
6 B4-D1 4 1 20 0101
7 B4-D2 4 2 36 0110
8 B2-D1 2 1 34 0111
9 NoCompre. N/A N/A 64 1111

Table 1: BDI encoding for a 64 byte cache block. B: Base
size and D: Delta size. All sizes are in bytes.

3

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

am
m

p

b
w

av
e

s

b
zi

p
2

ca
lc

u
lix

ga
lg

e
l

G
e

m
sF

D
TD

gr
o

m
ac

s

h
2

6
4

re
f

h
m

m
e

r

lb
m

le
sl

ie
3

d

m
cf

m
e

sa

m
gr

id

m
ilc

o
m

n
e

tp
p

sj
e

n
g

so
p

le
x

tw
o

lf

vo
rt

e
x2

ze
u

sm
p

m
e

an

Uncompactable <2 to 8> <9 to 16> <17 to 24> <25 to 32>

(a) Distribution of prefetched blocks at the LLC. <a to b> signifies
that a to b number of blocks are compactable into a single block.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

am
m
p

b
w
av
e
s

b
zi
p
2

ca
lc
u
lix

ga
lg
e
l

G
e
m
sF
D
TD

gr
o
m
ac
s

h
2
6
4
re
f

h
m
m
e
r

lb
m

le
sl
ie
3
d

m
cf

m
e
sa

m
gr
id

m
ilc

o
m
n
e
tp
p

sj
e
n
g

so
p
le
x

tw
o
lf

vo
rt
e
x2

ze
u
sm

p

m
e
an

(b) Percentage of prefetched blocks at the LLC.

Figure 2: Behavior of prefetched blocks at the LLC across a wide variety of SPEC CPU 2000/2006 benchmarks.

2.1 Motivating Example

Cache compression techniques exploit data patterns within
a block to reduce the effective cache space needed to store
the block. Cache block size is an architecture parameter
and not a program characteristic. Hence, data patterns
across significant number of contiguous blocks also share
a common pattern. In this work, we try to exploit data
patterns across multiple contiguous prefetched blocks. To
motivate, we consider two cache blocks (block X and block
Y), as shown in Figure 1a. Block X contains 4 words,
each of 4 bytes, containing 0x00000889 as the data. In this
case, BDI represents the entire cache block using a single
4 byte compressed block, saving 12 bytes of cache space.
For cache block Y , the relative difference between the 4-
byte data values is very small. In this case, BDI stores a
4-byte base, which is 0x00000889 along with the relative
difference (delta) between the base and the data values. This
reduces the cache space required to store a block, from an
uncompressed block of size 16 bytes to a compressed block
of size 8 bytes.

Next, we try to identify the patterns across the cache
blocks. To illustrate, we extend the previous example in
Figure 1b. Figure 1b shows blocks X + 1 and Y + 1 that are
contiguous to blocks X and Y , respectively. All the words in
X and X+1 contain the data 0x00000889. In the case of BDI
two compressed blocks (one for each uncompressed block),
both containing 0x00000889, are stored. On the other hand,
compaction stores only a single data value 0x00000889
representing two cache blocks. Similarly, when contiguous
blocks Y and Y + 1 are compressed separately, each com-
pressed block would occupy 8-bytes. Compaction, on the
other hand, uses a single base to compact both the blocks,
thus saving upon space (12-bytes instead of 16-bytes). In the
case of compression, every compressed block in the cache
has a set of encoding bits, whereas compaction stores only
a single set of encoding bits for the entire compact block
(which holds multiple cache blocks).

One way to naively exploit this opportunity is to increase
the block size and then apply cache compression. However,
blindly increasing the block size may affect the effective
utilization of cache capacity, and may lead to performance
degradation, if the percentage of unused words in a block
is high. Also, it creates more pressure on the DRAM band-
width to fetch the oversized cache blocks.

Opportunity: Figure 2a shows the fraction of prefetched
blocks that are compactable with a stream prefetcher (with
prefetch degree 8) enabled at the 512KB LLC. For this
experiment, we try to compact multiple prefetched blocks
(from 2 blocks to 32 blocks) into a single block. On an
average, across 21 SPEC CPU 2006 benchmarks, 32.1% of
the prefetched blocks can be compacted into a single block.
For benchmarks such as GemsFDTD and zeusmp, more than
97% of the prefetched blocks can be compacted into a single
block. On the other hand, there is limited opportunity for
benchmarks such as hmmer and lbm in which almost all
the prefetched blocks are uncompactable. Figure 2b shows
the occupancy of prefetched blocks at the LLC. On an
average, the occupancy is 42%. For benchmarks such as
milc, GemsFDTD, h264ref, and zeusmp, more than 50% of the
blocks at the LLC are prefetched, out of which more than
50% of the blocks can be compacted into a single block.
This shows there is an opportunity to exploit this trend, and
this forms the motivation for our work. The next section
describes our technique (PBC) in detail.

3 PREFETCH BLOCKS COMPACTION

This section describes three key parts of PBC:
(i) Indexing into a compact block through a simple modifi-
cation to the cache organization. The change in organization
provides access to multiple blocks that have different set
indices but residing in a single compact block without
incurring any additional latency, (ii) Compacting multiple
contiguous prefetched blocks into a single block, and (iii)
Decompacting a compact block.

3.1 Indexing into a Compact Block
Generic Cache Organization: To access the LLC, depending
on the number of sets and the block size of the LLC, memory
address is split into three fields: block offset, index and tag
(from LSB to MSB). In this organization, two contiguous
cache blocks get indexed to sets with consecutive indices.
For example, for an LLC with a cache block size of 64 bytes,
block X (with address A) and X+1 (with address A + 64)
would be indexed into set Y and Y+1, respectively. When
a processor generates a request, the index bits from the
address select the set where the data might be cached. Then
the tag part of the address is matched with the tags present
in the selected set. If there is a hit, the data corresponding to

4

the tag is serviced.
In the generic cache, if we compact blocks X and X+1,

and place it in set Y then when a processor generates a
request for block X+1, set Y+1 would be searched for a
matching tag, resulting in a cache miss even though block
X+1 is actually residing in the cache in set Y.

(m	
 –	
 n	
 ways)	
 	

p	
 ways	

s1	
 sets	

s2	
 sets	

C1	

C2	

(m	
 	
 ways)	
 	
 C	

s	
 sets	

s2 =
s
p
n

s1 = s

Figure 3: Splitting of an m-way set associative cache having s
sets into C1 and C2.

PBC Organization: PBC splits a generic cache (C) with s
sets and m ways into two parts: C1 and C2. Figure 3 shows
this splitting. C1 stores the non-compact blocks and C2
stores the compact blocks. C1 has s1 (s1 = s) sets with m -
n ways (a reduction from m ways) and C2 has s2 sets. To
minimize the number of conflict misses in C2, we increase
the number of ways from n to p by reducing the number of
sets from s to s2. Together, the capacity of C1 and C2 is same
as the generic cache (C).

Figure 4 shows the memory address split for a non-
banked cache to access C1 and C2 using hash functions h1
and h2 respectively. C1 is indexed using the same bits as in
a generic cache. C2 on the other hand is indexed using a
combination of bits from the tag and the actual index bits.
It is a concatenation of lower order bits from the tag and

00………………………………....	
 	
 1101	
 01000000	

tag	

index	

log2(s1)	

index	

log2(s2)	

offset	

log2(b)	

	
 	
 	
 	
 cb	
 h2	

h1	

block	
 X	

log2(nb)	

offset	

log2(b)	

tag	

Figure 4: Hash functions h1 and h2 when applied on block X.
s1: number of sets in C1, s2: number of sets in C2, nb: number
of blocks a compact block can hold, b: block size.

DRAM	

response	
 (x)	

h2	
 (x)	
 %	
 n	

prefetched	

block?	

no	

h1(x)	

yes	

compac5on	
 unit	

	
 	
 	
 	
 	
 	
 non	

compactable	

ev
ic
te
d	

co
m
pa

ct
	

	
 b
lo
ck
s	

h2(x)	

wb	

n:	
 no	
 of	
 sets	
 in	
 compac<on	

buffer	
 	

wb:	
 way	
 balancer	
 	
 	

1	

3	
 2

Figure 5: Compaction process using PBC.

higher order bits of what would have been the index bits
in a generic cache. We refer to the unused lower order bits
when h2 is applied on an address, as compact block bits (cb)
and the number of blocks a compact block can hold as nb.
An entry in the tag store for a compact block consists of
a single tag, cb of the first cache block, a valid bit, and a
coherence bit for each block in the compact block.

