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Abstract
Hardware prefetchers are commonly used to hide and tol-

erate off-chip memory latency. Prefetching techniques in the
literature are designed for multiple independent sequential
applications running on a multicore system. In contrast to mul-
tiple independent applications, a single parallel application
running on a multicore system exhibits different behavior. In
case of a parallel application, cores share and communicate
data and code among themselves, and there is commonality in
the demand miss streams across multiple cores. This gives an
opportunity to predict the demand miss streams and communi-
cate the predicted streams from one core to another, which we
refer as cross-core stream communication.

We propose cross-core spatial streaming (XStream), a prac-
tical and storage-efficient cross-core prefetching technique.
XStream detects and predicts the cross-core spatial streams at
the private mid level caches (MLCs) and sends the predicted
streams in advance to MLC prefetchers of the predicted cores.
We compare the effectiveness of XStream with the ideal cross-
core spatial streamer. Experimental results demonstrate that,
on an average (geomean), compared to the state-of-the-art
spatial memory streaming, storage efficient XStream reduces
the execution time by 11.3% (as high as 24%) and 9% (as high
as 29.09%) for 4-core and 8-core systems respectively.

1. INTRODUCTION
Hardware Prefetching plays an important role in reduc-

ing the execution time of programs. In commercial chip-
multiprocessors (CMPs), different types of hardware prefetch-
ers are employed at the mid level caches (MLCs). For exam-
ple, Intel’s Nehalem uses a spatial prefetcher and a stream
prefetcher at the private MLCs [2]. Stream based prefetch-
ers fetch data in the form of streams wherein a stream is
a sequence of cache-line-aligned memory addresses. A de-
mand miss stream corresponds to demand miss addresses only.
Temporal (Spatial) streams are streams that recur temporally
(spatially). Streams that spread and recur across multiple
cores are known as cross-core streams.

Figure 1 shows an example of cross-core streams for a 2-
threaded application. The X axis denotes the logical time order
and the Y axis shows the demand miss addresses (aligned to
cache line address) from two cores (core 0 and core 1). It can
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Figure 1: Example of cross-core streaming. A, B, C, and D
are part of cross-core streams, and E, F, G, and H are part of
intra-core streams.

be seen that, the demand misses observed in one core recur in
other cores. For example, demand misses to A and B are first
observed in core 1 and later recur in core 0. Similarly, misses
to C and D are first observed in core 0 and later recur in core 1.
These miss streams are cross-core miss streams. Streams local
to a core may result in hits if the stream prefetcher prefetches
in-time. In this example, C and D get hits at core 0 and F and
G get hits at core 1. But a cross-core spatial stream oblivious
prefetcher can not eliminate the misses to cross-core streams
A and B (shown in bold) in core 0 and similarly to C and D
(shown in bold) in core 1.

Past works related to hardware cross-core stream prefetch-
ing, such as temporal memory streaming (TMS) [25] and store-
ordered streaming (SORDS) [26] have been explored to min-
imize the coherent read misses. TMS [25] and SORDS [26]
exploit migratory and producer-consumer sharing patterns
respectively. These techniques are proposed for distributed
shared memory (DSM) systems and when applied to CMPs,
require impractical storage (more than 20 MB on a 4-core
CMP) to train the streams. Also these techniques store the
predicted streams at the DRAM, which results in increased
DRAM traffic. In contrast to TMS and SORDS, Somogyi
et al.’s spatial memory streaming (SMS) prefetcher [19] is a
practical technique that exploits the spatial streams that recur.
In general, temporal streaming based techniques get better
coverage and accuracy than spatial streaming but at the cost of
the complexity of managing the off-chip storage. On the other
hand, spatial streaming based techniques are simple, storage
efficient and can eliminate the cold-start misses. In this work,
our focus is on on-chip spatial streaming technique and how
to make it aware of the cross-core spatial streams. For the
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cross-core spatial stream awareness, we propose cross-core
spatial streaming (XStream). XStream predicts and communi-
cates the spatial streams from one MLC prefetcher to the other
predicted MLC prefetchers. XStream is based on two observa-
tions. First, in case of parallel applications, large fraction of
memory space participates in cross-core sharing and commu-
nication. Second, there is ample time gap between occurrence
of a stream in one core and recurrence of the same in others.
Prefetching techniques oblivious to cross-core streams may
potentially reduce the execution time of parallel applications.
However by exploiting the cross-core streams, significant re-
duction in the execution time can be achieved.

