
CSHARP: Coherence and SHaring Aware Replacement Policies for Parallel

Applications

Biswabandan Panda

Department of CSE, IIT Madras, India

Email: biswa@cse.iitm.ac.in

Shankar Balachandran

Department of CSE, IIT Madras, India

Email: shankar@cse.iitm.ac.in

Abstract—Parallel applications are becoming mainstream
and architectural techniques for multicores that target these
applications are the need of the hour. Sharing of data by
multiple threads and issues due to data coherence are unique
to parallel applications. We propose CSHARP, a hardware
framework that brings coherence and sharing awareness to
any shared last level cache replacement policy. We use the
degree of sharing of cache lines and the information present
in coherence vectors to make replacement decisions. We apply
CSHARP to a state-of-the-art cache replacement policy called
TA-DRRIP to show its effectiveness. Our experiments on four
core simulated system show that applying CSHARP on TA-
DRRIP gives an extra 10% reduction in miss-rate at the LLC.
Compared to LRU policy, CSHARP on TA-DRRIP shows a
18% miss-rate reduction and a 7% performance boost. We also
show the scalability of our proposal by studying the hardware
overhead and performance on a 8-core system.

Keywords-Last-Level Cache, Replacement algorithm, Paral-
lel Applications

I. INTRODUCTION

Applications from recognition, mining and synthesis

world (RMS) are in the mainstream of computing and many

of these applications are multithreaded in nature. Chip multi-

processors (CMPs) play an important role in improving the

performance of these applications. In shared memory CMPs,

all the cores compete for the last level shared cache. A

good cache replacement policy can reduce the miss rate and

therefore improve performance of the multithreaded appli-

cations. It can also reduce off-chip bandwidth requirement

and power. Studying last level cache replacement for parallel

applications is thus an important research problem.

State-of-the-art cache replacement policies such as

[1], [3], and [2] target multiprogrammed workloads where

different applications do not share data. All the cores con-

tend for the shared last level cache. However, for parallel

applications, when different threads run on different cores,

there are two major issues:

• Threads may share data with each other. Sharing of

data across different cores and different levels of cache

requires support from coherence protocols to maintain

consistency of data .

• Threads can be friendly to each other or contend

with each other. If threads use the same shared data,

cache lines are shared (called constructive sharing).

Threads may also evict each other’s cache lines (called

destructive sharing) because of the associativity in the

last level cache.

These issues are peculiar to parallel applications. This moti-

vated us to propose a cache replacement policy that targets

truly parallel applications.

The contributions of the paper are listed below.

• We make a case for using coherence and sharing

information in the replacement decisions at LLC to

target multithreaded applications.

• We present CSHARP, a generic hardware framework

to add coherence and sharing awareness to any existent

replacement policy such as LRU, TA-DRRIP [1]with

negligible hardware overhead.

For the first time in literature, we also compare two state-

of-the-art cache replacement policies (TA-DRRIP [1] and

seg-LRU [2]) on multithreaded applications.

II. BACKGROUND

In this section, we present the background material on

sharing patterns and coherence protocols. A thorough un-

derstanding of these two aspects is necessary to understand

how multithreaded applications are different from multipro-

grammed workloads.

A. Sharing Patterns Across Threads

Multithreaded applications exchange data using shared

memory locations. The behavior of the data exchange is

called sharing pattern. Based on the read/write accesses

and the threads that are making these accesses, the sharing

patterns can be classified into three categories [7]: (i) read-

only sharing, (ii) migratory sharing, and (iii) producer-

consumer sharing. Let Ri (Wi) denote a read (write) request

of some cache line from thread i.
(1) Read-only sharing: The regular expression for a sequence

that exhibits read-only sharing is

(Ri|Wi)
+(Rj,j 6=i)

+



(2) Migratory sharing: The regular expression for a sequence

that exhibits migratory sharing is

R+

i Wi(Ri|Wi)
∗R+

j,j 6=iWj(Rj |Wj)
∗ · · ·

(3) Producer-consumer sharing: The regular expression for

a sequence that exhibits producer-consumer sharing is

W+

i R∗
j,j 6=i · · ·

Sharing pattern is the characteristic of only a slice of

a program. A single multithreaded application can exhibit

several sharing patterns at different phases of its execution.

Since all the sharing patterns involve writes, data coherence

becomes an issue.