Maximum number of blocks that can be compacted into
a single block is limited by cb. However there is no lower
limit on the number of blocks a compact block can hold. If
at least two blocks can be compacted together, the resultant
compact block is placed in C2 and the other uncompact
blocks are placed in C1.

Upon a request to the LLC, the LLC controller searches
both C1 and C2 in parallel. In C2 apart from matching the
tag, the controller matches the cb bits that are stored along
with the compact block’s tag. If the cb from the request falls
in the range of (cb : cb + log2 (nb) - 1) and if the individual
cache block in the compact block is valid, then the LLC
controller reports a hit. The range cb (first block) : cb + log2
(nb) - 1 (last block) corresponds to the cb of all the blocks that
are present within a compact block. A case where both C1
and C2 report a hit never arises.

3.2 Compacting and Decompacting Multiple Blocks
As noted in Section 2, compacting multiple prefetched
blocks provides us with an opportunity to effectively utilize
cache space. We use BDI to do so and though multiple
blocks are compacted into a single block, the complex-
ity and hardware involved is no more than compress-
ing/decompressing a single block of data using BDI. PBC
is not a compression technique. It can be used with any
compression technique proposed in literature such as BDI
and decoupled compressed cache (DCC) [4] to improve the
system performance even further.

Compaction: In compression techniques, data re-
sponded back from the DRAM passes through the compres-
sor unit and from thereon, the compressed/uncompressed

5

(enc	
 bits	
 +	
 base)compact_blk_A	

+	
 prefetched	
 block	

. . .

compact_blk_A	

new	
 entry	

prefetched	

block	

	
 	
 	
 	
 	
 	
 non	
 compactable	
 with	
 	

	
 	
 	
 an	
 exis1ng	
 block	
 in	
 buffer	

no	

yes	

	
 prefetched	
 block	

pr
ef
et
ch
ed
	
 b
lo
ck
	
 c
om

pa
ct
ab

le
	
 	

	
 w
ith

	
 a
	
 b
lo
ck
	
 in
	
 b
uff

er
	

	

	
 c
om

pa
ct
ab

le
	

	

	
 n
on

	

co
m
pa

ct
ab

le
	

compac1on	
 buffer	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 hit	
 in	

compac:on	
 buffer?	

compressor	
 unit	

h1(x)	

wb	

	

	
 e
vi
ct
ed
	
 e
nt
rie

s	

h2(x)	

2	

1	

3

4

5

Figure 6: Internals of a compaction unit.

block is placed in the LLC. In PBC, when a prefetched block
is responded back from the DRAM, it cannot be directly
placed into the LLC after compression, as this block can
potentially be compacted with other blocks and stored as a
single block.

To achieve compaction, we use a small 2-way set asso-
ciative buffer, referred to as compaction buffer, indexed using
h2(x) index bits, where x is the address of the prefetched
block. The tag portion of the compaction buffer has four
fields: h2(x) tag, h2(x) index, h2(x) cb and encoding bits.
Multiple non-contiguous cache blocks with different h2(x)
indices, which share a common h2(x) tag, might get com-
pacted into a single compact block (which should hold only
those blocks that share a common h2(x) index). To avoid this
scenario, h2(x) index is also stored along with the h2(x) tag.

Figure 5 shows the overall compaction process. A
prefetched block responded from the DRAM is fed into the
compaction unit (1). Non-compactable cache blocks and
demand blocks are placed in C1 or C2 depending on the
outcome of the way balancer (2). Evicted compact blocks
from the compaction unit are placed in C2 (3).

Figure 6 shows the compaction unit in detail. The
compaction unit contains a compressor and a compaction
buffer. An incoming prefetched block is indexed into the
compaction buffer using h2(x).

A hit at the compaction buffer would imply that an
opportunity to compact this incoming prefetched block (x)
with an existing compact block exists. (For example, com-
pact blk A, which might already be holding several other
blocks, all sharing the same h2(x) tag and index.) The
base and the encoding bits from the compact block are
read and passed into the compressor unit along with the
prefetched block (1). The compaction unit tries to compress
the prefetched block using the same pattern as that of the
compact block. If the prefetched block fits into the compact

block, it is compacted and placed within the compact block
compact blk A. (2)

If the prefetched block does not fit into the compact
block, the compact block is evicted from the compaction
buffer. The prefetched block is sent again to the compressor
unit (this time, to exploit the data pattern present within the
block alone) (3) and from thereon to the compaction buffer
(4) or the way balancer (5) depending on whether or not
it is compressible.

On a miss at the compaction buffer, if the incoming
prefetched block is compressible, a victim compact block
is evicted (FIFO) from the buffer and the compressed
prefetched block is allocated in its position. If the prefetched
block is incompressible, it is sent to the way balancer.

Figure 7 illustrates the compaction process further, by
considering an example of an empty compaction buffer and
three prefetched blocks (Y, Y+1, and Y+2), responded from
the DRAM. The blocks share a common tag and index when
h2 is applied. Block Y, being a miss at the compaction buffer,
is compacted by determining the pattern present within the
block. The encoding bits are set correspondingly. Block Y+1
and Y+2 result in a hit at the buffer. They are compacted
using the base and the encoding bits present in the compact
block Y. In future, any request to a block in the compact
block (example Y+1, either in C2 or compaction buffer) is
responded by decompacting using the base, encoding bits
and the corresponding delta present in the compact block.

Decompaction: On a hit in C2, PBC decompacts the
block using the encoding bits stored along with the tag and
responds with the data. In BDI, each word occupies a fixed
location in a compressed block. In PBC this translates to
each cache block occupying a fixed location in the compact
block. PBC reads the base of the compact block and the
words that are needed for reconstructing the block, and
sends it to the decompresser unit to get the decompressed
cache block. Note that though multiple blocks reside in a
compact block, the decompaction latency is no more than

	
 	
 	
 	
 	
 	
 	
 base	

0x00000889	
 	
 	
 	
 0	
 	
 	
 	
 1	
 	
 	
 	
 2	
 	
 	
 	
 	
 3	

delta	
 in	
 hex	

4-­‐bytes	

0x00000889	
 	
 	
 	
 	
 0x00000890	
 	
 	
 	
 0x00000891	
 	
 	
 	
 	
 0x00000892	

	
 	
 	
 	
 	
 	
 8-­‐bytes	

	
 Block	
 Y	

	
 	
 	
 	
 	
 	
 	
 base	

0x00000889	
 	
 	
 	
 0	
 	
 	
 	
 1	
 	
 	
 	
 2	
 	
 	
 	
 	
 3	
 	
 	
 	
 	
 4	
 	
 	
 	
 	
 5	
 	
 	
 	
 6	
 	
 	
 	
 7	

delta	
 in	
 hex	

4-­‐bytes	

0x00000893	
 	
 	
 	
 	
 0x00000894	
 	
 	
 	
 0x00000895	
 	
 	
 	
 	
 0x00000896	

	
 	
 	
 	
 	
 	
 12-­‐bytes	

Block	
 Y+1	

	
 	
 	
 	
 	
 	
 	
 base	

0x00000889	
 	
 	
 	
 0	
 	
 	
 	
 1	
 	
 	
 	
 	
 2	
 	
 	
 	
 3	
 	
 	
 	
 	
 4	
 	
 	
 	
 	
 5	
 	
 	
 	
 6	
 	
 	
 	
 7	
 	
 	
 	
 	
 8	
 	
 	
 	
 	
 9	
 	
 	
 	
 	
 A	
 	
 	
 	
 B	

delta	
 in	
 hex	

4-­‐bytes	

0x00000897	
 	
 	
 	
 	
 0x00000898	
 	
 	
 	
 0x00000899	
 	
 	
 	
 	
 0x000008A0	

	
 	
 	
 	
 	
 	
 16-­‐bytes	

Block	
 Y+2	

	
 Compact	
 Block	

enc	
 bits	
 	
 :	
 101	

valid	
 bits:	
 1000	

	
 	
 	
 	
 	
 	
 	
 base	

0x00000889	
 	
 	
 	
 0	
 	
 	
 	
 1	
 	
 	
 	
 	
 2	
 	
 	
 	
 3	
 	
 	
 	
 	
 4	
 	
 	
 	
 	
 5	
 	
 	
 	
 6	
 	
 	
 	
 7	
 	
 	
 	
 	
 8	
 	
 	
 	
 	
 9	
 	
 	
 	
 	
 A	
 	
 	
 	
 B	

delta	
 in	
 hex	

	
 	
 	
 	
 	
 	
 16-­‐bytes	

	
 Compact	
 Block	

enc	
 bits	
 	
 :	
 101	

valid	
 bits:	
 1110	

Request	
 for	
 Block	
 Y+1:	
 when	
 hit	
 in	
 compac:on	
 buffer	
 or	
 C2	
 	
 	

Data	
 read	

on	
 a	
 block	

hit	

Data	
 read	

to	
 compact	

a	
 block	

	
 Compact	
 Block	

enc	
 bits	
 	
 :	
 101	

valid	
 bits:	
 1100	

	
 Compact	
 Block	

enc	
 bits	
 	
 :	
 101	

valid	
 bits:	
 1110	

Figure 7: An example illustrating compaction and decom-
paction in PBC.

