
MBZip: A Case for Compressing Multiple Data Blocks

Raghavendra K, Biswabandan Panda, Madhu Mutyam, Department of CSE, IIT Madras

1 Introduction and Motivation
Compression techniques at the LLC and DRAM play

an important role in improving system performance by in-
creasing their effective capacities. Existing compression
techniques, such as B4I [1] and LCP [2], compress a sin-
gle cache block/DRAM column independently. These tech-
niques are oblivious to the data patterns spread across mul-
tiple blocks. Applications exhibit data locality that spread
across multiple consecutive data blocks. We observe that
there is significant opportunity available for compressing
multiple consecutive data blocks both at the LLC and at the
DRAM. On an average, across 22 SPEC 2000/2006 appli-
cations, around 25% of the cache blocks, when grouped to-
gether in groups of 2 to 8 blocks, can be compressed into
a single cache block. In DRAM, more than 30% of the
columns residing in a single page can be grouped together
in groups of 2 to 6 and compressed.

We propose a mechanism that can compress multiple
cache blocks into one single block (zipped block) at the
LLC. We also propose a tag structure to index into these
cache blocks. This indexing does not incur any redirectional
delay. To complement this mechanism, we compress mul-
tiple columns into one zipped column at the DRAM and
communicate the same to the LLC.

2 Our Approach
In B4I, a single block is compressed and stored along

with the associated base and the encoding bits representing
the data pattern exploited. In MBZip, multiple consecutive
blocks that share common data pattern are compressed to-
gether into a single zipped block using B4I, and thus need
only one set of encoding bits and the common base, in total.

At cache (MBZip-C) : A zipped cache contains 3 types
of blocks: uncompressible (64 bytes), compressible (single
block < 64 bytes) and zipped (8 to 64 bytes). Similar to
B4I, in MBZip we double the number of tags per set. To
handle these different types of blocks, half of the tags re-
tain the generic index function, whereas the remaining half
employ zipped index function (the index bits are shifted by
the maximum number of blocks a zipped block is allowed
to hold). Note, a zipped tag can also point to an uncom-
pressed/compressed block.

At DRAM (MBZip-M) : With MBZip, we intend to zip
utmost 6 data blocks into one DRAM column. The first
block in a zipped column is always the block that would
have been present in a generic DRAM. In DRAM, a block
of data is either in uncompressed or zipped format. If the
block can be zipped together with it’s consecutive blocks, it
will share the column space with those other blocks, else it

is stored alone. For each column, we store 8 bits of meta-
data information (3 encoding & 5 valid bits) in a reserved
DRAM space. We also use a metadata cache to store meta-
data of frequently used DRAM pages. Using MBZip-M, we
can service multiple block requests with a single read, and
hence improve performance. Note, in MBZip-M the same
block of data might be present in 6 different columns. This
replication of data does not change the generic DRAM ad-
dress mapping policy apart from reserving space for meta-
data.

MBZip-CM: A page brought into DRAM is stored in the
zipped format. On a request, either an uncompressed or a
zipped block is transferred to the cache along with the cor-
responding metadata bits. Depending on whether the block
is uncompressed or zipped, the indexing function is cho-
sen (generic or zipped). If an uncompressed block from
DRAM is compressible, it is compressed & stored in the
cache. Depending on whether the dirty data written back
from higher levels of cache is zippeable or not, it is either
re-zipped or stored as a compressed/uncompressed block.
When a zipped block containing dirty data (might contain
other clean blocks) is evicted from the cache, the entire
block is written to the write buffer. This dirty zipped block
is written back to the DRAM, and it’s valid bits & those of
the previous 5 columns are updated accordingly. In effect,
multiple blocks of data compressed into one single block
is fetched from the DRAM, handled in the cache, written
back to the write buffer and then to the write queue and
from thereon again to the DRAM.

3 Results
We evaluate the effectiveness of MBZip-C and MBZip-

CM, in terms of harmonic speedup (HS). We compare our
techniques with a system that uses no compression. We
use 70 4-core and 25 8-core workloads, which contains a
mix of SPEC CPU 2000/2006 benchmarks. On an average
(geomean), for 4-core workloads, MBZip-C and MBZip-
CM provide 15.4% and 21.9% improvement in HS. For 8-
core workloads, MBZip-C and MBZip-CM provide HSs of
10.2% and 17.1%, respectively. In contrast, BDI provides
an improvement of 11.4% and 7.3% for 4- and 8-core.

References
[1] Pekhimenko et al., “Base-delta-immediate compres-
sion:practical data compression for on-chip caches”, in
PACT 2012.
[2] Pekhimenko et al., “Linearly compressed pages: a low-
complexity, low-latency main memory compression frame-
work”, in MICRO 2013

1