B. Data Coherence

Multicore architectures maintain private L1 data caches

for each core. Local modification done by a core to a data

line in its L1 cache can result in an inconsistent view of the

shared memory location for other cores. This is because the

other cores may have maintained their own local copies of

the data in their L1 cache. This inconsistency is called the

data coherence problem. Cache coherence protocols enforce

single-writer-multiple-reader (SWMR) invari-

ant [8]. A widely used coherence protocol is the MOESI

protocol.

C. Cache Replacement

Fundamental to any cache replacement policy is the con-

cept of reuse of a cache line. If there is a cache miss, some

existing cache line has to be evicted to make way for the

missed line. Among the cache lines that are in a set, the line

that is going to be reused furthest in the future is a candidate

for eviction. An ideal replacement policy such as Belady’s

OPT [10] always “knows” which line will be reused the

furthest and will evict it. However, this “knowledge” of

reuse is impossible. Practically, cache replacement policies

“predict” the line which has the furthest reuse and evict it.

This is usually done with the help of a reuse-register that is

associated with each line.

In general, the values assigned to the reuse-registers are

picked from the range [Rmin, Rmax] and the range varies

across policies. Higher the value of the reuse-register of a

line, further is the time for potential reuse. On a miss, all

the reuse registers in a set are considered and the one with

the highest value is usually evicted.

III. MOTIVATION

We provide two motivating factors for this work. We first

motivate the need for assessing “true” multithreaded applica-

tions. We later show how typical multithreaded benchmarks

share data, a factor that is not considered by the existing

methods. Finally, we make a case for using coherence states

by showing the states of cache lines for typical sharing

patterns. Using the observations made here, we motivate

and propose our replacement framework. We first draw

attention to the differences between multiprogrammed work-

loads and multithreaded applications based on occupancy

time of cache lines. The time period between the time of

insertion and the time of eviction or invalidation of a cache

line is called the “occupancy time” of the cache line. In a

multiprogrammed setup, a cache line is used only by one

program. However, in a multithreaded application, a cache

line that is inserted can be used by more than one thread

during its occupancy time.

In multiprogrammed workloads, the sharing of LLC

is always of the “destructive sharing” type. In a multi-

threaded application, the sharing of LLC by the threads

can be “constructive” as well as “destructive”.

A. Data Sharing in PARSEC

Figure 1: Reuse of cache lines for a 4 core system

PARSEC [5] is a benchmark suite of multithreaded appli-

cations targeting shared CMPs. We studied the behavior of

programs in their parallel regions which form the Regions

of Interest (ROI). We ran PARSEC benchmarks on a 4-core

simulated system and present some observations on how data

is shared and used in the ROI.

For a given cache line, the number of accesses made

beyond the first access is called the “reuse” of the line. Some

cache lines may be brought in and used just once before they

got evicted. Such lines are said to have zero reuse. All the

other lines are called “reused lines”. A line that is reused

by only one thread is called a private line. A shared line is

a line reused by more than one thread.

In Figure 1, we plot the percentage of reused lines

classified based on the number of different threads that

accessed them. We can see that only 15% of the reused

lines are private lines. In all the benchmarks, shared lines

constitute the majority fraction of reuse. This leads us

naturally to the question:



Figure 3: Reuse of Dirty and Non-dirty Lines for different

sharing patterns

Question 1: Is there any way to use the sharing

information in making LLC decisions? If so, how? Yes.

Shared lines could be kept for more time in the LLC than

the private lines to reduce the LLC miss rate.

B. Coherence States in Multi-threaded Applications

To make a case for using coherence states, we show how

the coherence states of cache lines change for the different

sharing patterns that we discussed in Section II-A. We take a

single cache line and trace the changes in coherence states in

Figure 2. In Figure 2(a), the cache line is read-only shared.

If the first access is R1 (W1), the cache line moves to the

E(M) state. On R2, the line moves to S(O) state. The line

remains in the same state if further requests are all reads.

Figure 2(b) shows a line that is shared in a migratory pattern.

The line starts with state E, moves to M and toggles between

O and M henceforth. Figure 2(c) shows a line that is shared

in a producer-consumer pattern where the line moves to the

O state and stays there till the next write from the producer.

Thus, if an application shows any sharing at all, the cache

lines are more likely to be in O , M or S states.