6

condi&on:	

(count_c1	
 >=	
 4	
 and	
 count_c2	
 ==	
 0)	
 or	

(count_c1	
 >=	
 8	
 and	
 count_c2	
 ==	
 1)	
 or	

(count_c1	
 >=	
 12	
 and	
 count_c2	
 ==	
 2)	
 	

	
 non	
 compactable	

prefetched	
 block	

	
 or	

	
 demand	
 block	

increment	
 count_c2	
 increment	
 count_c1	

reset	
 count_c1	
 and	

count_c2	
 to	
 0	

count_c1	
 >=	
 13	
 	

and	
 count_c2	
 >=	
 3	

yes	

h2(x)	
 h1(x)	

true	
 false	

Figure 8: Internals of a way balancer. The counter values
shown are for a cache (C) with 16 ways (m) being split into
C1 with 13 ways (m - n) and C2 using those 3 ways (n).

the decompression latency of a single cache block. With
PBC, the access latency increases by one cycle, which comes
from the tag search (the number of parallel tag searches
are increased when compared to a generic cache). If there
is a cache hit, to service the demand requests, the latency
increases by one more cycle (a total of two cycles, which
includes the tag search and the decompression latency). In
PBC, we don’t store dirty blocks inside a compact block, and
therefore a write hit does not require re-compaction.

Handling Writebacks: Upon a writeback, an evicted
dirty block from an upper level cache writes its data back to
the LLC. A writeback hit for a block in a compact block
at C2 necessitates a need for re-compaction of the entire
compact block since the data contained in the block has
been modified. To avoid this, in PBC, any writeback hit at
C2 invalidates that particular block in the compact block by
resetting the corresponding valid bit, and the dirty block is
allocated in C1. Note, since we don’t store dirty blocks inside a
compact block, we need only a single coherence bit to distinguish
between shared and exclusive coherence states per block.

Encoding bits in PBC: In PBC, a cache block is either
stored as part of a compact block or as an uncompressed
block. If a 64-byte cache block is compressible to 34, 36 or 40
byte block, using B2-D1, B4-D2 or B8-D4 respectively (Table
1), the size of the resultant compact block, when a new block
is compacted with this compressed block, would be greater
than 64 bytes. Hence, we do not use compress patterns 5, 7
or 8 while compacting blocks using PBC and would require
only three bits to encode the rest of the patterns.

Way Balancer: In PBC, the cache space will be under-
utilized if an application either generates very few prefetch
requests or the percentage of prefetched blocks that can be
compacted is very less. In such scenarios, very few blocks
get placed in C2. This leads to performance degradation. To
avoid this, we incorporate a way balancer (wb) – a control
logic that keeps track of the number of blocks that get placed
in C1 and C2 using two saturating counters. If for m - n
blocks that are allocated in C1, n compact blocks are allo-
cated in C2, the counters are reset. If fewer than n compact
blocks are allocated in C2, the way balancer allocates the
demand blocks or the uncompressed prefetched blocks to C2

such that for every m - n blocks allocated in C1, n blocks are
allocated in C2. Note that C2 can also hold a non-compacted
block. (The encoding bits will be set to represent the same).

In general, for a given m and n (n < m), we find x such
that:

x = bm
n

+
1

2
c

In other words, x is m/n rounded off to the nearest
integer. Using this x, the decision to allocate the block in
either C1 or C2 is made as follows:
For some i ∈ [1, n],
if (count c1 ≥ i ∗ x && count c2 == i − 1) then
allocate to C2 else allocate to C1, and update the counters
accordingly. The counters are reset when count c1 ≥ m and
count c2 ≥ n.

Figure 8 shows the internals of a way balancer with m =
16 and n = 3. The counter values are selected in such a way
that, the way balancer tries to allocate n blocks to C2 over a
phase of m - n blocks being allocated to C1.

3.3 Design Choices

Placement of the compaction buffer: The compaction buffer
can be placed at the DRAM. This results in off-chip mem-
ory bandwidth savings, as fewer bytes will be transferred
from DRAM to LLC due to compaction. On the flip side,
a demand request generated for a block cached at the
compaction buffer will end up in the miss status handling
register (MSHR) of LLC and will continue to remain so
until the compacted block is serviced back from the DRAM
controller. So even though the data is read from the DRAM,
the demand request for a block can end up being a miss
at the LLC, which degrades performance. To tackle this
issue, hints from the MSHR can be sent to the compaction
unit placed at the DRAM, at regular intervals. The hints
notify the compaction unit about those misses which were
initially prefetch requests, but are now requested by the
processor (demand misses). The compaction unit would
then service these requests immediately. The other place for
the compaction buffer is beside the LLC, where it is searched
in parallel with the LLC. In this work, for the evaluation of
PBC we take the latter approach.

00………………………………....	
 	
 	
 110101000000	

tag	

index	

log2(s1)	

index	

log2(s2)	

offset	

log2(b)	

h2	

h1	

block	
 X	

	
 	
 	
 	
 cb	

log2(nb)	

offset	

log2(b)	

tag	

bank	

id	

bank	

id	

Figure 9: Memory address split for a banked cache.

LLC size s s1 s2 m n p
2MB 2048 2048 1024 16 3 6
4MB 4096 4096 2048 16 3 6
8MB 8192 8192 4096 16 3 6

Table 2: Various cache parameters used in PBC.

7

C2 cache 1024 sets, 6 ways
#compact blocks in C2 (NC) 6144
#blocks within a compact block (NB) 32
compact block size at the compaction buffer 64 bytes
Metadata per compact block 3/1/1 enc/v/coh bits
Entries in the Compaction buffer (NE) 256 entries
h2 tag, h2 index, cb 11, 10, and 5 bits
Access latency of Compaction buffer 3 cycles
Decompaction latency 2 cycles

Table 3: Parameters specific to PBC for a 2MB LLC.
enc - encoding bits, v - valid bit, coh - coherence bits.

PBC for a banked cache organization: In a generic
banked cache organization, consecutive cache blocks are
mapped to consecutive banks. For example, two consecutive
cache blocks X and X+1 are mapped to consecutive banks
B0 and B1, respectively. In PBC, each bank is split into
C1 and C2, similar to a non-banked cache as illustrated
in Section 3. Figure 9 shows the memory address split for
a banked cache when h1 and h2 is applied to incorporate
PBC. For indexing into C1, we retain the hash function of a
generic cache organization (h1). Since C2 contains compact
blocks, higher order bits (after cb bits from LSB) are used
to determine the bank id and the set index as shown in h2.
When a cache block is requested at the LLC, both C1 and C2
are searched in parallel (It might so happen that C1 from one
bank and C2 from a different bank get searched in parallel).
A case where two banks report a hit does not arise because
a block can be stored only in C1 or C2, irrespective of
the bank chosen. Note that with this organization, multiple
consecutive blocks mapping to different banks in a generic
cache can be compacted as a single block and mapped to a
bank chosen by h2(x). To be able to handle multiple cache
blocks, which span across multiple banks, the compaction
unit is placed at the DRAM controller. Depending on the
outcome of the compaction unit, the cache blocks are sent
to C1 or C2 of a particular bank. In this work for the
evaluation of the proposed idea, we consider a non-banked
cache where we place the compaction buffer at the LLC.

LLC Parameters specific to PBC: Table 2 shows the
values of s2, n, and p for the fixed values of s, s1, and
m for various sizes of LLC. In our simulations, we find
that these values are best suited (determined empirically
by sweeping through the various values of n and p), for a
wide range of workloads. We consider a 256 entry, 2 way set
associative compaction buffer. The decompaction latency of
PBC is same as the decompression latency of BDI.