To illustrate the importance of cross-core spatial streams in
prefetching, Figure 2 shows the reduction in the execution time
that can be achieved with the ideal cross-core MLC prefetch-
ers normalized to the SMS prefetcher. The ideal cross-core
prefetcher is an oracle that is aware of all the cross-core spatial
streams. It uses local streams along with the cross-core spatial
streams for its in-time prefetching. For this experiment, we
assume that the ideal cross-core prefetcher has infinite stor-
age to detect and communicate the cross-core streams in-time.
Figure 2 shows that for 4 (8) threaded PARSEC [6] applica-
tions running on a 4 (8) core CMP, on an average (geomean),
more than 23% (19%) reduction in the execution time can
be achieved by making the SMS aware of cross-core streams.
Given the scope of reduction, we propose XStream. The con-
tributions of this paper are as follows:
• We identify commonality in spatial streams that spread and

recur across multiple cores and propose cross-core spatial
streaming (XStream), a storage efficient prefetching tech-
nique where an MLC prefetcher communicates its spatial
streams to the other predicted MLC prefetchers. (Sections
3 and 4)

• We also introduce the notion of cross-core timeliness for the
in-time communication of cross-core spatial streams across
multiple MLC prefetchers. Cross-core timeliness plays an
important role in improving the effectiveness of XStream.
(Section 4.4)

• We show the effectiveness of XStream using all the ap-
plications from the PARSEC [6] benchmark suite. Com-
pared to the cross-core stream oblivious SMS [19], XStream
achieves an average (geomean) speedup of 11.3% and 9%
for 4-core and 8-core systems respectively. On a 4-core
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Figure 2: Speedup (Reduction in Execution Time) if all the spa-
tial cross-core streams are communicated in-time.

CMP, XStream gets close to the ideal reduction of 23.3%
with the ideal cross-core spatial streamer. (Section 6)

2. BACKGROUND

In this section, we describe the baseline system design and
the sharing patterns observed in the case of shared memory
parallel applications. We also describe the design of state-of-
the-art SMS prefetcher.

2.1. Baseline CMP Design

We consider a baseline CMP system that consists of mul-
tiple cores and multiple DRAM channels. Each core has a
private L1 and L2 cache. Last level cache (LLC, which is
L3) is shared among all the cores. Each core has prefetch-
ers at the private MLC, which sends prefetch requests to the
LLC. In case of a miss at the shared LLC, prefetch request
is forwarded to the DRAM. The baseline system uses two
hardware prefetchers at the MLC. One for instruction miss
streams and the other for data miss streams. In the baseline
system, demand miss streams trigger prefetches, instead of
demand access streams as the use of access streams put ad-
ditional pressure on miss status holding registers (MSHRs)
and access streams from multiple cores interfere heavily at the
LLC and at the DRAM controllers. In PARSEC, instruction
streams are more predictable compared to data streams. So
the system uses a simple stream prefetcher for instructions
with 32 stream entries with prefetch degree of 4 and prefetch
distance of 64. For data miss streams, the system uses the
SMS [19] prefetcher. Both the prefetchers generate prefetch
requests which are buffered in a prefetch queue. Prefetch
queue (PFQ) is a first-in first-out buffer (FIFO) from which
the oldest prefetch request is sent to the MSHRs. The MLC fill
buffers are fused with the MSHRs. The baseline system inserts
the prefetch responses with non-exclusive cache coherence
states.

