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Band-Pass Prefetching: An Effective Prefetch Management
Mechanism Using Prefetch-Fraction Metric in Multi-Core Systems

ASWINKUMAR SRIDHARAN, BISWABANDAN PANDA, and ANDRE SEZNEC,
INRIA Rennes, France

In multi-core systems, an application’s prefetcher can interfere with the memory requests of other appli-
cations using the shared resources, such as last level cache and memory bandwidth. In order to minimize
prefetcher-caused interference, prior mechanisms have been proposed to dynamically control prefetcher ag-
gressiveness at runtime. These mechanisms use several parameters to capture prefetch usefulness as well
as prefetcher-caused interference, performing aggressive control decisions. However, these mechanisms do
not capture the actual interference at the shared resources and most often lead to incorrect aggressiveness
control decisions. Therefore, prior works leave scope for performance improvement.

Toward this end, we propose a solution to manage prefetching in multicore systems. In particular, we
make two fundamental observations: First, a positive correlation exists between the accuracy of a prefetcher
and the amount of prefetch requests it generates relative to an application’s total (demand and prefetch)
requests. Second, a strong positive correlation exists between the ratio of total prefetch to demand requests
and the ratio of average last level cache miss service times of demand to prefetch requests. In this article, we
propose Band-pass prefetching that builds on those two observations, a simple and low-overhead mechanism
to effectively manage prefetchers in multicore systems. Our solution consists of local and global prefetcher
aggressiveness control components, which altogether, control the flow of prefetch requests between a range
of prefetch to demand requests ratios. From our experiments on 16-core multi-programmed workloads, on
systems using stream prefetching, we observe that Band-pass prefetching achieves 12.4% (geometric-mean)
improvement on harmonic speedup over the baseline that implements no prefetching, while aggressive
prefetching without prefetcher aggressiveness control and state-of-the-art HPAC, P-FST, and CAFFEINE
achieve 8.2%, 8.4%, 1.4%, and 9.7%, respectively. Further evaluation of the proposed Band-pass prefetching
mechanism on systems using AMPM prefetcher shows similar performance trends. For a 16-core system,
Band-pass prefetching requires only a modest hardware cost of 239 bytes.
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1. INTRODUCTION

An aggressive hardware prefetcher may completely hide the latency of off-chip mem-
ory accesses. However, it may cause severe interference at the shared resources (last
level cache and memory bandwidth) of a multi-core system [Ebrahimi et al. 2009, 2011;
Wu et al. 2011; Seshadri et al. 2015; Panda and Balachandran 2015; Jimenez et al.
2015; Panda 2016; Lee et al. 2008; Liu and Solihin 2011; Bitirgen et al. 2008]. To
manage prefetching in multi-core systems, prior studies [Srinath et al. 2007; Ebrahimi
et al. 2009, 2011; Panda and Balachandran 2015; Panda 2016] have been proposed to
dynamically control (also known as throttling) the prefetcher aggressiveness by adjust-
ing the prefetcher-configuration at runtime. These mechanisms make dynamic throt-
tling decisions by computing several parameters, such as prefetch-accuracy, lateness,
prefetcher-caused interference at the last level cache and Dynamic Random-Access
Memory (DRAM) in the form of pollution, row-buffer, bus, and bank conflicts.

Problem: Prior works such as Hierarchical Prefetcher Aggressiveness Control (HPAC)
[Ebrahimi et al. 2009] and CAFFEINE [Panda and Balachandran 2015] do not com-
pletely alleviate the problem of prefetcher-caused interference in multi-core systems.
With HPAC, we observe that the use of multiple metrics (driven by their threshold
values) does not capture the actual interference in the system, and in most cases leads
to incorrect throttling decisions. With CAFFEINE, approximate estimation of the av-
erage last level cache miss penalty leads to biased throttling decisions, overlooking
interference caused due to prefetchers. Accordingly, such prior works provide scope for
further performance improvements.

Our Solution: Toward proposing a solution to manage interference caused by prefetch-
ers in multi-core systems, we make two fundamental observations. First, for a given
application, the fewer the number of prefetch requests generated, the less likely that
they are useful. That is, a strong positive correlation exists between the accuracy of a
prefetcher and the amount of prefetch requests generated for an application relative
to its total prefetch and demand requests. Second, the more the aggregate number of
prefetch requests in the system, the higher the miss penalty on demand misses at the last
level cache. In particular, we observe a strong positive correlation between the ratio
of average miss service times of demand to prefetch misses and the ratio of aggregate
prefetch (misses)1 to demand misses at the shared LLC-DRAM interface.

Based on these two observations, we introduce prefetch-fraction metric that infers
the (i) usefulness (in terms of prefetch-accuracy) of prefetching to an application and
(ii) interference caused by a prefetcher at the shared LLC-DRAM interface. We define
prefetch-fraction of an application as the fraction of L2 prefetch requests (the prefetcher
generates) with respect to the total requests (demand misses, L1 and L2 prefetch
requests). To infer the usefulness of prefetching to an application, we compute prefetch-
fraction for each application independently at the private L2-LLC interfaces. To infer
interference due to a prefetcher, we compute prefetch-fraction for each application at
the shared LLC-DRAM interface.

Notion of Band-pass Prefetching: Based on the inference drawn from the com-
puted prefetch-fraction values, our proposed mechanism applies simple prefetcher ag-
gressiveness control at two levels. First, at the private L2 (application) level when
the inferred prefetch-accuracy is low. Second, at the shared LLC-DRAM interface
(globally), when prefetch requests are likely to delay demand misses. The two mech-
anisms independently control the flow of prefetch requests between a range (band) of

1By prefetch misses, we refer to the L2 prefetch requests generated by the prefetcher sitting beside each
private L2 cache that miss and leave LLC for DRAM access.
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prefetch-to-demand ratios. This is analogous to Band-pass filtering in signal processing
systems [Oppenheim et al. 1996]. A band-pass filter consists of high-pass and low-pass
components: high-pass allows signal frequencies that are only higher than a threshold
value, while low-pass allows only signal frequencies that are lower than a threshold
value. Together, the two filters allow only a band of signal frequencies to pass through.
Similarly, our two mechanisms allow only prefetch requests that are between a range
of prefetch-to-demand ratios to flow through from LLC to DRAM. Hence, we refer to our
solution as Band-pass prefetch filtering or simply, Band-pass prefetching. Precisely, we
make the following contributions:

—We identify key issues with the state-of-the-art prefetcher aggressiveness control
mechanisms: HPAC [Ebrahimi et al. 2009] and CAFFEINE [Panda and Balachan-
dran 2015] (Section 2).

—We make two fundamental observations: (i) prefetch-accuracy strongly correlates
with the ratio of number of L2 prefetch requests generated to an application’s total
requests (demands and prefetches from L1 and L2 caches) and (ii) prefetcher-caused
interference (delay on demand misses) strongly correlates with the ratio of total
prefetch requests to the total demands in the system (Section 3).

—We introduce band-pass prefetching (Section 4), a simple mechanism that measures
the fraction of prefetch requests with respect to demands at L2-LLC and LLC-DRAM
interfaces, and controls the flow of prefetch requests between a range of prefetch to
demand ratios. In terms of hardware requirement, for a 16-core system, our proposed
mechanism contributes to less than 240 bytes (15 bytes per application) of hardware
overhead in total.

2. BACKGROUND

This section provides a background on our baseline system and the definitions that we
use throughout the article. We then briefly describe HPAC [Ebrahimi et al. 2009] and
CAFFEINE [Panda and Balachandran 2015], two state-of-the-art prefetcher aggres-
siveness control mechanisms.

2.1. Baseline Assumptions and Definitions

In this article, our goal is to propose a mechanism that can manage prefetcher-
caused interference in multi-core systems, and not a new prefetching mechanism itself.
Throughout the article, we consider a system with a three level cache-hierarchy with
private L1 and L2 caches. The Last Level Cache (LLC) is shared by all the cores. L1
caches feature a next-line prefetcher, while L2 features a stream prefetcher, which we
intend to control. Our stream prefetcher model is closer to the implementations of
Feedback Directed Prefetching (FDP) [Srinath et al. 2007] and IBM Power series of
processors [Sinharoy et al. 2011]. It sits next to the L2 cache and gets trained by L2
misses and L2 prefetch-hits. Only one stream entry (a unique prefetchable context) is
allocated per 4KB page. It tracks 32 outstanding streams and issues prefetch requests
with prefetch-distance of 8 and prefetch-degree of 4.