3.4 PBC with cache compression

As noted in Section 3.2, PBC uses BDI internally to compact
prefetched blocks. Any cache compression technique can be
incorporated both at C1 and C2. C1, storing demand blocks
and uncompacted prefetched blocks is like any other generic
cache that can be compressed. In C2, a compact block, even
after holding several other blocks, might not span the entire
space allocated for a block. Also, the demand blocks and un-
compacted prefetched blocks sent to C2 by the way balancer
can be compressed. By doubling the tag array at both C1
and C2, as done in BDI, for a given cache space a maximum
of double the number of compacted/uncompacted blocks
can be allocated. Instead of BDI, if any other compression
technique is used to compress multiple cache blocks (i.e., for

compaction), then the decompression latency increases and
is variable. For example, if the third block in a compressed
block is requested then both the first and second blocks
need to decompressed. Note that it is feasible to use a
compression algorithm at C1 that is different from the one
used for compaction of the blocks at C2.

3.5 Hardware overhead

Table 3 shows the parameters specific to PBC. Table 4
shows the hardware overhead for a 2MB LLC. The total
hardware overhead of PBC is 70.76kB, 3.4% of the baseline
LLC of 2MB. In terms of tag storage, C2 uses a tag store
of 58.5KB (including the C2 overhead), that is around 0.95
times the tag store of the baseline cache (61.4kB). PBC is
a low-cost technique that provides significant performance
improvement.

C2 NC × (((v + coh) × NB) + enc) 51.4 kB
Compaction
Buffer

NE × (h2 tag + h2 index + cb + enc bits) + NE
× (compact block size + 8) bytes

19.36 kB

Total
Overhead

70.76kB

Table 4: Hardware Overhead of PBC on a 4-core system
with 2MB LLC. For NB, NC, and NE, refer Table 3.

4 EVALUATION METHODOLOGY

We use gem5 [12] simulator to simulate 4- and 8-core system
running multi-programmed workload mixes. We create sev-
enty 4-core and twenty-five 8-core workload mixes by mix-
ing benchmarks from SPEC CPU 2000 and 2006 benchmark
suites [9] based on the characteristics as shown in Table 5.
We evaluate the effectiveness of PBC over a baseline system
with no compaction with a per-core stream prefetcher ON.
Next we evaluate the benefits of using PBC along with
the state-of-the-art cache compression technique, BDI. We
also show the effectiveness of a system that uses PBC with
stride prefetcher and the state-of-the-art SMS [18] prefetcher.
We measure the system performance in terms of weighted
speedup (WS) [11] (higher the better) and harmonic mean of
speedups (HS) [10] (higher the better), and system fairness
using an unfairness (lower the better) metric [22]. We also
report the off-chip bandwidth consumption in terms of
GB/sec. The metrics of interest are defined as follows:

ISi =
CPItogetheri

CPIalonei

, WS =

N−1∑
i=0

IPCtogether
i

IPCalone
i

HS =
N

N−1∑
i=0

IPCalone
i

IPCtogether
i

(1)

Unfairness =
MAX{IS0, IS1, ..., ISN−1}
MIN{IS0, IS1, ..., ISN−1}

HS is the reciprocal of the average normalized turn-around
time and WS is equivalent to system throughput [17]. HS
balances both performance and fairness. IPCtogether

i is the
IPC of core i when it runs along with other N -1 applications
on a multi-core system of N cores. IPCalone

i is the IPC of core
i when it runs alone on a multi-core system of N cores. We
fast-forward 10 billion instructions, warm-up the system for

8

Compaction
Friendly (CF)

bwaves, GemsFDTD, h264ref, mesa,
milc, and zeusmp

Cache bzip2, mgrid, soplex, twolf,
Sensitive (CS) vortex2, omnetpp, and leslie3d
CS and CF ammp and galgel
Neither CS nor CF gromacs, hmmer, lbm, mcf, sjeng,

and calculix

Table 5: Benchmark characteristics. Compaction friendly: If
more than 40% of the prefetched blocks are compactable.
Cache sensitive: If the ratio of improvement in performance
(IPC) by going from 1MB to 2MB LLC is greater than 10%.

Processor 4-core and 8-core CMP, 4.7
GHz, Out of Order

Fetch/Commit width 8
ROB/LQ/SQ/Issue Queue 192/96/64/64 entries
L1 D/I Cache 32 kB, 4 way, 3 cycle latency
LLC 2/4 MB for 4/8 cores, 16 way,

26 cycle latency
MSHR entries 16, 64/128

at L1, LLC with 4/8 cores,
Cache Line Size 64B
Prefetchers at LLC Stream Prefetcher, with

degree = 8 and distance = 64
Stride Prefetcher, with
degree = 8 and distance = 64
SMS Prefetcher, with
region size of 2KB

DRAM Controller On-chip, Open Row, 64 read
& write queue entries, FR-
FCFS scheduler

DRAM Bus split-transaction, 800 MHz,
BL=8

DRAM DDR3 1600 MHz (11-11-11)
1/2 channels for 4/8 cores,
Peak Bandwidth = 12.8 GB/s

Table 6: Parameters of the simulated system.

250 million instructions, and collect statistics for the next
250 million instructions, which is similar to earlier works
[15] [16]. Table 6 provides the details of system parameters
used in our evaluation.

0.6

0.65

0.7

0.75

0.8

0.85

N
o

rm
al

iz
e

d
 A

ve
ra

ge
 L

LC

M
is

s
co

u
n

t

PBC BDI PBC + BDI
Lower the better

1.06

1.08

1.1

1.12

1.14

1.16

1.18

1.2

WS HS

PBC BDI PBC+BDI

Higher the better

N
o

rm
al

iz
ed

 A
ve

ra
ge

P

e
rf

o
rm

an
ce

 Im
p

ro
ve

m
e

n
t

Figure 10: Normalized average WS and HS comparison and
normalized average LLC miss count comparison, of seventy
4-core workloads on a 4 core system.

4.1 Results and Analysis

This section describes the effectiveness (in terms of HS and
WS) of PBC and PBC + BDI for 4-core and 8-core sys-
tems. PBC+BDI is the combination of PBC, which compacts
prefetched blocks, and BDI, which compresses a single cache
block. In case of PBC, we do not use any compression

techniques that compresses single cache blocks. We com-
pare PBC and PBC+BDI with a baseline system with no
compression, and with a stream prefetcher ON. We create
seventy and twenty-five 4-core and 8-core workload mixes,
respectively. We create these mixes randomly by mixing
the benchmarks from each category in roughly equal pro-
portions (which we mention in Table 5). Figure 10 shows
the normalized average (geomean) of HS and WS and LLC
miss counts of PBC, BDI and PBC+BDI, on a 4-core system.
The average is across seventy workloads with a stream
prefetcher ON. PBC improves the HS and WS by 11.1%
and 8.7% respectively. PBC delivers this performance by
reducing the average LLC miss count by 16%. The maxi-
mum improvement (in terms of HS) of 43.4% comes from a
workload that consists of ammp-leslie3d-vortex2-zeusmp. The
workload that consists of mcf-soplex-omnetpp-gromacs shows
the minimum improvement of 0.1%.

BDI delivers performance improvement of 13.29% (HS)
and 10.8% (WS) with an average reduction of LLC miss
count by 23.6%. PBC, when combined with BDI (PBC+BDI)
delivers 15.8% and 19.8% improvement in the average WS
and HS, respectively, with an average reduction of LLC miss
count by 29.2%. PBC+BDI provides a maximum improve-
ment of 71.2% (in ammp-soplex-twolf-zeusmp) and minimum
improvement of 3.24% (in mcf-soplex-omnetpp-gromacs).

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58 61 64 67 70

PBC PBC + BDI Higher the better

Low Medium High

Figure 11: Performance improvement of PBC (in terms of HS)
across seventy 4-core workloads on a 4 core system.

1

1.1

1.2

1.3

1.4

1.5

1.6

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58 61 64 67 70

PBC PBC+BDI Higher the better

Figure 12: Normalized WS for 4-core workloads. The work-
loads are ordered as per the order shown in Figure 11.