We further analyzed the reuse of cache lines according to

their coherence states. In Figure 3, we plot the percentage

of reused lines classified based on the coherence states

and the program’s sharing pattern. The plots are aggregated

across all the benchmarks of each sharing-pattern. Except

for the only producer-consumer benchmark in the suite

(fluidanimate), dirty cache lines (lines with O or M

states) are more reused than non-dirty cache lines (lines with

E and S states). These two observations on coherence states,

lead us to another question.

Question 2: Is there any way to prioritize lines based

on the coherence state for improving LLC decisions?

If so, how? Yes. Dirty lines have high reuse and could be

prioritized over non-dirty lines.

C. Coherence and Sharing Awareness

Answer to Question 1 brings sharing awareness and an-

swer to Question 2 brings coherence awareness. Combining

these two, we suggest that the replacement policies retain

the cache lines using the following order of priority:

O > M > E > S > I

Because of the dirtiness and the high reuse associated with

the O and M lines, we assign these lines the highest priority.

Cache lines in S state denote sharing but the corresponding

reuse-counts are low and hence is assigned low priority.

Invalid lines do not contain any useful data and get the least

priority.

Our coherence-and-sharing aware replacement framework

is based on the philosophy that

If cache lines evicted in the reverse order of this prioritiza-

tion, cache misses at the L2 level may decrease and therefore

improve program performance.

IV. CSHARP (CSHARP): ADDING COHERENCE AND

SHARING AWARENESS

We present CSHARP, a framework to add Coherence

and SHaring Awareness to Replacement Policies that target

parallel applications at the LLCs. CSHARP assigns priorities

to cache lines based on sharing and coherence information

and tries to retain high priority lines at the LLC as much as

possible.

CSHARP is a framework that sits on top of an

existing replacement policy and we use the notation

CSHARP(policy name) to reflect this thought process.

When we apply CSHARP on a policy or a sub-policy we

call it CSHARPing.

A. Sr and Pr Lines

At a given instance of time, CSHARP defines a cache line

to be in one of two categories: Sr or Pr. To distinguish

between Sr and Pr lines, each cache line is associated with

a single bit register called Sr/Pr. On the very first access

to a cache line, CSHARP sets Sr/Pr = 0. On a subsequent

access if the number of sharers in the coherence vector is

more than one or if there is change in the ownership, we

set Sr/Pr to 1. CSHARP uses the Sr/Pr bit to track the

sharing behavior of a cache line until the cache line is evicted

or invalidated.

B. CSHARPing Three Sub-policies

Any cache replacement policy consists of three sub-

policies: i) eviction, ii) insertion and iii) promotion. These

three sub-policies can be explained in terms of reuse-

register values which was introduced in Section II-C. On

a cache miss, a line is “chosen” for eviction based on the

reuse values. The new line is “inserted” into the set and is

assigned an appropriate reuse-register value. On subsequent



R2

R1

W1

W2 M

R3

W3

E

M

O

O

M

R2

R3 O

OR4

W1 M

OR2

R3

E/M

S/O

S/O

S/OR4

t1

t2

t3

t6

t5

t4

R1/W1

T1 T2 T3 T4 T1 T1 T2 T2 T3 T3 T1 T2 T3 T4Time

Ri − Read from thread i

Wi − Write from thread i

M, O, E, S, I − Coherence states

Threads

(c) Producer−Consumer Sharing(a) Read−Only Sharing (b) Migratory Sharing

Figure 2: Coherence State of a Cache Line Under Different Sharing Patterns

hits, the line gets “promoted” by reducing the reuse-register

value.

CSHARPing Eviction Sub-policy:

We define the eviction window as the last w ways of a set.

Lines in the eviction window are considered for eviction.

Within the eviction window, CSHARP evicts the line with

the highest reuse-register value. If there is a tie among

many lines, CSHARP will pick a line in the following

order of tie-breaking criteria: i) lines that are in S state ii)

Pr lines that are in E state iii) Pr lines that are in M state

and finally iv) other Sr lines.

CSHARPing Insertion Sub-policy:

At the heart of CSHARP are two Bloom filters, BF1 and

BF2, that track the recently evicted lines and their owners.