Definitions. Throughout the article, we use the following terminologies: Prefetch-
distance: The number of cache lines ahead of X that the prefetcher tries to prefetch,
where X is the cache block address of the cache miss that allocated the current stream.
Prefetch-degree: The number of prefetch requests issued when there is an opportunity
to prefetch. Throttling up/down: A prefetcher’s aggressiveness is defined in terms of its
prefetch-distance and degree. Throttling up/down refers to increasing/decreasing the
values of prefetch-distance and degree to control aggressiveness.
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2.2. State-of-the-art

HPAC: HPAC consists of a per-core local and a shared global feedback component.
While HPAC’s local component (FDP [Srinath et al. 2007]) attempts to maximize the
benefit of prefetching for an application, the global component attempts to minimize the
interference caused by a prefetcher. The local component computes prefetch-accuracy,
lateness, and pollution metrics local to an application. The global component computes
interference related parameters, such as bandwidth consumed (in cycles) by prefetch
requests, amount of time (bandwidth needed in cycles) demands of an application wait
due to prefetch requests for a memory resource (BWN), and prefetcher-caused cache
pollution (POL). For each application, HPAC also computes BWNO metric, which is
the bandwidth requirement of other cores. HPAC assumes that BWNO of a prefetcher
becomes high when its prefetch requests consume high bandwidth (BWC), and forces
memory requests of other applications to wait. Based on the threshold values of these
metrics, HPAC’s global component infers an application to be interfering-with-others or
not. If a prefetcher is found to be interfering, HPAC’s global control throttles it down.
Otherwise, it allows the decision of its local component (FDP).

Problem with HPAC: The issue with HPAC is its use of multiple metrics and the infer-
ence drawn from them. A given value of a metric does not reflect the runtime behavior
of an application due to interference caused when large number of applications run on
the system. For example, a prefetcher’s accuracy drops down when its prefetch requests
are delayed at the shared resources by the co-running applications. Similarly, HPAC
uses Bandwidth Needed by Others (BWNO) parameter to account for the bandwidth
requirement of all other applications in the system, except the one under considera-
tion. When large applications run on a system, BWNO of an application tends to be
higher, while its prefetcher may not consume much bandwidth (BWC). Under the sce-
nario in which an application’s prefetch-accuracy is low and BWNO parameter is high,
HPAC infers the application to be interfering-with-others and decides to throttle-down
its prefetcher. In contrast, an application with high-accuracy is throttled-up although
its prefetch requests consume high bandwidth. We observe several instances of such
scenarios where HPAC does not capture interference and makes incorrect throttling
decisions.

CAFFEINE: CAFFEINE takes a fine-grained account of interference caused by
prefetch requests at each of the shared resources, such as DRAM bus, banks, row-
buffers, and shared last level cache. It accounts for the benefit of prefetching to an
application by estimating the amount of cycles saved in terms of its off-chip memory
accesses. It normalizes both interference and prefetch usefulness to a common scale
of processor cycles, which it refers to as a prefetcher’s net-utility. It uses both system-
wide and per-core net-utilities to make throttling decisions. In particular, CAFFEINE
throttles-up prefetcher when the system-wide net-utility is positive and throttles them
down otherwise.

Problem with CAFFEINE: CAFFEINE estimates the average last level cache miss-
penalty by accumulating the latency of individual memory requests (difference in ar-
rival and start times) and then, computing the arithmetic-mean on this accumulated
sum of latencies over all requests. The resulting mean value is approximated as the
average miss-penalty. In doing so, CAFFEINE treats each memory request as an iso-
lated event and does not take into account overlapping memory accesses inherent in
applications. Therefore, when miss-penalty, which is overestimated, is used in its utility
model, CAFFEINE overestimates the cycles saved on off-chip memory accesses due to
prefetching. Hence, CAFFEINE’s throttling decisions favor aggressive prefetching.
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Fig. 1. Scatter plot showing positive correlation between L2 Prefetch-fraction versus L2 Prefetch-accuracy
for benchmarks under the baseline aggressive stream prefetching: Pearson correlation coefficient: 0.76 and
Spearman rank correlation: 0.68.

Fig. 2. Scatter plot showing positive correlation between L2 Prefetch-fraction versus L2 Prefetch-accuracy
for benchmarks under Feedback directed prefetching: Pearson correlation coefficient: 0.80 and Spearman
rank correlation: 0.75.

3. MOTIVATIONAL OBSERVATIONS

In this section, we discuss how Prefetch-fraction statistically captures both the useful-
ness (prefetch-accuracy) of prefetching and prefetch-caused interference (delay induced
on demands by prefetch requests) at the shared memory bandwidth.

3.1. Correlation between Prefetch-accuracy and Prefetch-fraction

The amount of prefetch requests generated by a prefetcher depends on an application’s
access pattern and the ability of the prefetcher to capture it. If the pattern is not con-
ceivable to the prefetcher, it generates fewer in-accurate prefetch requests. However,
if the pattern is conceivable, and the application exhibits many prefetch-able contexts,
the prefetcher generates a large number of accurate prefetch requests. In particular,
usefulness of prefetching (in terms of prefetch-accuracy) depends on the fraction of L2
prefetch requests generated with respect to an application’s total requests. Figures 1
and 2 illustrate the correlation between L2 prefetch-fraction and L2 prefetch-accuracy
for applications (refer to Table III) for the baseline aggressive stream prefetcher and
FDP, respectively. FDP is a state-of-the-art single-core prefetcher aggressiveness con-
trol engine.

From Figure 1 it is observed that for the baseline aggressive stream prefetcher, L2
prefetch-fraction varies across applications. The stream prefetcher generates fewer
prefetch requests for applications like astar, bzip2, milc, and omnetpp, than it does for
applications with streaming behavior, such as apsi, libq, leslie3d, lbm, wup, and stream
benchmark. For astar, bzip2, milc, and omnetpp, L2 prefetch-fraction is less than 10%
and their L2 prefetch-accuracy is also low (around 5%). However, with an increase in
L2 prefetch-fraction values (along x-axis), L2 prefetch-accuracy also increases. A linear
plot across all the data points in the figure shows a positive correlation. In particular,
the plot shows 0.76 on the Pearson correlation coefficient [Sharma 2005] and 0.68 on
the Spearman rank-correlation coefficient metric [Sharma 2005]. A similar observation
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Fig. 3. Scatter plot showing positive correlation between L2 Prefetch-fraction versus L2 Prefetch-accuracy
for benchmarks under AMPM prefetching: Pearson correlation coefficient: 0.68 and Spearman rank correla-
tion: 0.65.

can be made from Figures 2 and 3 for FDP and Access Map Pattern Matching (AMPM)
prefetchers, respectively [Ishii et al. 2009]. Altogether, the three plots indicate a strong
positive correlation between L2 prefetch-fraction and L2 prefetch-accuracy: the lesser the
fraction of prefetch requests generated, the less-likely that they are useful.2 Therefore,
we approximate the usefulness of prefetching (prefetch-accuracy) using the L2 prefetch-
fraction metric. The significance of our observation of the correlation is that it enables
a simple method of measuring usefulness of prefetching. Measuring prefetch-fraction
requires only two counters and a simple logic (Section 4.1).

3.2. Correlation between Prefetcher-caused Delay and Prefetch-fraction

High performance memory controllers like First Ready-First Come First Serve (FR-
FCFS) [Rixner et al. 2000] and Prefetch-Aware DRAM Controller (PADC) [Lee et al.
2008] re-order requests to exploit row-buffer locality, and maximize throughput. When
a memory controller prioritizes row-hits over row-conflicts, prefetch requests tend to
get prioritized over demands. This is because an earlier request opens a row and the
subsequent sequence of prefetch requests to the same row exploit row-buffer locality.
Therefore, the average service time (LLC miss-penalty or roundtrip latency between
LLC and DRAM) of prefetch requests is shorter than that of demands. This dispar-
ity in service times between prefetch and demand requests grows proportionally with
increase in the ratio of total prefetches to total demand requests at the LLC-DRAM
interface.