Figure 11 shows the detailed improvement in HS deliv-
ered by PBC and PBC+BDI, for all 70 4-core mixes. We show
the mixes in the increasing order of their HS improvement
with PBC and divide them into low, medium, and high
performance zones based on the performance improvement
(in terms of HS). An improvement of less than 5% is termed
as low, improvement between 5 to 10% is medium, and
the mixes with more than 10% improvement with PBC
are termed as high. Across all the workload mixes, PBC
improves the performance. Out of seventy 4-core workload
mixes, with PBC, 18 mixes show an improvement of less

9

0.95

0.97

0.99

1.01

1.03

1.05

1.07

1.09

mcf mesa mgrid sjeng

N
o

rm
al

iz
e

d
 IP

C

PBC PBC+BDI Higher the better

Figure 13: Workload Mix 5 - Individual IPC

0

0.2

0.4

0.6

0.8

1

1.2

mcf mesa mgrid sjeng

N
o

rm
al

iz
e

d
 L

LC
 M

is
s

C
o

u
n

t

PBC PBC+BDI Lower the better

Figure 14: Workload Mix 5 - Individual LLC Miss Count

than 5% (low performance zone), 26 mixes show an im-
provement in between 5-10% (medium performance zone),
and rest (26 workload mixes) show an improvement of
greater than 10% (high performance zone). The HS curve
looks encouraging as 52 out of 70 mixes (74.2%) show
an improvement of more than 5%. Figure 12 shows the
improvement in WS for the same seventy 4-core workloads.
Next, we analyze two workload mixes from each of the three
performance zones. Our observations are as follows:
Case I: Low performance zone: Workload mix 4 (gromacs-

mcf-milc-vortex2) shows very low performance improvement
(1.01%) with PBC. The primary reason for this behavior
is that all the applications of this mix contain very few
compactable blocks, which limits the opportunity for PBC.

Next, we consider workload mix 5 that contains mcf,
mesa, sjeng, and mgrid. In terms of HS, PBC improves the
performance by 1.2% and BDI improves the performance
by 2.6%, and the combination of PBC and BDI (PBC+BDI)
provides a performance improvement of 3.7%. Figure 13 and
Figure 14 show the improvement in individual IPCs and
reduction in the LLC miss counts for PBC and PBC+BDI,
respectively. As mesa is compaction-friendly and compress-
ible, the combination of PBC+BDI provides an LLC miss
count reduction of 22.3% resulting in 8.8% improvement in
individual IPC. This behavior of mesa helps sjeng. PBC+BDI
provides additional cache space for sjeng, which results in
18.3% reduction in LLC miss count and 7% improvement in
individual IPC. Figure 15 shows the improvement in HS and
WS. It also shows the reduction in bandwidth consumption
and reduction in unfairness for workload mix 5. Both PBC
and PBC+BDI reduce the bandwidth consumption, and
there is slight increase (less than 2%) in terms of unfairness.

Case II: Medium performance zone: Next, workload
mix 19 (mcf-soplex-vortex-zeusmp) shows an improvement of
7.6%. It contains mcf, that is neither cache sensitive nor
compaction friendly, and soplex, that is cache sensitive but its
prefetched blocks occupancy is less than 2% at the LLC. On

0.92	

0.94	

0.96	

0.98	

1	

1.02	

1.04	

1.06	

HS	
 WS	
 Bandwidth	
 Unfairness	

PBC	
 PBC+BDI	

Figure 15: Workload Mix 5 - Normalized HS, WS, bandwidth
consumption, and unfairness.

1

1.05

1.1

1.15

1.2

1.25

bzip2 gromacs h264ref zeusmp

N
o

rm
al

iz
e

d
 IP

C

PBC PBC+BDI Higher the better

Figure 16: Workload Mix 20 - Individual IPC

the other hand, for benchmarks, such as vortex2 and zeusmp,
PBC improves their respective IPCs by 7.4% and 7.9% by
reducing their LLC miss rate by 12.3% and 23.3%.

We consider workload mix 20, which contains bzip2,
gromacs, h264ref, and zeusmp. In terms of HS, PBC and
PBC+BDI provide an improvement of 5.3% and 14.3%, re-
spectively, and in terms of WS, PBC and PBC+BDI provide
an improvement of 5.3% and 14.1%, respectively. Figure
16 and Figure 17 show the improvement in individual
IPCs and reduction in the LLC miss counts for PBC and
PBC+BDI, respectively. All the benchmarks of this workload
mix except h264ref are the benefactors of PBC and PBC+BDI
as PBC+BDI improves the individual IPCs by 15.3%, 21.2%,
and 15.9% for bzip2, gromacs, and zeusmp, respectively. In
terms of LLC miss counts, PBC provides an LLC miss
count reduction of 24% and 27% for gromacs and zeusmp,

0

0.2

0.4

0.6

0.8

1

1.2

bzip2 gromacs h264ref zeusmp

N
o

rm
al

iz
e

d
 L

LC
 M

is
s

C
o

u
n

t

PBC PBC+BDI Lower the better

Figure 17: Workload Mix 20 - Individual LLC Miss Count

0.6	

0.7	

0.8	

0.9	

1	

1.1	

1.2	

HS	
 WS	
 Bandwidth	
 Unfairness	

PBC	
 PBC+BDI	

Figure 18: Workload Mix 20 - Normalized HS, WS, bandwidth
consumption and unfairness.

10

respectively. The reduction goes further with PBC+BDI as it
reduces the individual LLC miss-counts by 69.5% and 35%
for gromacs and zeusmp, respectively. This reduction in LLC
miss count helps bzip2 in improving its own performance
(15.3%). h264ref, also gets benefit from the additional space,
which results in 1.2% and 5.5% improvement in its IPC
for PBC and PBC+BDI, respectively. Figure 18 shows the
improvement in HS, WS, bandwidth consumption, and un-
fairness. In terms of unfairness, both PBC and PBC+BDI are
equally fair as compared to the baseline. PBC+BDI improves
both HS and WS by at-least 10% with 25% reduction in the
bandwidth consumption.

Case III: High performance zone: We consider workload
mix 49 (galgel-mesa-sjeng-soplex), which has two benchmarks
that are cache sensitive (galgel and soplex) and two that
are compaction friendly (mesa and galgel), galgel being both
cache sensitive and compaction friendly. sjeng is neither
cache sensitive nor compaction friendly, but there is an
overall improvement in the system (by 14%) because of the
other three benchmarks. PBC reduces the miss-rate of galgel,
mesa, sjeng, and soplex by 34%, 12.4%, 14%, and 10.8%,
respectively, which results in respective IPC improvements
of 33%, 2.1%, 2.9%, and 11.5%.

Workload mix 70 (ammp-leslie3d-vortex2-zeusmp) has
both cache sensitive (leslie3d, vortex2 and ammp) and com-
paction friendly (ammp and zeusmp) benchmarks resulting
in 43.4% and 66.9% improvement in HS with PBC and
PBC+BDI, respectively. In terms of WS, PBC and PBC+BDI
provide an improvement of 23.4% and 38.3%, respectively.
Figure 19 and Figure 20 show the improvement in indi-
vidual IPCs and reduction in the LLC miss counts for
PBC and PBC+BDI, respectively. PBC results in significant
improvement in the IPC of ammp and leslie3d by 81.6% and
27.9% respectively. This improvement in IPC comes from
their reduction in the individual LLC miss count, which is
in the magnitude of 2.4X and 1.6X. When combined with
BDI, PBC+BDI provides a reduction of LLC miss count by

0

0.5

1

1.5

2

2.5

3

ammp leslie3d vortex2 zeusmp

N
o

rm
al

iz
e

d
 IP

C
 PBC PBC+BDI Higher the better

Figure 19: Workload mix 70 - Individual IPC

0

0.2

0.4

0.6

0.8

1

ammp leslie3d vortex2 zeusmp

N
o

rm
al

iz
e

d
 L

LC
 M

is
s

C
o

u
n

t

PBC PBC+BDI Lower the better

Figure 20: Workload mix 70 - Individual LLC Miss Count

0.5	

0.75	

1	

1.25	

1.5	

1.75	

HS	
 WS	
 Bandwidth	
 Unfairness	

PBC	
 PBC+BDI	

Figure 21: Workload mix 70 - Normalized HS, WS, bandwidth
consumption, and Unfairness.

3.7X and 2.2X, respectively. This mix is a good example
that shows the potential of PBC. Figure 21 shows the im-
provement in HS and WS, and reduction in bandwidth and
system unfairness.

In workload mix 1 (mcf-soplex-omnetpp-gromacs), omnetpp
is cache sensitive but not compaction friendly and the rest
are neither cache sensitive nor compaction friendly. In this
mix, we do not expect PBC to deliver noticeable perfor-
mance improvement as there is no opportunity and PBC
improves HS by a marginal 0.1%.