A Bloom filter is a probabilistic data structure which is

space efficient and is used to test the membership of an

element in a set. BF1 is indexed using a combination of tag

and index information of a cache line. BF1 is used to track

cache lines that were evicted recently. If the lookup of a

cache line on BF1 fails, the cache line has not been evicted

in the recent past and is treated as a “new” cache line – a

line that has not been seen before. BF2, on top of tag and

index fields of the cache line, uses the owner field of the

line. BF2 tracks the previous owners of the line before the

line was evicted.

Since there is no way of knowing whether the to-be-

inserted line is going to be accessed by multiple threads

or not, we consider the likelihood of it being a Sr line. If

the line is more likely to be a Sr line, we call the new line

a mSr line. The prefix m stands for maybe. If the line is

more likely to stay as a Pr line, we call it a mPr line. We

show how we can label a line as mSr or mPr based on the

outcomes of the lookups on the BFs.

A lookup of a to-be-inserted cache line with tag T and

index I on BF1, and the requesting thread-id Q along with

T and I on BF2, can result in four possible outcomes. The

implication for the four cases are shown in the last column

of Table I.

Table I: The Implication of Lookup of a Cache Line on

Bloom Filters BF1 and BF2

Name On BF1 On BF2 Interpretation Label

Case 1 Miss Miss Line not evicted recently mPr

Case 2 Miss Hit False Positive mPr

Case 3 Hit Miss Evicted recently but not by Q mSr

Case 4 Hit Hit Evicted recently and by Q mPr

CSHARPing the insertion sub-policy is to set the reuse-

register values of mPr lines to be closer to Rmax and the

values of mSr lines closer to Rmin. This will try to keep the

mSr lines longer in the cache than the mPr lines. Once the

reuse register values are set, the labels are discarded. The

choice of the actual values to put in to the reuse registers are

left to the implementation. CSHARPing at the insertion can

be nullified by the implementation if the same reuse-register

values are assigned to both mPr and mSr lines.

False positives are possible in the last three cases shown

in Table I. Cases 2 and 4 take a conservative stance and

Case 3 takes a liberal stance on the state of the cache line.

CSHARPing Promotion Sub-policy:

Promotion sub-policy kicks in only on a hit of a cache line.

At this juncture, the cache line could be a Pr or a Sr line.

Promotion is achieved by setting the reuse-register value

to ρ. CSHARPing the promotion sub-policy is to pick the

value of ρ based on the line and the thread that is making

the request. For a Pr line which gets a hit from the same

thread as the current owner, ρ is set closer to Rmax. If

the thread that is making the request is different from the

owner or if the line is a Sr line, ρ is assigned a value

closer to Rmin. As before, the effects of CSHARP can be

nullified by setting the same value in both cases.

C. Working of CSHARP

We explain the working of CSHARP by considering the

sequence of events after a cache miss at the LLC. Let thread



Figure 4: Structure of BF1 and BF2 for a 4-core 4MB LLC

Q′ be the requester for the new cache line. Let the cache

line chosen for eviction by CSHARPed eviction sub-policy

be l, with tag T and index I . We make an entry in BF1

using T and I , and an entry on BF2 using the owner field

along with T and I . The new line l′ is ready to be brought

in. The CSHARPed insertion sub-policy decides the reuse-

register values for l′. Sr/P̄ r is set to 0. The thread can now

continue. CSHARPed promotion sub-policy will be brought

to action whenever there are hits.

V. IMPLEMENTATION OF CSHARP

We first describe the implementation of the hardware

structures namely BF1 and BF2. The implementation is

illustrated in Figure 4 for a 4-core simulated system with

4MB 16-way LLC, line size of 64B, and 1GB of physical

memory. We use the bitwise XOR of tag and index bits

to index BF1 (with bit stuffing to match the widths, if

necessary). BF1 contains 4096 entries. We concatenate the

tag, index and owner field (and stuff 0’s to make the size

even) and perform bitwise XOR of the top half and bottom

half of this to index BF2. BF2 contains 8192 entries. Due

to the false positives, we reset both BF1 and BF2 after

every 2048 evictions by using a 11-bit eviction counter.

The hardware overhead due to the BFs and the counter is

presented in Section VI-E.

We took TA-DRRIP [1] as a case study for introducing

CSHARP. We chose TA-DRRIP over other policy such

as seg-LRU [2] because TA-DRRIP is thread-aware and

achieves good performance with less hardware overhead. We

discuss the implementation of CSHARP(TA-DRRIP).