2.2. Cross-core Sharing Patterns

In shared memory parallel applications, threads share data
and code. Based on the demand requests (reads or writes),
and the threads that are making these requests, the sharing
patterns for each spatial region can be classified into three
categories [4]: (1) Read-only: In a given interval, a spatial
region exhibits read-only sharing if it is written or read by one
thread and then read by one or more threads later.
(2) Migratory: A spatial region exhibits migratory sharing
if the threads get exclusive access to a spatial region back to
back.
(3) Producer-consumer: A spatial region exhibits producer-
consumer sharing if it is written by one thread and then read
by threads other than the writer before the writer writes again.
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Idea Hardware
Overhead for
a 4-core CMP

Hardware overhead
: Total MLC size
(256 KB*4)

Supports
Cross-core
Streaming?

TMS [25] 24 MB 24 : 1 Yes
SORDS [26] 22 MB 22 : 1 Yes
STMS [24] 12 MB 12 : 1 Yes
STEMS [18] 6.4 MB 6.4 : 1 No
SMS [19] 256 KB 0.25 : 1 No
XStream 303.5 KB 0.28 : 1 Yes

Table 1: Overview of streaming techniques for a 4-core CMP.

2.3. Spatial Memory Streaming (SMS)

Table 1 compares various streaming techniques in terms of
their hardware overhead and support for cross-core stream-
ing. Table 1 shows that, except SMS and XStream, all the
other streaming techniques demand impractical storage1. For
a private MLC of 256 KB, it is not practical to use additional
on-chip hardware of more than 6 MB for hardware prefetching
and all the techniques mentioned in the Table 1, except SMS
and XStream, require off-chip hardware support. Compared
to SMS, our XStream supports cross-core streaming with ad-
ditional on-chip hardware of 47.5 KB.

SMS is a hardware prefetching technique that exploits spa-
tial locality present in demand access streams. SMS logically
partitions the system memory space into fixed size spatial re-
gions wherein each spatial region consists of multiple cache
lines, represented by bits in a bit vector. The training process
for a spatial region kicks off on the occurrence of the very
first demand access to any address in that spatial region. The
training is completed when any cache line within that region
is evicted or invalidated. SMS uses three hardware tables: (1)
filter table (FT), (2) accumulation table (AT) and (3) pattern
history table (PHT). FT and AT are implemented as content
addressable memories (CAMs). Both FT and AT are part of
a single table called active generation table (AGT). On a de-
mand access, filter table filters out the spatial region tag and
the spatial signature, which is PC + offset (PC/offset). PC is
the program counter associated with the access and offset is
the distance of a cache line from the base address of the spatial
region tag, in terms of #cache lines. The base address of a
spatial region tag is the higher order bits of the address.

On subsequent demand accesses to the cache line addresses
within a spatial region tag, accumulation table records the

1We do not use simple stream and stride prefetcher as both of them are
not effective for PARSEC benchmark suite.

Access to A+2 

Access to A+3 

 Eviction/ 
 Invalidation A 

Sig Bit Vector 

pattern history table  
              (PHT) 

     Tag  PC/Offset 

filter table (FT) 

active generation table (AGT) 

Bit Vector 

accumulation table (AT) 

0111 

1 

2 

3 

A 

A 

A PC/1 

PC/1 

PC/1 

0111 

0111 

0110 

A 
PC/1 

. 

. 

. 

. 

. . 
. 
. 

PC/Offset 

PC/1 

     Tag  

Access to A+1 

Figure 3: Hardware structure of SMS prefetcher. Sig stands
for spatial signature (PC/offset).

accessed cache line addresses (in the form of bits in the
bit vector). Once a spatial region is trained (upon evic-
tion/invalidation of a cache line), active generation table sends
the bit vector to the pattern history table. Pattern history table
(which is indexed by the spatial signature) stores the predicted
bit vector and the spatial signature (PC/offset), and uses it to
trigger future prefetch requests. At the end of every training
phase, the bit vector in the pattern history table is updated
to the set intersection of the existing bit vector with the bit
vector sent by the active generation table. In future, a demand
access to a trained spatial signature triggers prefetch requests
for the bits (corresponding cache line addresses), which are
set in the bit vector. Figure 3 shows the detailed design of
SMS prefetcher where a region consists of 4 cache lines rep-
resented by 4 bits in the bit vector. On the very first access
to an address A+1, filter table stores the spatial region tag (as
A) and PC/offset (as PC/1). Accumulation table stores and
updates the bit vector for the demand accesses as shown in
1 and 2 of Figure 3. 3 of Figure 3 shows the completion
of the training process and transfer of the spatial signature
(PC/1) along with its trained bit vector (0 1 1 1) from active
generation table to pattern history table. Even-though SMS
is an efficient prefetching technique, it falls short for parallel
applications because of its cross-core stream obliviousness.
In this work we address this.