We conclude that PBC delivers high performance gain
in general if the workload mix has more than one cache
sensitive benchmark and at-least one compaction friendly
benchmark.

PBC and BDI complement each other across all the
workloads, which results in significant performance im-
provement of more than 20% (in terms of HS) in 27 out of
70 workload mixes, and 53 out of 70 workload mixes show
a performance improvement of more than 10%.

Bandwidth Consumption: On an average across 70
workloads, PBC reduces bandwidth consumption (GB/sec)
by 6% and the combination of PBC and BDI (PBC+BDI)
reduces the bandwidth consumption by 11.8%. Both PBC
and PBC+BDI provide a good tradeoff between perfor-
mance and bandwidth consumption as PBC provides a
performance improvement of 11.1% with a reduction in
bandwidth consumption of 6%, and PBC+BDI provides
an improvement of 19.8% with a reduction in bandwidth
consumption of 11.2%. Figure 22 shows the normalized
bandwidth consumption for 70 workload mixes. Out of 70
workloads, only one workload (workload mix 6) consumes
additional bandwidth, which is marginal (1.2%).

System Fairness: The primary goal of PBC is to improve

0.5

0.6

0.7

0.8

0.9

1

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58 61 64 67 70

PBC PBC+BDI
Lower the better

Figure 22: Normalized Bandwidth Consumption for 4-core
workloads in GB/sec. The workloads are the sorted work-
loads, which are sorted as per their improvement in HS with
PBC as shown in Figure 11.

11

0.5

0.7

0.9

1.1

1.3

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58 61 64 67 70

PBC PBC+BDI Lower the better

Figure 23: Normalized system unfairness for 4-core work-
loads. The workloads are the sorted workloads, which are
sorted as per their improvement in HS with PBC as shown in
Figure 11.

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

N
o

rm
al

iz
e

d
 H

S

PBC PBC+BDI Higher the better

Figure 24: Normalized HS for 8-core workloads.

the system performance but it also improves the system
fairness. On an average, across 70 4-core workloads, PBC
reduces the unfairness by 9.2%. The primary reason behind
this improvement is that the additional cache space pro-
vided by compaction friendly applications help cache sensi-
tive ones. PBC+BDI goes further in improving the fairness
by reducing unfairness by 12.7%. Out of 70 workloads, only
12 workloads show increase in unfairness. Figure 23 shows
the trend in terms of unfairness for 70 4-core workloads.

8-core results: For an 8-core system, on an average
(geomean), when compared to the baseline, PBC improves
the performance by 13.6% (HS) and 11.8% (WS), with a

1

1.1

1.2

1.3

1.4

1.5

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

N
o

rm
al

iz
e

d
 W

S

PBC PBC+BDI Higher the better

Figure 25: Normalized WS for 8-core workloads.

1

1.05

1.1

1.15

1.2

1.25

1.3

1.35

WS HS

Stride Stream SMS

Higher the better

N
o

rm
al

iz
e

d
 A

ve
ra

ge

P
e

rf
o

rm
an

ce
 Im

p
ro

ve
m

e
n

t

Figure 26: PBC with stride, stream, and SMS prefetcher.

1

1.05

1.1

1.15

1.2

1.25

2MB 4MB 8MB

N
o

rm
al

iz
e

d
 H

S

PBC PBC+BDI Higher the better

Figure 27: Effectiveness of PBC with different LLC size. The
improvement shown is over the baseline cache of the same
size.

maximum HS improvement of 45.5% (in ammp-galgel-h264ref-
leslie3d-mcf-soplex-vortex2-zeusmp) and a minimum HS im-
provement of 1.1% (in leslie3d-mcf-mesa-sjeng-soplex-twolf-
vortex2-zeusmp). Hence, we find that PBC is effective even
with the increase in core count. Figure 24 and Figure 25
show the normalized HS and normalized WS for 25 work-
loads. The workloads are sorted as per the performance
improvement in terms of HS, with PBC.

4.2 Other Results
PBC with Different Prefetching Techniques: Till now, we
showed the effectiveness of PBC with a stream prefetcher.
Now we show the performance improvement of PBC
with simple stride [19] and state-of-the-art SMS [18]
prefetcher in Figure 26. For our evaluation, we use a stride
prefetcher with prefetch degree of 8, which is same as the
prefetch degree that we use for evaluating PBC with stream
prefetchers. For SMS, we use spatial regions of size 2KB
(thirty two 64-byte cache blocks), which is optimal for SPEC
based applications. So on a miss, an SMS prefetcher can
prefetch up to 32 cache blocks in one instance.

Compared to the baseline with a stride prefetcher, on
an average across seventy 4-core workload mixes, PBC
improves the WS and HS by 4.2% and 5%, respectively.
This is due to the low prefetch issue rate, as a simple stride
prefetcher fails to exploit the access patterns that are non-
strided. On the other hand, PBC with an SMS prefetcher
outperforms the baseline by an average improvement of
28.7% in WS and 33.7% in HS. The primary reason for this
improvement is the high prefetch issue rate, which results
in high compaction for compaction friendly benchmarks,
and this provides additional LLC space for the cache
sensitive benchmarks to exploit.

We conclude that PBC is effective across a wide range of
prefetching techniques. The effectiveness increases with the
increase in the prefetch issue rate.

LLC sensitivity: Figure 27 shows the effect of LLC size
on the performance of PBC with a stream prefetcher. For a
4-core system, we consider 2MB, 4MB and 8MB LLC. PBC
improves the performance (HS) by 11.3% and 8.8% and
PBC+BDI provides an improvement (HS) by 22.4% and 16%
for 4MB and 8MB LLC respectively. Compared to 4MB, the
effectiveness of PBC goes down with an 8MB LLC as larger
working set of most of the applications fit at the LLC.

PBC with FDP: FDP [20] is a prefetcher aggressiveness
controller, which tries to improve the performance by

12

1

1.05

1.1

1.15

1.2

1.25

2MB 4MB 8MB

N
o

rm
al

iz
e

d
 H

S
PBC PBC+BDI Higher the better

Figure 28: Performance improvements of PBC and PBC+BDI
with a 3 level cache hierarchy. L2: 256KB and LLC:
2MB/4MB/8MB. The improvement shown is over the baseline
cache of the same size.

throttling the prefetchers, based on prefetch metrics such as
prefetch-accuracy, timeliness, and cache pollution. It uses
five throttling levels: [1,4], [2,8], [2,16], [4,32] and [4,64]
where [x,y] is a throttling level with prefetch-degree of x
and prefetch-distance of y. Throttling up/down corresponds
to increase/decrease in the aggressiveness by one level.
For multi-core systems that employ FDP, PBC delivers
performance improvements, in terms of WS and HS by
5.3% and 9.5% with a maximum of 27.4% and 40% of
WS and HS. This shows that PBC is still effective in the
presence of prefetch throttling techniques, such as FDP. PBC
provides better performance for those workload mixes that
contain applications with high prefetch accuracy, which
stay at the highest throttling level. However, for workloads
that contain applications with low prefetch accuracy, there
is lesser opportunity to compact multiple prefetched blocks
as the prefetchers stay at the lowest throttling levels.

PBC for 3 levels of cache: We evaluate PBC for a 3 level
cache hierarchy with PBC applied at the last-level-cache
(LLC) and private L2s (prefetcher turned on at both L2
and LLC). PBC remains effective for a 3 level cache, with
an average performance improvement in terms of HS is
10% (256kB L2 cache and 4MB LLC). Figure 28 shows the
performance improvements of PBC and PBC+BDI. Similar
to figure 27, when compared to 4MB, the effectiveness of
PBC goes down with an 8MB L3 as larger working set of
most of the applications fit at the L3 cache.

PBC for 1-core system: Figure 29 shows the
improvement in IPC for 22 SPEC benchmarks. We
also report the performance improvement that can be
gained by doubling the cache size from 1MB to 2MB in a
baseline system. On an average (geomean), doubling the
cache capacity results in 15% performance improvement.
Compared to a baseline system with 1 MB cache, PBC and
PBC+BDI provide performance improvements of 5.2% and
9.8%, respectively. Benchmarks, such as bwaves, calculix,
GemsFDTD, gromacs, mcf, mesa, milc, sjeng, and wupwise that
show no improvement, are the cache insensitive ones and
do not gain performance even with double the cache size.