A. TA-DRRIP

DRRIP predicts the re-reference interval of each cache

line by using a M bit reuse-register called the Re-Reference

Prediction Value (RRPV) register. In practice, the value of

M is 2 and RRPV ranges from 0 to 3. It retains the cache

lines with smaller RRPVs and evicts the cache lines with

the larger RRPVs. DRRIP uses set-dueling to chose between

two polices: SRRIP and BRRIP. Cache lines with RRPV=3

are searched from way-0 and the first such line is evicted. If

no cache line with RRPV=3 is found, it increments the value

of RRPV until a cache line has RRPV=3 and the process is

repeated. SRRIP inserts cache lines with RRPV=2. BRRIP

inserts 95% of cache lines with RRPV=3 and the rest with

RRPV=2. On a hit to a cache line, the cache lines are

promoted by setting RRPV to 0. The prefix TA in TA-

DRRIP stands for “Thread Aware”. In TA-DRRIP, each

thread decides whether it should use SRRIP or BRRIP

independently with the help of policy selection counters

called PSELs.

B. CSHARP(TA-DRRIP)

We CSHARPed eviction, insertion and promotion eviction

policies of TA-DRRIP.

Eviction Policy: TA-DRRIP can evict a line from any of the

ways in a set. We set the eviction window size to the number

of ways in a set (i.e. all lines are candidates for eviction).

Within the eviction window, CSHARP evicts the cache line

with RRPV=3. It starts a search for S cache lines and evicts

the first such line In the absence of such a line, it picks a Pr

line (E) with RRPV=3 and in the absence of (E) lines with

RRPV=3, it picks a line with M with RRPV=3. If there are

no Pr lines, it evicts the first Sr line with RRPV=3 starting

the search from the way=0. If there are no cache lines with

RRPV=3, it increments the RRPV values until there is at

least one line with RRPV=3.

Insertion Policy: CSHARP modifies the RRPV values as-

signed by TA-DRRIP. mSr lines are inserted with RRPV=1

and mPr lines are inserted with RRPV=2 or 3 based on

whether SRRIP or BRRIP was used by the thread.

Promotion Policy: CSHARP sets RRPV to 1 for a Pr line

which gets a hit from the same thread as the current owner.

If the thread that is making the request is different from the

owner or if the line is a Sr line, CSHARP sets RRPV to 0.

We summarize CSHARPing of TA-DRRIP in terms of the

sub-policies in Table II.

Table II: Summary of CSHARP(TA-DRRIP)

Sub-policies CSHARPed Decisions

Eviction Lines with RRPV=3 in the following order:
Sr with S before (Pr with E before Pr with M) before Sr

Insertion if mSr then RRPV=1,
else (RRPV=2 for SRRIP, 3 for BRRIP)

Promotion if Sr or (Pr and change in ownership) then RRPV=0
else RRPV=1

VI. EXPERIMENTS AND RESULTS

We first explain the simulation framework and the char-

acteristics of the benchmarks in this section. We then show

our results and provide analysis of the results.

A. Simulation Framework

We added CSHARP features to gem5 [4], a full system

simulator. We also added TA-DRRIP and seg-LRU [2] to

gem5.



We show the effectiveness of CSHARP using 4-core and

8-core CMPs. Table III lists the parameters used in the

simulated system.

Table III: Parameters of Simulated Machine

Processor ALPHA 21264

Fetch/Decode/Commit width 8

ROB/LQ/SQ/Issue Queue 192/96/64/64 entries

TLB SW Managed, 256 entries

L1 D/I Cache 32KB, 4 way, 2 cycle latency

L2 Unified Cache #cores * 1 MB, 16 way,
16 cycle latency, Inclusive

Line size 64B in L1 and L2

DRAM Avg latency=200 cycles

Coherence Protocol MOESI Directory-based

We characterized the multithreaded benchmarks from the

PARSEC suite [5], [6]. We pinned the threads to the cores to

avoid variability in performance. Table IV lists 11 programs

used in our study. We chose sim-medium [5] input sets

for our evaluation. Our work shows the results for the ROI.

We use improvement in miss-rate and the execution time as

the performance measures. We do not consider instructions

per cycle (IPC) as a performance metric because of the

variations due to synchronization primitives such as locks

and barriers that are used in multithreaded applications.