3. MOTIVATION FOR XSTREAM

Motivation 1: Figure 4 shows the fraction of spatial signa-
tures that recur across multiple cores. On an average, for 4-
threaded PARSEC [6] applications, on a 4-core CMP, 80% of
the spatial signatures recur in 2 or more cores, which we
call cross-core spatial signatures (XCore signatures). The
rest 20% are intra-core spatial signatures. We observe that a
minimum of 160 spatial signatures (in swaptions), and a max-
imum of 4068 spatial signatures (in facesim), recur at-least
4 times and in more than one core. Also, there is a time gap
(on an average, more than 32K clock cycles with minimum
of 3 clock cycles, and maximum of 1 million clock cycles)
between a particular spatial signature being accessed by one
core and later recurring at a different core. This provides op-
portunity to exploit this behavior. Figure 5 shows the fraction
of MLC data misses (which belong to the recurred spatial
signatures) satisfied at the LLC, DRAM, and at the remote
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Figure 4: Recurrence of spatial signatures across multiple
cores on a 4-core CMP.
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Figure 5: Distribution of MLC demand responses based on the
responders on a 4-core CMP.

cores’ L1 and L2. From Figure 5, it is clear that 90% of the
MLC data misses are satisfied either at the L3 or at the DRAM.
Though 80% of the spatial signatures are cross-core, less
than 10% of the data that belongs to these cross-core sig-
natures are present in any of the private MLCs when the
spatial signatures recur.

Motivation 2: Past works related to cross-core streaming
target specific kinds of sharing patterns such as migratory [25]
and producer-consumer [26], and reduce the read coherent
misses. With the current industry trend, more number of cores
on a chip share the LLC and the fraction of coherent read
misses will be small. Hence it is important to minimize
all types of MLC data misses and not just the coherence
misses and it is necessary to handle all kinds of sharing
patterns.

With these motivations, we propose cross-core spatial
streaming (XStream), a simple and storage efficient hard-
ware prefetching technique that is aware of cross-core spatial
streams.

4. CROSS-CORE SPATIAL STREAMING
In this section, we describe and explain the working of the

proposed XStream technique. XStream works in two phases
and both the phases work in tandem.

Phase 1: The first phase detects cross-core spatial streams
along with the IDs of cores involved in it. In this phase, the
MLC prefetchers send their spatial signatures along with their
corresponding bit vectors to a shared hardware table named
cross-core spatial stream detector (XStream Detector). For ev-
ery spatial signature, XStream Detector stores these bit vectors
along with their core IDs in a temporal order and identifies
the commonality in them. In case of a commonality between
the bit vectors, it identifies the master prefetcher (prefetcher of
the core in which a spatial signature is trained first before it
recurs in other cores) and the worker prefetcher (prefetcher of
the core that follows the spatial signature of the master core)
associated with a spatial signature.

Phase 2: During the second phase, the future demand
misses2 to the trained signature at the master prefetcher trig-
ger the communication of the spatial streams (in terms of a
bit vector) to the predicted worker prefetcher in-time. The

2As mentioned in Section 2.1, we use demand miss triggered prefetching.
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Figure 6: Hardware structure of the XStream Detector. BV
stands for bit vector.

worker prefetcher updates its bit vector based on the bit vec-
tor communicated by the master prefetcher. Future demand
misses at the worker core trigger prefetch requests based on
the updated bit vector. Note that the master prefetcher does
not prefetch for the worker prefetcher. The worker prefetcher
is solely responsible for sending the prefetch requests for its
own private MLC. Next we describe the XStream Detector.