Figure 4 illustrates this observation for a 16-core workload that consists of appli-
cations, such as vpr, streamcluster, wup, mcf, blackscholes, hmmer, stream, lbm, apsi,
sphinx, leslie3d, mesa, vortex, perlbench, astar, and wrf , which have mixed prefetch-
friendliness characteristics (refer to Table III). The x-axis represents execution time
in intervals of 1 million LLC misses, and the y-axis represents (i) the ratio of total
prefetches to that demands (P/D) as well as (ii) the ratio of average miss service times
of demands to prefetch requests (AMST (D/P)). From the figure, we observe that with
aggressive stream-prefetching that uses no prefetcher throttling, the total prefetches
at the LLC-DRAM interface is always higher than that of total demands.

From Figure 4, we observe that the ratio of average miss service times of demands
to prefetch requests increases/decreases with the increase/decrease in the ratio of total

2If the access pattern is conceivable to the prefetcher, but the application possesses only few prefetch-able
contexts, the prefetcher generates fewer but accurate prefetch requests. For a stream prefetcher, this scenario
happens when there is a small but regular stream (ex, soplex), while for AMPM, this scenario happens when
the smaller number of prefetch-able cache blocks (though irregular) repeat and when AMPM prefetcher is
able to capture them (ex, bzip2, and omnetpp). However, as we observe from the plots, the overall correlation
is strong.
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Fig. 4. Correlation between the ratio of LLC miss service times of demand to prefetch requests increases
with increase in the ratio of total prefetch requests to that of demands in the system. The x-axis represents
the execution time of the workload in intervals of 1 million LLC misses. The y-axis represents (i) the ratio
of Average Miss Service Time (AMST) of demands to prefetch requests and (ii) the ratio of total prefetch to
demand requests (P/D).

prefetch requests to total demands. In other words, as the ratio of total prefetches to
total demands increase, the degree of interference induced on demands (observed in
terms of average LLC miss service times of demands) by prefetch requests also in-
creases. Statistically, we observe a very strong positive correlation (0.97 on Pearson
coefficient3) between ratios of the two quantities. We also observe (i) a strong posi-
tive correlation (0.96 on Pearson coefficient) between the ratio of aggregate prefetch
to demand requests and the ratio of bandwidth consumed by prefetch to demands
and (ii) a strong correlation (0.95 on Pearson coefficient) between the ratio of band-
width consumed by prefetch to demands and the ratio of average service times of
demand to prefetch requests.4 However, estimation of latency gives a direct indication
on prefetcher-caused interference; we use it in our study. From these two observations,
we therefore conclude that the interference caused by prefetch requests on demands
can be approximated using the ratio of aggregate prefetch to demand requests at the
LLC-DRAM interface.

Significance of the Two Correlations: The correlations observed are significant as
they enable the introduction of a simple metric, prefetch-fraction, which, as a single
metric, when measured at the private L2-LLC and shared LLC-DRAM interface, ab-
stracts both prefetch-usefulness and prefetcher-caused interference. In particular, the
correlation in Figure 4 paves a simple way of capturing interference (at the shared
LLC-DRAM interface) without having to measure multiple metrics, such as bandwidth
needed, consumed, and cycles stalled for each application at the different shared re-
sources, such as DRAM banks, bus, and rows. Measuring prefetch-fraction is easy to
implement with a modest hardware cost (Section 6.8).

Altogether, prefetch-fraction as a metric captures both the usefulness of prefetching
(in terms of prefetch-accuracy) to an application when measured at the private L2-LLC
interface, as well as the prefetcher-caused interference (in terms of prefetcher-induced
delay) when measured at the LLC-DRAM interface.

3We obtain correlation from all the 16-core workloads.
4The correlation is strong, because as the total prefetch requests in the system increases, they tend to occupy
the shared resources (such as DRAM bus, banks, and rows) more as compared to demand requests, and
consequently, the delay incurred in the service of demand requests grows with increase in the bandwidth
consumed by prefetch requests.
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4. BAND-PASS PREFETCHING

In this section, we present Band-pass prefetching, a dynamic prefetcher aggressiveness
control mechanism, to manage prefetcher-caused interference in multi-core systems
that exploit the two correlations as discussed in Section 3. Our mechanism is interval
based. Our inference drawn in one interval is used to select whether to apply throttling
in the subsequent interval.

4.1. High-pass Prefetch Filtering

In Section 3.1, we showed that L2 prefetch-accuracy strongly correlates with L2
prefetch-fraction. To leverage this correlation, we compute prefetch-fraction for an
application at runtime. If the measured value of prefetch-fraction is less than a certain
threshold, the component probabilistically issues/allows prefetch requests to go to next
level. That is, only one in every 16th prefetch requests are issued to the next level,
while the rest of the prefetch requests are dropped.5 Since this filter component issues
all the generated prefetch requests to the next level only when the prefetch-fraction
is higher than the threshold, we call this component High-pass prefetch filter (anal-
ogous to high-pass filter, which allows only signal frequencies that are higher than a
threshold to pass through).

Measuring Prefetch-fraction: For measuring prefetch-fraction, we use two coun-
ters: L2PrefCounter and TotalCounter. L2PrefCounter records the L2 prefetch requests
while TotalCounter holds the total requests (demands and prefetches from L1 and
L2 caches) at the L2-LLC interface. At the end of every interval, the ratio of the
two counters gives the L2 prefetch-fraction value, which is stored in a register called
Prefetch-fraction register. After computation of prefetch-fraction at the end of interval,
only the counters are reset; we use the content of Prefetch-fraction register to make
prefetch issue decisions for the next interval.

4.2. Low-pass Prefetch Filtering

In a multi-core system, memory requests of one or more applications interfere with the
others at the shared last level cache and off-chip memory access. We have observed
that the LLC miss service time of demand requests (and therefore the likely stall-time
of the missing processor) increases with the number of prefetch requests. Ideally, we
expect the average service time of demand requests to be lesser than that of prefetch
requests as demands are likely to stall the processor when compared to prefetch re-
quests. Therefore, we propose a filter at the shared LLC-DRAM interface that controls
prefetcher aggressiveness when the average miss service time of demands exceeds that
of prefetch requests.

Testing this condition alone, however, is not sufficient because the ratio of prefetch
to demand requests and their relative bandwidth consumption are also strongly cor-
related (recall from Section 3 a correlation of 0.96 on Pearson coefficient). Therefore,
controlling the prefetcher aggressiveness only by comparing the ratio of average miss
service times of demands and prefetch requests alone can lead to conservatively con-
trolling the prefetchers while the prefetch requests do not consume much bandwidth
(and do not cause interference). Therefore, our mechanism also checks if the total
prefetch requests exceed the demands when the average service time of demand re-
quests exceeds that of prefetch requests. Altogether, the condition to apply prefetcher

5By dropping a prefetch request, we refer to not issuing it to the next level (from L2 to LLC). We drop prefetch
requests instead of adjusting the prefetcher-configuration in distance and degree. We observe dropping
prefetch requests performs better than the latter because, dropping reduces prefetch issue-rate quicker and
also issues fewer prefetch requests.
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Table I. Set of Counters Used in Estimation of Average Miss Service Time

Counter name Purpose
FirstAccess Time of the first miss

in that interval
LastAccess Time of last completed miss

OutstandingMisses Current in-flight misses
TotalMisses Total completed misses

in that interval

Counter name Purpose

ElapsedCycles Cycles spent on
(intermediate) servicing TotalMisses

TotalElapsedCycles Total cycles spent
(at end of interval) on servicing TotalMisses

AvgServiceTime Holds the avg. service time

aggressiveness control is given by Equation (1), where AMST (D or P) refers to Aver-
age Miss Service Time of demand or prefetch requests. TP and TD refer to the total
prefetches and demands at the LLC-DRAM interface, respectively.

if
((

AMST(D)
AMST(P)

> 1
)

AND
(

TP
TD

> 1
))

. (1)

In the condition mentioned in Equation (1), TP
TD is a function of their relative bandwidth

consumption, and their relationship is TP
TD = F( BWCP

BWCD ), which we found as TP
TD = α( BWCP

BWCD ),
where the exact value of α is around 1. While we explore various values for α, it is
hard to fix its exact value. Hence, we approximate it to 1 and check only if TP

TD > 1
alone, which is very simple to implement in hardware: a 16-bit comparator. Ideally,
the optimal value of this threshold ratio depends on memory scheduling and workload
characteristics (total demand and prefetch requests), which in turn affect the delay
induced on demand and prefetch requests.6 In the following subsection, we explain our
mechanism that estimates the average miss service times of demands and prefetches
followed by describing the process of collecting prefetch-fraction metric for applications
at the shared LLC-DRAM interface.