Hit rates of C1 and C2: The average hit rates of C1 and
C2 are 58% and 11% with a maximum of 77% C1 hit rate for
a workload mix that contains gromacs-soplex-sjeng-vortex2
and minimum of 20% for the workload mix that contains
GemsFDTD-mcf-omnetpp-galgel. For C2, the maximum and
minimum hit rates are 23% and 4% for workload mixes that

0.8
0.9

1
1.1
1.2
1.3
1.4
1.5
1.6

am
m

p

b
w

av
e

s

b
zi

p
2

ca
lc

u
lix

ga
lg

e
l

G
e

m
sF

D
TD

gr
o

m
ac

s

h
2

6
4

re
f

h
m

m
e

r

lb
m

le
sl

ie
3

d

m
cf

m
e

sa

m
gr

id

m
ilc

o
m

n
e

tp
p

sj
e

n
g

so
p

le
x

tw
o

lf

vo
rt

e
x2

w
u

p
w

is
e

ze
u

sm
p

G
e

o
m

e
an

N
o

rm
al

iz
e

d
 IP

C

PBC (1MB, 16way) PBC+BDI (1MB, 16 way) Baseline (2MB, 16 way)

Higher the better

2.09 2.2 2.54

1.85

Figure 29: Performance improvement in terms of IPC with
PBC and PBC+BDI for single-core workloads. Note that the
baseline contains a 1MB cache with 16 ways.

0.6

0.8

1

1.2

1.4

1.6

1.8

2

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58 61 64 67 70

N
o

rm
al

iz
e

d
 E

n
e

rg
y

C
o

n
su

m
p

ti
o

n

Cache Cache+Buffer+DRAM

Lower the Better

Figure 30: Normalized energy consumption for 4-core work-
loads. Workloads are ordered as per the order in Figure 11.

contain h264ref-GemsFDTD-omnetpp-milc and soplex-milc-
bzip2-hmmer, respectively. For a cache with 16 ways being
split into C1 with 13 ways and C2 using the other 3 ways,
we expect the ratio of the hit rates (C2 to C1) to be roughly
around 3/13 and found the same in our evaluations. High
hit rates at C2 would imply more number of cache blocks
being compacted into a single block.

Effectiveness of the way balancer: To quantify the
effectiveness of the way balancer, we run PBC without the
way balancer. Compared to the baseline, PBC without the
way balancer provides 7.4% improvement in terms of HS.
In contrast, PBC with the way balancer provides 11.1%
improvement in terms of HS. Also workload mixes like
mcf-soplex-omnetpp-gromacs, bzip2-omnetpp-sjeng-vortex2, lose
out on performance (by around 2%). In the absence of the
way balancer, the cache space is not effectively utilized,
which results in lesser performance improvement.

Impact of parallel look-up on power: We compare the
power consumed by PBC for parallel lookup in both C1
and C2 with the baseline cache. We use CACTI 6.0 [23] to
get the power numbers. The generic cache (C) that contains
2048 sets and 16 ways with 15 bits of tag consumes 0.25nJ
per access. On the other hand, PBC contains C1 and C2.
C1 has 2048 sets and 13 ways with 15 bits of tag, and C2
has 1024 sets and 6 ways with 11 bits of tag. The power
values are not optimized in CACTI, if the number of ways
is not multiples of 2, hence we report the values for higher
number of ways. C1, in the worst case (assuming a 16-way,
2048 sets cache) will consume 0.25nJ per access and C2 will
consume 0.09nJ per access (assuming an 8-way, 1024 sets
cache). Note that, in our technique we search 19 ways, 13 at
C1 and 6 at C2 in parallel, when compared to 16 ways in C.

Figure 30 shows the energy savings obtained by PBC
over a generic cache. For each workload, two data points

13

are presented, one for the savings obtained in the LLC
alone, and second, representing the savings obtained when
all the three, LLC, compaction buffer and the DRAM
are considered together. When energy consumption of
LLC alone is considered, PBC on an average across 70
workloads consumes 36.8% of additional energy because
of the extra tag lookup for each access. Upon considering
all the three components together, since the memory power
consumption dominates the overall energy consumption,
PBC obtains 5.8% of energy savings on an average, across
70 workloads. The energy consumption at the memory
is reduced because of the reduced number of read/write
accesses to the memory.

5 RELATED WORK

Sardashti et al. propose a decoupled compressed cache
(DCC) [4] that exploits spatial locality to increase the com-
pressed cache capacity without significant increase in tag
overhead. To achieve this, DCC uses super blocks (aligned
contiguous cache blocks that share a single address tag).
By using a single tag, DCC stores higher number of com-
pressed blocks in a cache set when compared to the previous
cache compression techniques. In DCC, up to four aligned
contiguous cache blocks can share a single address tag and
hence, at the maximum, can quadruple the cache capacity.
However with PBC, we observe that it is beneficial to have
blocks which can hold more than four blocks, especially in
the case of prefetched blocks, where the addresses exhibit
high spatial locality. Also, PBC exploits the relation between
the data patterns present across these contiguous cache
blocks. DCC can be implemented along with PBC (at C2)
to further improve the system performance.

Dusser et al. propose an augmented, Zero-Content Aug-
mented Caches (ZCA) [14], in which null blocks (blocks
containing all zeros) are associated with a single tag and
accessed in parallel with the cache. ZCA targets only null
blocks and can be augmented with PBC. Tabatabai et al.
propose to compress companion cache blocks (cache blocks
whose addresses differ by a single bit) together [2]. They
propose two different cache mapping policies to index into
the companion block. They also propose to proactively
prefetch the companion block. Alameldeen et al. [13] study
the interaction between cache compression and hardware
prefetching and they observe the interaction to be positive.

Zhang et al. propose a technique to enable partial cache
line prefetching through data compression [24], without the
addition of prefetch buffers or increasing the memory traffic.
The compression algorithm is based on the characteristics
exhibited by dynamic values observed across various ap-
plications. For every cache block in memory, another block
is associated as a prefetch candidate. When a cache block is
prefetched, the compressor checks if the ith word of the block
and the ith word from the associated block is compressible.
If they are compressible, the two words are compressed to-
gether and sent as one word, which is part of the prefetched
block, requiring no extra memory bandwidth. By prefetch-
ing partial or full cache blocks in advance, without them
occupying extra space in cache, the technique improves the
system performance when compared to a baseline system
that does not support prefetching. PBC on the other hand

works with a prefetcher enabled system. It does not decide
which of the blocks are to be prefetched (which is solely
decided by the prefetcher).

Yang et al. propose Frequent Value Compression (FVC)
[25], based on the observation that significant amount of
values accessed by cache, belong to a small set of frequently
occuring values. FVC achieves compression by encoding
these values using lesser number of bits. In FVC, each
cache block can hold either one uncompressed block or two
compressed block, compressed to at least half their size. FVC
is limited to compressing only values that are frequent and
fails to identify other compressible patters. It also incurs
the overhead of profiling which is needed to identify the
frequent values.

Alameldeen et al. identify seven frequently occurring
compressible patterns [26], such as all the bytes in a 32-
bit word being the same, 8-bit or 4-bit sign-extended data
stored in a 32-bit word etc. and propose Frequent Pattern
Compression (FPC) [27], which exploits these patterns. Each
cache block is compressed word by word (32-bit), by storing
the pattern encoding bits if the word belongs to any of the
seven patterns. Since the position of the word in a cache
block is not fixed (every word can either be in compressed
or decompressed format), the decompression happens in
a serialized fashion. A five-stage pipeline is proposed to
mitigate the decompression latency. Alameldeen et al. also
propose a technique to dynamically assess the costs and
benefits of compression and predict whether to compress
a cache block or not.

Arelakis et al. propose using of huffman based statistical
compression technique, SC2 [28], to aggressively increase
the effective cache capacity (upto 4X). Though huffman
based algorithms need sampling of data to generate codes,
they note that there is little variation in data locality over
time and across applications. They propose a pipelined
decompression engine to keep the decompression latency
to ten cycles. Chen et al. propose C-Pack [29], which
compresses frequently appearing words by using compact
encodings, that allows for parallel compression of multiple
words. C-Pack also tries to combine pairs of compressed
blocks into a single block, with each compressed block
having its own tag and size fields associated with it.

6 CONCLUSION

We proposed an effective mechanism to compact multiple
prefetched blocks into a single block. We also showed the
effectiveness of taking into account, data patterns present
across contiguous prefetched cache blocks. On 4- and 8-
core system, PBC improves the performance by 11.10% and
13.67%, respectively. The effectiveness of our technique is
independent of the underlying prefetching technique and
prefetch throttling technique. PBC is effective for both single
and multicore systems. We conclude that PBC provides a
promising way to further increase the effective LLC capacity.