Table IV: Characteristics of PARSEC Benchmarks

Program Parallelism Sharing
Model [5] Patterns [7]

ferret Pipelined Migratory

fluidanimate Data Producer/
Consumer

dedup Pipelined Migratory

canneal Unstructured Read Only

x264 Pipelined Read Only

swaptions Data Read Only

streamcluster Data Read Only

blackscholes Data Read Only

bodytrack Data Read Only

vips Data Read Only

freqmine Data Read Only

B. Results

We compare CSHARP(TA-DRRIP) with TA-DRRIP,

Segmented-LRU [2] and baseline LRU policy. Segmented

LRU is the winner of the first JILP Cache Replacement

Championship Workshop held in conjunction with ISCA

2010. For the first time in literature, we present the compar-

isons between TA-DRRIP and segmented-LRU (seg-LRU)

policies for multithreaded applications. Using LRU as the

baseline policy, we present %reduction in miss rate at LLC

in Figure 5. We measured speedup of the three policies

compared to LRU and present the results in Figure 6. The

terms 4T and 8T are used for 4-core and 8-core simulated

systems with one thread pinned per core. GEOMEAN(4T)

and GEOMEAN(8T) are the geometric mean across all the

11 benchmarks. The results are summarized in Table V.

For 4T, TA-DRRIP reduces miss rate by an aver-

age of 7.43% across the benchmark suite. Segmented-

LRU is slightly ahead with a 8.12% average reduction.

CSHARP(TA-DRRIP) emerges as a clear winner across all

Figure 5: Improvement in Miss Rate over LRU for 4 and 8

Cores (with 4 and 8 MB LLC respectively)

Figure 6: Speedup over LRU for 4 and 8 Cores (with 4 and

8 MB LLC respectively)

the benchmarks and reduces the miss rate by as much as

18.38% on an average, an extra 10% reduction compared to

other methods. Largest reduction is seen in dedup (47%).

For 8T, TA-DRRIP reduces miss rate by an average of 7.01%

and seg-LRU provides a 7.58% reduction. CSHARP(TA-

DRRIP) still leads with better reduction in 9 of the 11

benchmarks and shows an average reduction of 17.07%,

maintaining more than 8% reduction in miss-rate over TA-

DRRIP and seg-LRU. The largest reduction in miss rate for

8T is for ferret (38%) and is provided by CSHARP(TA-

DRRIP).

In terms of execution time, the average speedup provided

by TA-DRRIP, seg-LRU and CSHARP(TA-DRRIP), for 4T,

are 2.8%, 3.8% and 7.3% respectively. For 8T, the average

speedup provided are 2.2%, 2.3% and 4.01% respectively.

CSHARP(TA-DRRIP) provides more than 10% speedup for

ferret, fluidanimate and dedup for 4T. In the 8T



case also, ferret and dedup see more than 5% speedup

because of CSHARP(TA-DRRIP).

Table V: Comparison of Replacement Policies for LLC with

LRU as the Baseline

Policy % Reduction in Miss-rate %Reduction in Execution Time

for 4T(8T) for 4T(8T)

TA-DRRIP 7.43(7.11) 2.8(2.3)
seg-LRU 8.12(7.58) 3.8(2.4)

CSHARP(TA-DRRIP) 18.38(16.49) 7.3(4.0)

C. Analysis of Results

We analyze the results of benchmarks by grouping them

on the basis of parallel programming model and the sharing

patterns as listed in Table IV.

The largest reduction in miss rate seen in dedup and

ferret is because of their use of the pipelined parallel

programming model. A write by a thread at stage i of

the data pipeline will be consumed by the thread at stage

i + 1. The data is thus migratory. There is a tight coupling

between threads at different pipeline stages. The data from

one stage to the other will be in cache lines that are mostly in

M/O state. These lines are retained by CSHARP(TA-DRRIP)

because of prioritization of coherence states and sharing.

x264, contrary to the categorization in [5], is only partially

pipelined. Also, as opposed to migratory sharing seen in

other pipelined applications, it is read-only shared. For these

reasons, miss rate reduction is not as phenomenal as in the

other pipelined applications. fluidanimate is the only

benchmark with producer-consumer kind of sharing which

sees a small reduction in miss rate because the non-dirty

lines are mostly reused as compared to dirty lines.

swaptions, bodytrack, streamcluster, and

canneal have read-only sharing pattern in which most

of the cache lines at the LLC are in the O or S state.