4.3. Estimation of Average Miss Service Time

We propose a mechanism that employs a set of counters and comparator logic to esti-
mate the average service times of demand and prefetch requests. Table I lists the set
of counters and their purpose. Algorithm 1 describes our mechanism.

Explanation: The algorithm is triggered either on a miss7 at the LLC or when a miss is
serviced back from the DRAM. The use of FirstAccess, LastAccess, OutstandingMisses,
and TotalMisses counters ensure that the overlapping of misses is taken into account
while estimating average miss service times. Precisely, the time gap (in cycles) between
LastAccess and FirstAccess counters when OutstandingMisses counter is zero indicates
the cycles that have elapsed while servicing TotalMisses number of misses.

At the end of an interval, average service time is estimated. Computing the total
cycles elapsed during that interval depends on the value of OutstandingMisses counter,
which indicates the number of outstanding misses that started in that interval but,
have not yet finished. If the value is not zero, our algorithm makes an approximation. It
sets LastAccess counter value to the clock cycle at which the interval ends. Then, it adds
OutstandingMisses counter value to TotalMisses. The difference between LastAccess

6When the overall number of prefetches and demands are lower than what the system can actually handle,
the ideal solution would just be to prioritize demands ahead of prefetches, instead of throttling prefetching.
Implementing this solution requires identifying when bandwidth becomes excessively available/saturated
and re-ordering requests accordingly at the memory controller (beyond the scope of this work). However, we
did not observe this kind of scenario in our experiments.
7In this subsection, by miss we refer to either prefetch or demand miss alone. Since we are only interested
in their service times, we ignore writebacks. Note that we use separate circuits of the same algorithm for
prefetch and demand requests.
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ALGORITHM 1: Estimation of Average Miss Service Time
1: On a new Miss at LLC
2: OutstandingMisses++
3: FirstAccess=CurrentClock if it is Reset
4: When a Miss is Serviced back from DRAM
5: −−OutstandingMisses
6: LastAccess=CurrentClock
7: TotalMisses++
8: if OutstandingMisses == 0 then
9: ElapsedCycles=(LastAccess-FirstAccess)
10: TotalElapsedCycles+=ElapsedCycles
11: FirstAccess=LastAccess=0 //Reset

end
12: At the end of an Interval
13: if OutstandingMisses �= 0 then
14: TotalMisses+=OutstandingMisses
15: LastAccess= CurrentClock
16: ElapsedCycles=(LastAccess-FirstAccess)
17: TotalElapsedCycles+=ElapsedCycles
18: FirstAccess=Beginning of Next Interval

end
else

19: FirstAccess=zero //Reset
end

20: AverageServiceTime= TotalElapsedCycles
TotalMisses

21: TotalMisses=ElapsedCycles=TotalElapsedCycles=0

and FirstAccess is added to TotalElapsedCycles counter. Finally, FirstAccess counter is
set to the beginning of the next interval so that the residual cycles of the outstanding
misses are accounted for in the subsequent interval. On the other hand, if the value
of OutstandingMisses is zero, the elapsed cycles already computed (line numbers 8–11
in the algorithm) gives the total elapsed cycles while servicing TotalMisses number of
misses in that interval.

In the algorithm, steps between lines 13 and 18 ensure that the cycles spent by the
outstanding misses are accounted for in two successive intervals. That is, first, in the
interval in which the misses start (and remain outstanding) and second (the residual cy-
cles), in the subsequent interval in which they finish. Though we have not fully included
the cycles spent by those outstanding misses in either the current or the next interval,
the error due to this approximation is marginal since the length of the interval is large:
millions of clock cycles required to cover an interval size of 1 million LLC misses.

4.4. Selecting the Application to Perform Prefetcher Aggressiveness Control

When band-pass prefetching detects interference on demands by prefetches (using
Condition 1), it decides to control the prefetcher of the application that issues the highest
global fraction of L2 prefetch requests. This decision is inline with our observation
presented in Section 3.2: prefetcher-caused interference (delay on demands) increases
proportionally to the ratio of total prefetch to demand requests. Hence, the application
with the highest L2 prefetch-fraction causes the most interference. Therefore, Low-pass
component issues only 50% of the prefetch requests of this application. That is, only
one in every second prefetch request is issued to the next level. Prefetchers of other
applications are allowed to operate in aggressive mode. Similarly, when Band-pass
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Fig. 5. Schematic diagram of Band-pass Prefetching. PI(D)R: Prefetch Issue (Drop) Rate, PF: prefetch-
fraction and HP Thresh: High-pass Threshold.

prefetching detects prefetcher-caused interference to be low, it allows all prefetchers to
operate in aggressive mode.

Reason for controlling the prefetcher of only one application: When our mecha-
nism infers interference, the goal is to decrease the overall number of prefetch requests
in the system. In order to achieve this, we drop the prefetch requests of the application
that issues the highest fraction of prefetch requests, because on some workloads we
observe only one application to have a dominating prefetch-fraction value. Therefore,
in this case, controlling the most interfering prefetcher is the desired decision (re-
call that there is a strong correlation between prefetch-fraction and prefetcher-caused
interference). On other workloads, more than one application dominates the global
prefetch-fraction values. In this case, selecting only one application is still desirable,
since our mechanism would control the prefetcher of more than one application across
intervals (that is, dropping prefetch requests of one application, say app. A, makes the
global prefetch-fraction of another application, say app. B, dominate in the subsequent
interval. Consequently, Band-pass prefetching would choose app. B to control in the
interval after that). Hence, we select only one application (prefetcher) to control when
interference is detected.

Measuring Global Prefetch-fraction of Applications: The method of measuring
global prefetch-fraction at the shared LLC-DRAM interface is similar to High-pass
prefetching except for the fact that the total requests measured by Low-pass correspond
to the requests from all applications at the LLC-DRAM interface.

4.5. Overall Band-pass Prefetcher

Figure 5 shows the logical diagram of our proposed band-pass prefetching mechanism.
The high-pass and low-pass filters operate independently. During the interval, the
high-pass filter computes the local prefetch-fraction of each application at the L2-
LLC interface while the low-pass filter computes the global prefetch-fraction of each
application at the LLC-DRAM interface. We define this interval in terms of misses at
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Table II. Baseline System Configuration

Processor four-way OoO, 3.3GHz, ROB: 128, RS : 36, LD/ST: 36/24
Branch predictor TAGE, 16-entry RAS
IL1 and DL1 32KB, LRU, next-line prefetch; ICache: two-way, DCache: eight-way
L2 (unified) 256KB, 16-way, DRRIP [Jaleel et al. 2010], 14-cycle, MSHR: 32-entry
LLC 16MB, 16-way, PACMAN [Wu et al. 2011], 24-cycle, 256-entry MSHR,
(unified and shared) 128-entry WB
Interconnect 16 × 4 crossbar, VPC [Nesbit et al. 2007] based

arbitration, eight cycles latency
DRAM controller Open row, FR-FCFS with prefetch prioritization [Lee et al. 2008]
channels-rank-banks four controllers (one per channel) for 16-core
Transaction and Channel Queue (4-1-8) for 16-core

(128,32)
DDR3 parameters (11-11-11), 1,333 MHz, IO Bus frequency: 1,066MHz

the last level cache. From experiments, we fix 1 million LLC misses as the interval size.
Throttling components of the two filters are triggered at the end of the interval. From
the feedback collected about the local and global prefetch-fraction during the current
interval, if their respective prefetch-fraction is below or higher than their respective
thresholds, the two filters control the prefetch issue rate of the prefetchers in the
next interval. Note that Band-pass prefetching does not require any modification to
cache tag arrays or Miss Status Holding Registers (MSHRs) [Kroft 1981]. Estimation
of average service times and computation of prefetch-fraction all lie outside the critical
path.