ACKNOWLEDGEMENTS

We would like to thank the reviewers and our colleagues
for their very useful and detailed comments that helped us
significantly improve the quality of the paper.

14

REFERENCES

[1] Gennady Pekhimenko, Vivek Seshadri, Onur Mutlu, Phillip B.
Gibbons, Michael A. Kozuch, and Todd C. Mowry, “Base-delta-
immediate compression: practical data compression for on-chip
caches”. In Proceedings of the 21st international conference on Parallel
architectures and compilation techniques (PACT ’12), pp. 377-388, 2012

[2] Ali-Reza Adl-Tabatabai, Anwar M. Ghuloum, and Shobhit O
Kanaujia., “Compression in cache design”. In Proceedings of the 21st
annual international conference on Supercomputing (ICS ’07), pp. 190-
201, 2007

[3] J. M. Tendler, J. S. Dodson, J. S. Fields, H. Le, and B. Sinharoy.,
“POWER4 system microarchitecture”, IBM J. Res. Dev. 46, 1, pp.
5-25, 2002

[4] Somayeh Sardashti and David A. Wood., “Decoupled compressed
cache: exploiting spatial locality for energy-optimized compressed
caching”, In Proceedings of the 46th Annual IEEE/ACM International
Symposium on Microarchitecture (MICRO-46), pp. 62-73, 2013

[5] Alaa R. Alameldeen and David A. Wood., “Adaptive Cache Com-
pression for High-Performance Processors”. In Proceedings of the
31st annual international symposium on Computer architecture (ISCA
’04), pp. 212-223, 2004

[6] Magnus Ekman and Per Stenstrom, “A Robust Main-Memory
Compression Scheme”, In Proceedings of the 32nd annual international
symposium on Computer Architecture (ISCA ’05), pp. 74-85, 2005

[7] Yiannakis Sazeides and James E. Smith, “The predictability of data
values”. In Proceedings of the 30th annual ACM/IEEE international
symposium on Microarchitecture (MICRO 30). pp. 248-258, 1997

[8] A. Seznec, “Decoupled sectored caches: conciliating low tag im-
plementation cost”. In Proceedings of the 21st annual international
symposium on Computer architecture (ISCA ’94), pp. 384-393, 1994.

[9] SPEC: www.spec.org
[10] K. Luo, Jayanth Gummaraju, and Manoj Franklin, “Balancing

throughput and fairness in SMT processors”, In Proceedings of
IEEE International Symposium on Performance Analysis of Systems and
Software (ISPASS ’01), pp. 164-171, 2001

[11] Allan Snavely and Dean M. Tullsen, Symbiotic jobscheduling
for a simultaneous multithreaded processor, In Proceedings of the
ninth international conference on Architectural support for programming
languages and operating systems (ASPLOS IX), pp. 234-244, 2000.

[12] Nathan Binkert, Bradford Beckmann, Gabriel Black, Steven K.
Reinhardt, Ali Saidi, Arkaprava Basu, Joel Hestness, Derek R.
Hower, Tushar Krishna, Somayeh Sardashti, Rathijit Sen, Korey
Sewell, Muhammad Shoaib, Nilay Vaish, Mark D. Hill, and David
A. Wood., The gem5 simulator, SIGARCH Comput. Archit. News, 39,
2, pp. 1-7, 2011

[13] Alaa R. Alameldeen and David A. Wood.,“Interactions Between
Compression and Prefetching in Chip Multiprocessors”, In Pro-
ceedings of the thirteenth international symposium on high performance
computer architecture (HPCA), pp. 228-239, 2007

[14] Julien Dusser, Thomas Piquet, and Andr Seznec, “Zero-content
augmented caches”, In Proceedings of the 23rd international conference
on Supercomputing (ICS ’09), pp. 46-55, 2009.

[15] R Manikantan, Kaushik Rajan, and R Govindarajan, “Probabilis-
tic shared cache management (PriSM)”, In Proceedings of the 39th
Annual International Symposium on Computer Architecture (ISCA ’12),
pp. 428-439, 2012

[16] Daniel Sanchez and Christos Kozyrakis, “Vantage: scalable and
efficient fine-grain cache partitioning”, In Proceedings of the 38th
annual International Symposium on Computer architecture (ISCA ’11),
pp. 57-68, 2011

[17] S. Eyerman and L. Eeckhout, “System-Level Performance Metrics
for Multiprogram Workloads”, in IEEE Micro, pp. 42-53, 2008

[18] Stephen Somogyi, Thomas F. Wenisch, Anastassia Ailamaki, Babak
Falsafi, and Andreas Moshovos, “Spatial Memory Streaming”, In
Proceedings of the 33rd annual International Symposium on Computer
Architecture (ISCA ’06), pp. 252-263, 2006.

[19] Jean-Loup Baer and Tien-Fu Chen, “An effective on-chip preload-
ing scheme to reduce data access penalty”, In Proceedings of the
1991 ACM/IEEE conference on Supercomputing (Supercomputing ’91),
pp 176-186, 1991

[20] Santhosh Srinath, Onur Mutlu, Hyesoon Kim, and Yale N. Patt.,
“Feedback Directed Prefetching: Improving the Performance and
Bandwidth-Efficiency of Hardware Prefetchers”. In Proceedings of

the IEEE 13th International Symposium on High Performance Computer
Architecture (HPCA ’07), pp. 63-74, 2007

[21] Intel 64 and ia32 architecture software developer’s manuals.
http://www.intel.com/products/processor/manuals/

[22] Onur Mutlu and Thomas Moscibroda, “Stall-Time Fair Memory
Access Scheduling for Chip Multiprocessors”, In Proceedings of the
40th Annual IEEE/ACM International Symposium on Microarchitecture
(MICRO ’07), pp. 146-160, 2007

[23] N. Muralimanohar, R. Balasubramonian and N. P. Jouppi., “Cacti
6.0: A tool to understand large caches. Technical report”, University
of Utah and Hewlett Packard Laboratories, 2007

[24] Youtao Zhang and Gupta, R., “Enabling partial cache line prefetch-
ing through data compression”, Parallel Processing, 2003. Proceed-
ings. 2003 International Conference on, pp. 277-285, 2003

[25] Youtao Zhang and Gupta, R., “Frequent value compression in data
caches”, In Proceedings of the 33rd annual ACM/IEEE international
symposium on Microarchitecture (MICRO 33). pp. 258-265, 2000

[26] A. R. Alameldeen and D. A. Wood. “Frequent pattern compres-
sion: A significance-based compression scheme for L2 caches” Tech.
Rep., University of Wisconsin-Madison, 2004.

[27] A. R. Alameldeen and D. A. Wood, “Adaptive cache compres-
sion for high-performance processors” In Proceedings of the 31st
annual International Symposium on Computer Architecture (ISCA ’04),
pp.212223, 2004.

[28] Angelos Arelakis and Per Stenstrom, “SC2: A Statistical Compres-
sion Cache Scheme”. In Proceedings of the 41st annual International
Symposium on Computer Architecture (ISCA ’14), pp.145-156, 2014.

[29] X. Chen, L. Yang, R. Dick, L. Shang, and H. Lekatsas.“ C-pack:
A high-performance microprocessor cache compression algorithm”
In IEEE Transactions on VLSI Systems (TVLSI), Aug. 2010.

Raghavendra K is a Ph.D. candidate in the de-
partment of computer science and engineering
at IIT Madras. His current research interests are
cache and DRAM compression techniques.

Biswabandan Panda is a Ph.D. candidate in the
department of computer science and engineer-
ing at IIT Madras. His current research interests
are hardware prefetching and shared resource
management techniques for CMPs.

Madhu Mutyam is a professor in the depart-
ment of computer science and engineering at IIT
Madras. His current research focus is on multi-
core architectures, specifically issues related to
memory system design and networks-on-chip.
He is a senior member of IEEE and ACM. His
Erdos number is 3.

	Introduction
	Background and Motivation
	Motivating Example

	Prefetch Blocks Compaction
	Indexing into a Compact Block
	Compacting and Decompacting Multiple Blocks
	Design Choices
	PBC with cache compression
	Hardware overhead

	Evaluation Methodology
	Results and Analysis
	Other Results

	Related Work
	Conclusion
	References
	Biographies
	Raghavendra K
	Biswabandan Panda
	Madhu Mutyam