Since CSHARP breaks ties among the four coherence states

and only two of them are predominant in the cache lines

in these benchmarks, the miss rate reduction is lesser

than what we observed in the previous set of benchmarks.

blackscholes, in spite of having read only sharing

pattern, is almost comparable to benchmarks with migratory

pattern. This is because the application is not memory

intensive and only a few thousand accesses are made to the

LLC.

D. CSHARP(LRU)

To demonstrate that CSHARP is a framework that can be

applied to any cache replacement policy, we CSHARPed the

LRU policy which we call CSHARP(LRU).

LRU policy uses the timestamp registers as re-use regis-

ters. For a M bit re-use register, the cache lines can have

values ranging from 0 to 2M − 1. Cache line which has re-

use register value of 0 is a MRU line. The line with reuse-

register value of 2M − 1 is the LRU line. So for a 16-way

cache, MRU corresponds to way=0 and LRU corrsponds to

way=15.

We discuss the 3 sub-policies in CSHARP(LRU).

Eviction policy: We set the eviction window size to 4 (the

tradition LRU policy uses eviction window size w = 1).
CSHARP, as before, evicts the S lines, before Pr lines with

E, before Pr lines with M, before Sr lines and it does so by

searching lines within the window from right to left(way=15

to way=12).

Insertion policy: mSr lines are inserted in MRU position

and mPr lines are inserted in LRU/2 position by setting the

reuse-register to these values.

Promotion policy: On a hit to a Pr line, if the thread that

is making request is different from the owner, CSHARP

promotes the line to MRU position. For rest of the Pr

lines, if the lines are in between LRU/2 + 1 and LRU

positions, CSHARP promotes them to LRU/2 position. If

the Pr lines are in between LRU/2 and MRU positions,

CSHARP promotes them to MRU position. On a hit to

a Sr line, CSHARP promotes it to MRU position. We

performed experiments on the same set of benchmarks for 4-

cores and 8-cores. On an average, CSHARP(LRU) improves

the performance by 4.12% and 2.63% for 4T and 8T as

compared to LRU. CSHARP(LRU) outperform both TA-

DRRIP and seg-LRU in terms of performance. We strongly

believe that other cache replacement policies can also benefit

from sharing and coherence based decisions that CSHARP

provides.

E. Other Effects of CSHARP

Besides reduction in miss rate and execution time, we also

observed other effects of CSHARP that are of interest.

Sensitivity to LLC Cache Size: At LLC, increase in cache

size is expected to improve the performance because of

reduced capacity misses and increased sharing of data. We

increased the cache size/core at the LLC from 1MB/core

to 2MB/core. CSHARP(TA-DRRIP) reduces miss rate by

an average of 16.1% for 4T and 9.2% for 8T compared

to LRU. TA-DRRIP reduces miss rate by an average of

5.81% for 4T and 2.88% for 8T compared to LRU. In

terms of execution time, CSHARP(TA-DRRIP) improves

the performance by 5.12% and 3.27% compared to LRU

for 4T and 8T respectively. TA-DRRIP achieved 3.88% and

1.55% performance improvement compared to LRU for 4T

and 8T respectively. For both CSHARP(TA-DRRIP) and TA-

DRRIP, we observe diminishing returns when we move to

8 cores with larger caches.

Hardware Overhead: For all the policies, the hardware

overhead incurred should include the reuse-registers and any

other supporting hardware. For CSHARP(TA-DRRIP), the

Bloom filters constitute the overhead with respect to TA-

DRRIP. We calculate all the overhead in terms of number

of bits. We present the comparisons in Table VI.