5. EXPERIMENTAL SETUP

5.1. Baseline System

We use the cycle-accurate BADCO [Velasquez et al. 2012] x86 CMP simulator that
models a four-way OoO core with a cache hierarchy of three levels. Level 1 and Level 2
caches are private. The last level cache and the memory bandwidth are shared by
all cores. Similar to prior studies [Wu et al. 2011; Seshadri et al. 2015; Ebrahimi
et al. 2009; Panda and Balachandran 2015; Panda 2016], we model bank-conflicts but
with fixed access latency across all banks. Cache line size is 64 bytes throughout the
hierarchy and we do not enforce inclusion across cache levels. Our prefetcher model
is as described in Section 2.1. We model a 16 × 4 crossbar network. We faithfully
model latency and contention in the network. A Virtual Private Cache (VPC) [Nesbit
et al. 2007] based scheduler arbitrates requests from L2s to LLC. In our simulated
16-core system, we use four independent memory controllers (one per channel),
essentially with a configuration of one memory controller for four cores. We use
page-interleaved mapping of addresses across channels and to map pages to banks,
we use XOR-interleaved mapping. Other system parameters are available in Table II.

5.2. Benchmarks and Workloads

We use SPEC CPU 2000, SPEC CPU 2006 [Henning 2006], and PARSEC [Bienia 2011]
benchmark suites totaling 34 (31 from SPEC and 3 from PARSEC) and one stream
benchmark. Similar to prior studies [Ebrahimi et al. 2009; Panda and Balachandran
2015; Panda 2016], we classify benchmarks (also referred to as applications in
our discussions) based on their IPC improvement over no prefetching when run
alone (Table III). We construct four types of workloads, namely, mixed-type, highly
prefetch-friendly, medium prefetch-friendly, and prefetch-unfriendly. Table IV lists each
workload type and its construction methodology using the benchmarks as classified
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Table III. Classification of Benchmarks

Category Benchmarks

Highly prefetch-friendly (class A) apsi, cactusADM, leslie3d, libquantum (libq),
IPC [≥10%] lbm, sphinx (sph), STREAM
Medium prefetch-friendly (class B) blackscholes, facesim, hmmer, mcf, mesa, vpr,
IPC [≥2%,<10%] wupwise (wup), streamcluster (strclust)
Prefetch-unfriendly (class C) art, astar, bzip2, deal, gap, gobmk, gcc, gzip, h264ref,
IPC [±2%] milc, omnetpp, perlbench, soplex, twolf, vortex, wrf

Table IV. Workload Types and Their Composition

Type #Benchmarks from class (A,B,C) #Workloads

Mixed prefetch-friendly (5,5,6), (5,6,5) , (6,5,5) 12 each
(Type A) Highly prefetch-friendly (10,3,3) 20
(Type B) Medium prefetch-friendly (3,10,3) 20
(Type C) Prefetch-unfriendly (3,3,10) 20

in Table III. In total, we study 96 16-core multi-programmed workloads. In our exper-
iments, we use the portion of benchmarks between 12 and 12.5 billion instructions.
In that phase, the first 200 million instructions of each benchmark warm up all the
hardware structures. The next 300 million instructions are simulated. Simulations
are run until all benchmarks finish 300 million instructions. If a benchmark finishes
execution, it is re-wound and re-executed. Statistics are collected only for the first 300
million instructions.

6. RESULTS AND ANALYSIS

We first present the performance results of High-pass prefetching, our local component
(at the private L2 to LLC interfaces) that throttles prefetch requests of an application
based on its prefetch-fraction. Then, we present the performance results of Band-pass
prefetching that consists of both High-pass and Low-pass components. Throughout our
study, we use Harmonic mean of Speedup (HS) [Luo et al. 2001] since it balances both
system fairness and throughput.

6.1. Performance of High-pass Prefetching

High-pass prefetching dynamically computes prefetch-fraction of an application at its
private L2-LLC interface to infer usefulness (accuracy) of prefetching. If the computed
prefetch-fraction value is below a threshold, it begins to control the number prefetch
requests issued. The goal of high-pass prefetching is to drop useless prefetch requests
and avoid interference caused by them. Here, we use that observation to study the
sensitivity of prefetch-fraction threshold values on High-pass prefetching. Figure 6
shows the performance (in HS) of High-pass prefetching across 12 High-pass threshold
values (between 9% and 42% in steps of 3%). Performance is normalized to the baseline
that implements aggressive stream prefetching without prefetcher throttling. Results
are averaged (geometric-mean) across workload types.

Overall analysis: Between thresholds 9% and 21%, there is marginal improvement
in performance as compared to aggressive stream prefetching without prefetcher
throttling. By cutting down useless prefetch requests, High-pass prefetching attempts
to mitigate the interference caused by such useless prefetch requests. While on
some individual workloads performance gain is comparable to the baseline, there is
marginal improvement on most workloads across workload types. It should be noted
that High-pass prefetching achieves marginal improvement while saving the number
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Fig. 6. Performance improvement of High-pass prefetching over Aggressive prefetching across High-pass
thresholds. GM: Geometric Mean from all 96 workloads.

Fig. 7. Savings (in percentage) in bus transactions due to High-pass prefetching (across High-pass thresh-
olds) as compared to aggressive stream prefetching that implements no prefetcher throttling. GM: Geometric
Mean from all 96 workloads.

of bus transactions. Figure 7 shows the percentage savings in bus transactions due to
High-pass prefetching.

When the threshold is increased beyond 21%, however, performance begins to drop.
The impact is higher on highly and medium prefetch-friendly workloads while the
impact is less on prefetch-unfriendly workloads. Therefore, as the threshold increases
beyond 21%, useful prefetch requests are also dropped down by High-pass (recall from
Section 3.1 that prefetch-accuracy increases with increase in prefetch-fraction). Ac-
cordingly, we set the High-pass threshold to 21%. Figure 7 shows the percentage of bus
transactions saved due to such high-pass prefetching.

Impact of High-pass Prefetching on Individual Applications: Dropping prefetch
requests does not affect the performance of individual applications except mesa (close to
5% on average). This is because mesa exhibits varying prefetch-fraction values across
successive intervals, and consequently useful prefetch requests are dropped. However,
the impact on the overall workload performance is not significant as performance gain
in other applications offsets the performance loss. With regard to applications that
do not have a strong correlation relationship between prefetch-fraction and prefetch-
accuracy, such as soplex and cactusADM with stream prefetching, and bzip2, omnetpp,
h264ref , and soplex with AMPM prefetching, we do not observe slow-down on these
applications. These applications possess small prefetch-fraction values, and therefore
the impact on performance is very marginal (or, virtually no impact). Interestingly,
cactusADM is highly sensitive to prefetching (when run alone), however, in multi-core
environments dropping down its useful prefetch request does not show an impact on
its performance.
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Fig. 8. Performance of prefetcher aggressiveness control mechanisms across workload types. GM: Geometric
Mean across all 96 workloads.

Fig. 9. Performance of prefetcher aggressiveness control mechanisms on Mixed category workload type.
GM: Geometric Mean of the 36 mixed-category workloads.

6.2. Performance of Band-pass Prefetching

Figure 8 shows the performance of Band-pass prefetching (referred to as Band-pass in
the figures) state-of-the-art prefetcher aggressiveness control mechanisms across dif-
ferent workload types. The last series of bars show the overall (geometric mean) across
all 96 workloads we studied. It also shows the performance of aggressive prefetch-
ing that does not use prefetcher throttling, state-of-the-art HPAC,8 P-FST [Ebrahimi
et al. 2011], and CAFFEINE. The x-axis represents workload numbers, and the y-axis
shows harmonic speedup normalized to no prefetching. Over no prefetching baseline,
Band-pass achieves 12.4% on average (and up to 21% on a highly prefetch friendly
workload), while HPAC, P-FST, and CAFFEINE achieve 8.4%, 1.4%, and 9.7% im-
provement, respectively. Aggressive prefetching (referred to as AggrPref in the figures)
with no prefetcher throttling achieves 8.23% improvement.

General Analysis: On prefetch-friendly workloads, Band-pass prefetching achieves
23.3% performance improvement over no prefetching baseline. Though aggressive
prefetching is beneficial, Band-pass is still able to effectively handle interference
and achieves higher performance. On medium prefetch-friendly workloads, Band-
pass achieves higher performance than the others. On prefetch-unfriendly workloads,
HPAC, CAFFEINE, and Band-pass prefetching achieve comparable performance. Over-
all, Band-pass prefetching improves performance across different workload types, and
hence, we infer our mechanism is robust.

In order to analyze and understand individual mechanisms, we study the per-
formance of mixed-type workloads. Figure 9 shows the performance of Band-pass

8We tune the thresholds of HPAC and P-FST to suit the system configuration that we study.
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prefetching across the 36 mixed-type workloads in terms of harmonic speedup. Over
no prefetching baseline, Band-pass achieves 11.1% on average, and up to 20.5% on
workload 20, while HPAC, P-FST, and CAFFEINE achieve 6.4%, 1.5%, and 7.7% im-
provement, respectively. Aggressive prefetching with no prefetcher throttling achieves
5.6%. In the following paragraphs, we provide an overview of each of these mechanisms
and in Section 6.3 we discuss a case study to understand the mechanisms in detail.

Comparative Analysis: When compared to aggressive prefetching, HPAC degrades
performance on workloads that benefit from aggressive prefetching (4, 5, 13, 20, and
34). On workloads that suffer highly from aggressive prefetching (3, 6, and 7), HPAC
is not able to completely mitigate prefetcher-caused interference. The use of multiple
metrics (driven by their thresholds) does not reflect the actual interference in the
system and causes HPAC to make incorrect throttling decisions, and makes it less
effective. In contrast, Band-pass prefetching is able to retain the benefits of aggressive
prefetching as well as effectively mitigate prefetcher-caused interference achieving
4.6% improvement over HPAC.

P-FST’s model of determining the most-interfering application and its use of multi-
ple metrics on top of HPAC together lead to incorrect throttling decisions, and forces
prefetchers of several applications to a conservative mode. Therefore, P-FST achieves
low performance improvement (close to 1.5%) over no prefetching. For the same rea-
son, on workloads where aggressive prefetching is beneficial, P-FST decreases perfor-
mance. In contrast, Band-pass prefetching achieves higher performance improvement
compared to P-FST. On workloads where aggressive prefetching is harmful, Band-pass
prefetching achieves either comparable (at most ±2% on workloads 6, 21, 27, and 32) or
higher performance improvement (workloads 3 and 7). Overall, Band-pass prefetching
achieves 9.6% over P-FST.

CAFFEINE, on workloads in which aggressive prefetching is beneficial (workloads 4,
5, 13, 20, and 30), achieves performance improvement comparable to Band-pass and ag-
gressive prefetching mechanisms. On certain prefetch-friendly workloads (workloads
15, 24, 29, 31, and 35), Band-pass prefetching is still able to achieve higher perfor-
mance over CAFFEINE thanks to its effective mechanism of detecting interference.
However, on workloads that suffer highly due to prefetcher-caused interference (work-
loads 3, 26, and 34), Band-pass prefetching outperforms CAFFEINE as CAFFEINE
is not able to capture prefetcher-caused interference due to its approximate estima-
tion of miss-penalty. Overall, Band-pass prefetching achieves 3.2% improvement over
CAFFEINE.

In Summary: Band-pass prefetching is able to retain the benefit of aggressive prefetch-
ing as well as effectively manage prefetcher-caused interference. However, state-of-
the-art prefetcher aggressiveness control mechanisms are either conservative in cases
where aggressive prefetching is actually beneficial (HPAC and P-FST), or do not com-
pletely mitigate prefetcher-caused interference (HPAC and CAFFEINE).

6.3. Understanding Individual Mechanisms

In order to gain insights on the individual mechanisms, we discuss a case study of
workload 3, which shows the scenario where state-of-the-art HPAC and CAFFEINE
do not completely mitigate prefetcher-caused interference. Figure 10 shows the IPC of
individual benchmarks normalized to no prefetching.

HPAC: Under HPAC, libq slows-down by 13.8% as compared to aggressive prefetching
from 1.38 to 1.19 (Figure 10). In this case, useful and timely prefetch requests of libq
get delayed by memory requests of other applications. Therefore, its prefetch-accuracy
drops to around 35% (which is below HPAC’s prefetch-accuracy threshold). Hence,
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Fig. 10. Normalized IPCs of each application in workload 3.

HPAC throttles-down libq’s prefetcher9 for successive intervals to conservative mode.
Under such a scenario where prefetch-accuracy is low, FDP, the local component of
HPAC, does not throttle-up the prefetcher as it intends to save bandwidth by throttling-
down prefetchers that have low prefetch-accuracy. Therefore, its prefetcher gets stuck
in conservative mode, and is not able to exploit the benefit of prefetching. Altogether,
HPAC does not detect the interference caused on libq and decreases its performance.

P-FST: P-FST’s interference models identify applications, such as cactusADM, libq,
apsi, deal, and lbm to be interfering, and conservatively throttle-down their prefetch-
ers on most intervals. Applications, such as hmmer, facesim, and vpr improve on their
performance while most others do not. Since it throttles-down most of its prefetch-
ers, only few benchmarks are able to exploit the benefit of prefetching. Hence, P-FST
achieves only marginal increase in performance as compared to no prefetching.

CAFFEINE: CAFFEINE observes positive system-wide net-utility due to prefetching
on this workload. This is because CAFFEINE’s approximate miss-latency model over-
estimates the cycles saved due to prefetching. Hence, applications with high prefetch-
accuracy, such as apsi (96%) and lbm (83%), bias system-wide net-utility metric in
favor of prefetching. Therefore, though apsi consumes high bandwidth, CAFFEINE
does not detect interference due to apsi and does not throttle-down its prefetcher on
most intervals. From Figure 10, we observe that applications such as omnetpp, milc,
and cactusADM suffer slow-down due to interference.

Band-pass Prefetching: Band-pass prefetching computes prefetch-fraction of appli-
cations at the shared LLC-DRAM interface to identify the most interfering application.
Using prefetch-fraction, it effectively identifies apsi as the most-interfering application,
and throttles-down its prefetcher. Though the normalized IPC of apsi decreases from
2.05 to 1.2, Band-pass prefetching improves the IPCs of applications, such as libq,
omnetpp, sphinx, art, hmmer, and lbm. In doing so, Band-pass prefetching favors both
system fairness and throughput. Overall, Band-pass prefetching improves the perfor-
mance of this workload by 13% as compared to aggressive prefetching, while HPAC
and CAFFEINE improve performance by 8% and 5%, respectively.

6.4. Impact on Average Miss Service Time

Band-pass prefetching uses the ratio of average miss service times of demands and
prefetches as one of its throttling conditions (Equation (1)). It attempts to decrease
the total number of prefetch requests in the system as compared to demands. In doing
so, Band-pass prefetching reduces the interference caused on demands by prefetches

9HPAC also observes high value of BWNO for libq. Using the two metrics, HPAC’s global component throttles-
down its prefetcher (as mentioned in Section 2.2).
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Fig. 11. Correlation between the ratio of prefetch to demand requests (P/D) and the ratio of LLC miss
service times of demand to prefetch requests (AMST (D/P)) in the system under (a) Aggressive Prefetching
with no prefetcher aggressiveness control (left) and (b) Band-pass prefetching (right). The x-axis represents
the execution of the workload in intervals of 1 million LLC Misses. The y-axis represents the ratio of (P/D)
and AMST (D/P).

Fig. 12. Increase in Bus Transactions as compared to no prefetching.

in terms of their LLC miss service times, which in turn translates to performance
improvement.

Figure 11 shows the ratio of prefetch to demand requests and the ratio of average
memory service times of demand to prefetches during the execution of workload three
with aggressive prefetching and Band-pass prefetching, respectively. The x-axis rep-
resents the intervals, which is of 1 million LLC Misses, while the y-axis represents
the ratio of the two quantities. As can be seen from Figure 11, the ratio of average
memory service time of demand to prefetch requests AMST (D/P) is higher in Aggres-
sive Prefetching with no prefetcher aggressiveness control as compared to Band-pass
prefetching. The average AMST (D/P) on this workload with aggressive prefetching is
1.51, which becomes 1.35 under Band-pass prefetching. That is, Band-pass prefetch-
ing reduces the average service time of demands by 10.6%. Band-pass prefetching
effectively identifies interference happening due to prefetches by checking (P/D) as
mentioned in Condition 1. Overall, as compared to aggressive prefetching, Band-pass
prefetching reduces the ratio of average service times of total demands to prefetch re-
quests on average from 2.0 to 1.64, while increasing the average service time of prefetch
requests by 9.5%.

6.5. Impact on Off-chip Bus Transactions

Figure 12 shows the percentage increase in bus transaction due to prefetching as
compared to no prefetching. Aggressive prefetching increases bus transactions by
14.3% while P-FST shows the least increase (only 1.3%) because of its conservative
prefetcher throttling as described in Section 6.2. As compared to aggressive prefetch-
ing, Band-pass prefetching reduces the bus transactions by 5.55% while achieving
better performance of 5.2%. When compared to HPAC and CAFFEINE, Band-pass
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Fig. 13. Sensitivity of Band-pass Prefetching to Prefetch Drop Rate (PDR). GM: Geometric Mean across all
96 workloads.