The hardware overhead for a 4MB(8 MB) cache is 4% of



Table VI: Comparison of Hardware Overheads for 4- and 8-cores with 4MB and 8MB LLC Respectively

Policy Bits per cache line(P ) Bits per set Additional hardware(A) Total(T=#of sets*S + A)
(S=Associativity * P + extra bits per set, if any)

4core (Associativity=16, # of sets=4k)

LRU 4 64 - 262.14 kbits
seg-LRU 5 80 + 22=102 ATD=93.5kbits, others=51 bits 501.50 kbits
TA-DRRIP 2 32 PSELs=64 bits 131.13 kbits

CSHARPed TA-DRRIP 3 48 PSELs=64 bits, BFs= 6kbits 202.00 kbits

8core (Associativity=16, # of sets=8k)

LRU 4 64 - 524.2 kbits
seg-LRU 5 80 + 22=102 ATD=191.4kbits, others=51 bits 1027.123 kbits
TA-DRRIP 2 32 PSELs=128 bits 262.2 kbits

CSHARPed TA-DRRIP 3 48 PSELs=128 bits, BFs= 10.2kbits 405.2 kbits

TA-DRRIP’s hardware requirements. Thus, CSHARP uses

almost the same area as the TA-DRRIP policy but provides

significant reduction in miss rate and speedup.

F. Limitations of CSHARP

With increasing number of cores and emerging truly

parallel applications, the level of sharing at the LLC is

expected to be high. Thus, our categorization of lines as Sr

and Pr may be insufficient. Instead of the “one” vs “many”

approach for categorizing cache lines based on sharing, we

have to consider thresholds and categorize lines as “heavily

shared” and “lightly shared”. In the future, we plan to extend

CSHARP to many-core scenario.

To CSHARP a new cache replacement policy, two aspects

have to be considered. The assignment of values to the reuse-

registers during eviction, insertion, and promotion policies

have to be experimented and analyzed. Another aspect to

consider is the eviction window size. CSHARP is general

enough to be adapted for any replacement policy but the

implementation requires these studies.

VII. RELATED WORK

Chen et al. [11] proposed a LLC replacement technique

which dynamically partitions a set for private and shared

lines. They observed differences in locality of shared and

private lines. The sharing access patterns and working set

sizes were also found to be different for these lines. Using

these observations, they proposed a new insertion policy that

is streaming-aware and a replacement policy that is sharing

aware. They show a 8.7% reduction in miss rate compared to

LRU policy. CSHARP on TA-DRRIP shows 18% and 16%

reduction in miss rate for 4T and 8T as compared to LRU.

VIII. CONCLUSION

In this paper, we proposed a new framework called

CSHARP that can be applied to any LLC replacement

policy to make them sharing and coherency aware. We

apply CSHARP on TA-DRRIP and LRU. In both the cases,

CSHARPing reduce the miss rate at the LLC significantly.

With a negligible increase in cache area, our new framework

shows very good promise.

ACKNOWLEDGMENT

We would like to thank krishna kumar rangan for insight-

ful discussions on this work. We gratefully acknowledge

the anonymous reviewers for their valuable reviews and

suggestions.

REFERENCES

[1] A. Jaleel et al., “High Performance Cache Replacement using
Re-reference Interval Prediction (RRIP)”, in ISCA 2010,
pp.60-71.

[2] H. Gao et al., “A Dueling Segmented LRU Replacement
Algorithm with Adaptive Bypassing”, in 1st JILP Workshop
on Computer Architecture Competitions, 2010.

[3] A. Jaleel et al., “Adaptive Insertion Policies for Managing

Shared Caches”, in PACT 2008.

[4] N. Binkert et al. “The gem5 simulator”, SIGARCH Comput.
Archit. News, Aug 2011.

[5] C. Bienia et al., “The PARSEC Benchmark Suite: Character-
ization and Architectural Implications”, in PACT 2008, pp.
72-81.

[6] M. Gebhart et al., “Running PARSEC 2.1 on M5”, The
University of Texas at Austin, Department of Computer
Science, Technical Report #TR-09-32, October 2009.

[7] N. Barrow-Williams et al., “A Communication Characteriza-
tion of SPLASH-2 and PARSEC”, in IISWC 2009, pp 86-97.

[8] M. K. Martin et al., “Token Coherence: Decoupling Perfor-
mance and Correctness”, in ISCA 2003.

[9] C.J.Wu et al., “Adaptive Timekeeping Replacement: Fine
Grained Capacity Management for Shared CMP Caches”, in
ACM Trans. Archi. Code. Opti., Volume 8, February 2011.

[10] L. A. Belady,“A study of replacement algorithms for virtual
storage computers”, in IBM Systems Journal 1966, pp. 78-
101.

[11] Y. Chen, et al., “Efficient Shared Cache Management through
Sharing-Aware Replacement and Streaming-Aware Insertion
Policy”, in IPDPS 2009, pp. 1-8.