Fig. 14. (a) Impact of including L1 Prefetch Requests (left) and (b) checking TP/TD (right) on Throttling
Decisions of condition 1.

achieves performance improvement of 4.6% and 3.2%, respectively, while incurring
comparable bus transactions.

6.6. Sensitivity to Design Parameters

Impact of Prefetch Drop Rate: Figure 13 shows the sensitivity of the Low-pass com-
ponent of our Band-pass prefetching mechanism to prefetch drop rates (represented as
PDR) across workload types. In all these experiments, the High-pass prefetch-fraction
threshold is fixed at 21% (from Section 4.1). Recall that our mechanism throttles-down
prefetch requests by not issuing (dropping) them to the next level. Increase in prefetch
drop rate increases the performance up to 5.15% (PDR=1/2), beyond which it satu-
rates. That is, dropping prefetch requests of the most-interfering application beyond
50% does not improve performance further. Therefore, we fix the prefetch drop rate at
1/2 (50%).

Impact of L1 Prefetch Requests on Prefetcher Throttling Decisions: The throt-
tling condition 1 considers only L2 prefetch requests. We study the impact of including
L1 Prefetch requests in the throttling decisions. Therefore, TP in TP/TD of condition 1
now represents (P1+P2), where P1 and P2 represents total L1 and L2 prefetch re-
quests, respectively. Figure 14 compares the performance of this design against the
former across workload types. Including L1 prefetch requests, marginally increases
the number of intervals in which TP/TD is greater than one, and hence, the number of
intervals in which prefetcher aggressiveness control is applied. On workloads where
aggressive prefetching is harmful, this design marginally increases the performance.
However, on workloads that benefit from aggressive prefetching, performance degrades
marginally. Overall, there is a very small performance difference between the two de-
signs. Therefore, we conclude that L1 prefetch requests do not have a significant impact
on our mechanism.
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Fig. 15. Performance of prefetcher aggressiveness control mechanisms on systems that implement AMPM
prefetching. GM: Geometric Mean.

Impact of TP/TD on Prefetcher Throttling Decisions: Equation (1) presents the
conditions under which Band-pass performs prefetcher throttling. To understand the
impact of TP/TD on throttling decisions, we ignore the TP/TD comparison in condition 1
and compare only the average miss service times of demands and prefetch requests for
making prefetcher control decisions. The right side of Figure 14 shows the performance
of this design across workload types. We observe that comparing TP/TD marginally im-
proves the performance on certain workloads, while having no impact on others. Though
comparing TP/TD yields a marginal benefit, we observe that without comparing TP/TD,
prefetchers in some cases are conservatively controlled, although their interference due
to prefetchers is not significant. Hence, we include TP/TD in throttling decisions.

6.7. Sensitivity to AMPM Prefetcher

In this section, we evaluate Band-pass prefetching on systems that use AMPM [Ishii
et al. 2009] as the baseline prefetching mechanism. We briefly describe AMPM below.

AMPM: AMPM uses a bit-map to encode the list of cache lines accessed in a given
region of memory addresses (adapted to 4KB in our study). Each cache line can be in
one of the four states: init (initial state), access (when accessed by a demand request),
prefetch (when it is prefetched), or success (when the prefetched cache line receives
a hit). When there is a demand access to a cache line in a region, AMPM uses the
bitmap to extract the stride/offset values from the current demand access. From the
prefetchable candidates, if a selected candidate cache line is either in the access or
success state, AMPM issues prefetch requests. In this way, AMPM is able to convert
most of the demand requests into prefetch requests.

Figure 15 shows the performance of prefetcher aggressiveness control mechanisms
across various workloads in terms of Harmonic Speedup (HS). Band-pass achieves
the highest average performance of 13.5% over the no prefetching baseline, while
aggressive prefetching with no prefetcher aggressiveness control, HPAC, P-FST, and
CAFFEINE achieve 7.4%, 8.47%, 11.2%, and 12.5%, respectively. Interestingly, P-FST
achieves higher performance when compared to HPAC. This is because of AMPM’s
prefetching methodology and P-FST’s interference model. P-FST accounts for inter-
ference caused by a prefetch or a demand request only on the other core’s demand
requests, and not on the prefetch requests. Therefore, in cases where the demand
requests of most applications get converted to prefetch requests (due to AMPM), P-
FST does not account interference caused on prefetch requests. Hence, on most inter-
vals, unfairness estimates on individual applications are lower than the unfairness
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Fig. 16. Increase in Bus Transactions as compared to no prefetching.

threshold, and P-FST allows the prefetchers to run aggressively. On the other hand,
HPAC, as before, performs prefetcher throttling based on threshold values of metrics,
which is not effective.

CAFFEINE and Band-pass outperform each other on most workloads10 due to the
underlying AMPM prefetching mechanism. AMPM, which issues prefetch requests
based on the cache lines status before prefetching them, generates fewer useless cache
lines. Consequently, the margin of prefetcher-caused interference is less. CAFFEINE,
as mentioned before, observes high positive utility due to prefetching and allows most of
the prefetchers to be aggressive. On the other hand, Band-pass prefetching throttles-
down more conservatively. (Recall that 50% of prefetch requests are dropped when
condition 1 is satisfied.) Hence, there is marginal performance lag as compared to
CAFFEINE (around 1.4%). However, on prefetch unfriendly workloads, Band-pass ef-
fectively handles prefetcher-caused interference, and achieves 3.3% as compared to
CAFFEINE. Overall, Band-pass achieves 1.1% over CAFFEINE.

Figure 16 shows the percentage increase in bus transactions as compared to no
prefetching across different workload types. The last series of bars is averaged (geo-
metric avg) across all 96 workloads. Aggressive prefetching increases bus transactions
by 13.8%, while P-FST shows the least increase of 6.7%. When compared to aggres-
sive prefetching, HPAC, and CAFFEINE, Band-pass achieves higher performance of
6.1%, 5.05%, 1.1%, while incurring 5.7% (fewer), 0.8% (higher), and 2.1% (fewer) bus
transactions, respectively.
Sensitivity to Design Parameters: Figures 17 and 18 show the sensitivity of Band-
pass prefetching to design parameters. As observed before, L1 prefetch requests do
not have a significant impact on our mechanism. We also make a similar observation
on including the ratio of total prefetch to total demand requests (TP/TD) as specified
in Equation (1). Figure 18 shows the impact of PDR. Performance increases with an
increase in PDR for unfriendly and mixed category workloads. However, for highly
prefetch-friendly workloads, increasing PDR marginally decreases performance (up to
1.4%, which is the performance lag of Band-pass as compared to CAFFEINE), since
AMPM converts only demands to prefetch requests, and issues fewer useless prefetch
requests. Therefore, higher PDRs lead to conservative throttling (when not required).
However, higher PDRs (PDR=1/2,1/4, or 1) show a marginal difference in overall per-
formance. From Figures 17 and 18, we observe that the choice of design parameters
holds true for AMPM prefetching as well. Therefore, we conclude that a Band-pass

10Individual workloads not shown due to space limitation.
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Fig. 17. Impact of (a) Including L1 Prefetch Requests in throttling decisions and (b) Including TP/TD on
throttling decisions on systems that implement AMPM prefetching. Performance is Normalized to Aggressive
Prefetching. GM: Geometric Mean across all 96 workloads.

Fig. 18. Sensitivity of Band-pass Prefetching to PDR on systems that implement AMPM prefetching. GM:
Geometric Mean across all 96 workloads.

Table V. Hardware Overhead of Band-pass Prefetching

Counter Purpose Size

L2PrefCounter Records L2 prefetches 16-bit
Pref-fraction Stores prefetch-fraction 16-bit
Drop bit To drop or Not to drop 1-bit
InsertCounter For probabilisitic 4-bit

Insertions

Counter Purpose Size

TotalCounter Records total requests 16-bit
(High-pass) of an appplication

TotalCounter Records total requests 32-bit
(Low-pass) at shared LLC-DRAM

Interface

prefetching mechanism does not require parameters tuning across stream and AMPM
prefetching mechanisms.

6.8. Hardware Overhead

High-pass and Low-pass prefetching require 53 bits and 37 bits per application, re-
spectively. The first part of Table V shows the counters that are common to both
components. High-pass prefetching requires TotalCounter per application. However,
Low-pass prefetching requires only one TotalCounter (32-bit in size) since it measures
global prefetch-fraction of applications with only one TotalCounter. Hence, we save
16-bit per application for the Low-pass component. To measure interval size in terms
of LLC misses, we use a 20-bit counter. Estimation of average miss service times of
prefetch and demand requests requires seven counters each (Table I). Each counter is
32-bit in size and the total cost amounts to 56 bytes of storage. For a 16-core system,
hardware overhead is only 239 bytes, while HPAC, P-FST, and CAFFEINE require
about 208KB, 228.5KB, and 204KB, respectively. Note that Band-pass prefetching does
not require any modification to cache tag arrays or MSHR structures.
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6.9. Using Prefetch-accuracy to Control Aggressiveness

The Band-pass prefetching mechanism that we described so far uses prefetch-
fraction metric for performing prefetch control decisions. Alternatively, we performed
experiments where prefetch control is applied on the application with the least prefetch-
accuracy. However, we observed no improvement over aggressive prefetching, since
low-accuracy does not correlate/imply high interference. We further experimented
with a combination of prefetch-accuracy and prefetch-fraction to throttle down the
prefetcher that issues the highest fraction of in-accurate prefetch requests (measured
as (1-accuracy) multiplied by prefetch-fraction). Still, we did not observe performance
improvement.

6.10. Overall Inference

Overall, Band-pass prefetching achieves higher performance improvement11 as com-
pared to the other mechanisms across stream and state-of-the-art AMPM prefetchers.
Also, the hardware cost of Band-pass is modest, only 239 bytes for a 16-core system
without incurring any changes to the existing cache and MSHR designs. Hence, we
infer our proposed Band-pass prefetching to be an effective and robust mechanism for
managing prefetching in multi-core systems.

6.11. Applying Band-pass Prefetching to Parallel Workloads

To apply Band-pass prefetching to parallel workloads, it is possible to treat each
thread or task as an independent application. As with multi-programmed workloads,
Band-pass controls the most interfering thread of a parallel application.12 In addi-
tion, Band-pass prefetching could append thread-criticality information [Du Bois et al.
2013; Panda and Balachandran 2013] for performing prefetcher aggressiveness control.
However, when the threads of a parallel application share data and work co-operatively
(observed by Natarajan and Chaudhuri [2013] and Panda and Balachandran [2012]),
it is possible to append Band-pass prefetching with data sharing characteristics for
further improving the execution time of parallel applications.

7. RELATED WORK

Prefetching has been extensively studied in the past. Prior works on prefetching fo-
cused both on exploiting simple sequential access patterns (e.g., Smith [1978], Jouppi
[1990], and Palacharla and Kessler [1994]) in applications as well as on complex, non-
sequential access patterns [Joseph and Grunwald 1997; Lai et al. 2001; Nesbit and
Smith 2004; Pugsley et al. 2014; Shevgoor et al. 2015; Michaud 2016]. While several
works focused on maximizing the benefit of prefetching, some other works studied the
interference caused by prefetching both in single-core [Zhuang and Lee 2003; Srinath
et al. 2007; Hur and Lin 2006, 2009; Wu et al. 2011; Seshadri et al. 2015] and multi-
core [Ebrahimi et al. 2009, 2011; Panda and Balachandran 2015; Jimenez et al. 2015;
Panda 2016; Ishii et al. 2012] contexts. In this section, we discuss works that are close
to our work.

7.1. Prefetch-filter based Techniques

Several studies have proposed efficient prefetch-filtering mechanisms that attempt to
control the number of inaccurate (unused) prefetch requests generated under stream
based prefetchers. Zhuang and Lee [2003] propose a filtering mechanism that uses a

11With regard to CAFFEINE, though performance gain is marginal, it does so with fewer bus transactions
(Figures 12 and 16) and modest hardware cost (Section 6.8) as compared to CAFFEINE.
12When all the threads of a parallel application perform proportional work, we may select the prefetcher of
one of the threads randomly for prefetcher control.
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history table (2-bit counter indexed by Program Counter or cache block address) to
decide the effectiveness of prefetching. Prefetch requests are issued depending on the
outcome of the counter. Hur and Lin propose Adaptive Stream Detection mechanisms
[Hur and Lin 2006, 2009] for effectively detecting short streams using dynamic his-
tograms. All these mechanisms have been developed to improve the efficiency of a
prefetcher (in a single-core context). In multi-core systems, prefetching typically causes
interference, which these mechanisms cannot capture; they must be augmented with
techniques that capture interference. Conversely, our mechanism uses prefetch-fraction
to determine both the accuracy (usefulness) of prefetching as well as prefetcher-caused
interference.

7.2. Adaptive Prefetching Techniques

Jimenez et al. independently propose [Jiménez et al. 2012; Jimenez et al. 2015] soft-
ware based approaches to perform dynamic prefetcher aggressiveness control. In their
work, Jiménez et al. [2012] attempt to select the best prefetch setting for an application
by exploring prefetch utility across different configurations. A simple prefetch utility
model reduces the impact of exploration phase on performance. Similarly, Panda pro-
poses Synergistic Prefetcher Aggressiveness Control [Panda 2016], a mechanism that
attempts to minimize search space of prefetch configurations across applications that
together satisfy system-wide harmonic-speedup goal. On the other hand, our mech-
anism does not require exploring across prefetch settings to control the prefetchers.
Instead, our mechanism controls the number of prefetch requests by selectively drop-
ping them (using prefetch-fraction metric, which infers both prefetch usefulness and
interference). In another work, Jimenez et al. [2015] propose a prefetch efficiency met-
ric that measures the benefit of prefetching in proportion to its bandwidth consump-
tion. When the memory bandwidth saturates, the prefetcher with the least prefetch
efficiency is turned off. The principal difference from our work is that our model to
controlling prefetching is based on the direct impact of prefetching on the service time
of the demand requests since our mechanism is hardware based, which also allows
fine-grained control of prefetching. Adaptive prefetch control for Banked Shared LLC
(ABS) [Albericio et al. 2012] is a prefetcher aggressiveness control mechanism that is
proposed for systems where prefetching is employed at the banks of the shared last
level cache. Our mechanism can be applied on top of such systems: prefetcher of the
individual banks can be treated as a prefetcher-resource and then monitor the requests
from each bank. When there is interference, the prefetcher of the bank that issues the
highest prefetch-fraction can be throttled-down.

8. CONCLUSIONS

In this article, we propose Band-pass prefetching, a simple and effective mechanism
to manage prefetching in multi-core systems. Our solution builds on the observations
that a strong correlation exists between (i) prefetch-fraction and prefetch-accuracy and
(ii) the ratio of the average miss service times of demand to prefetch requests, and the
ratio of prefetch to demand requests in the system. The first observation infers the
usefulness (in terms of prefetch-accuracy) of prefetching while the second observation
infers the prefetcher-caused interference on demand requests.

Our mechanism consists of two prefetch filter components: High-pass, which is
present at the private L2-L3, and a Low-pass component, present at the shared LLC-
DRAM interface. The two components independently compute prefetch-fraction of ap-
plications at the private L2-LLC and shared LLC-DRAM interfaces. Together, the two
components control the flow of prefetch requests between a range of prefetch-to-demand
ratios. Experimental results show that Band-pass prefetching achieves 12.4% improve-
ment over the baseline that implements no prefetching. As compared to state-of-the-art
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prefetcher aggressiveness control mechanisms, namely, HPAC, P-FST, and CAFFEINE,
Band-pass prefetching achieves 4.6%, 9.6%, and 3.2% higher performance, respectively.
Further experiments using AMPM prefetcher observe Band-pass prefetching showing
similar performance trends: 13.5% improvement over the baseline that implements
no prefetching. As compared to state-of-the-art prefetcher aggressiveness mechanisms
HPAC, P-FST, and CAFFEINE, Band-pass prefetching achieves 6.1%, 5%, and 1.1%,
respectively. Experimental studies demonstrate that Band-pass is effective in miti-
gating interference caused by prefetchers, and is robust across workload types. All in
all, band-pass prefetching achieves higher performance while requiring only a modest
hardware cost of less than 240 bytes.
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