4.1. XStream Detector

To detect cross-core spatial streams, we use XStream Detec-
tor, a hardware table, which is shared by all the MLC prefetch-
ers. We place XStream Detector beside the shared LLC with
access latency similar to that of L3 cache. Figure 6 shows the
structure of the XStream Detector We connect XStream Detec-
tor to all the private MLC prefetchers. XStream Detector keeps
track of the trained spatial signatures sent by MLC prefetchers.
When a spatial signature is trained and sent by the AGT to
the PHT in SMS, it is also communicated to the XStream
Detector. XStream Detector maintains S number of signatures
wherein each signature stores K entries. Each entry consists of
a bit vector, Master field, that stores the core ID of the MLC
prefetcher that has sent the trained signature, Time field, that
indicates the clock cycle at which a signature is inserted into
the XStream Detector and Done field, that indicates whether
a bit vector has already participated in the XStream detection
process or not. If Done field is set, the bit vector is no more
eligible to participate in the XStream detection process. For
a given spatial signature, the entries associated with it follow
the temporal order (entry 0 is the oldest entry and entry k-1
is the youngest entry). To minimize the noise in the process
of detecting cross-core spatial streams, AGT communicates a
bit vector to the XStream Detector only if the #1s in that bit
vector satisfies a threshold called numonesthresh.

XStream Detector also uses a threshold called cross-
corethresh. For two bit vectors, say BV0 and BV1, cross-
corethresh counts the #1s in the set intersection operation be-

Sig BV Time Init Worker  

.

..

Figure 7: Hardware structure of enhanced PHT. BV stands for
bit vector.
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Figure 8: Steps involved in the XStream detection. XY denotes X of core Y. CCth is cross-corethresh. Each entry of XBuff-P stores
the BV along with the predicted worker core ID. Similarly each entry of XBuff-S stores the BV along with the master core ID.

tween BV0 and BV1. cross-corethresh quantifies the common-
ality between two bit vectors. We also modify the PHTs with
additional fields. Figure 7 shows the enhanced PHT with
three additional fields (Worker, Time and Init fields, shown in
bold) along with the baseline PHT. The worker field, added in
each entry stores the core ID that follows the spatial signature.
Time field indicates the difference in clock cycles between
the occurrence of a stream in the master core and the recur-
rence of the same in the worker core. The third additional
field, namely Init field, which indicates whether the master
prefetcher has initiated the process of communicating the bit
vector to the worker prefetcher. If set, the Init field indicates
that the master prefetcher has initiated the process. We now
describe the XStream detection phase.

4.2. XStream Detection

Figure 8 shows the steps involved in the XStream detection
phase and the contents of the hardware structures at the end
of each step. With the help of XStream detector, XStream de-
tects the cross-core spatial streams along with the master and
worker prefetchers involved with it. We describe the details
of detection phase and communication phase for a dual core
CMP (with core 0 and core 1) in the following steps.

Step 1 : In 1 of Figure 8, for a spatial signature PC/1,
AGT of core ID 0 (AGT0) sends the bit vector to PHT0 and
to the shared XStream Detector through the shared X buffer
(XBuff-S). As multiple AGTs can send their bit vectors at
the same time, XStream Detector uses a small buffer named
XBuff-S, which buffers the bit vectors sent by the AGTs.
XBuff-S stores the bit vector along with the sender core
ID. XStream Detector stores the bit vector, sender core ID
(Master) (as 0) and the Time (t) at which the spatial signature
enters XStream Detector.

Step 2 : As shown in 2 of Figure 8, in the future, say at
time t + δ , AGT of core ID 1 (AGT1) sends its bit vector
for the signature PC/1 to PHT1 and to the shared XStream
Detector. It can be observed that, the BVs sent by core ID
0 and core ID 1 are indexed by a common spatial signature
PC/1. For every signature, when a bit vector enters XStream
Detector, the XStream Detector tries to find commonality be-

tween bit vectors and in the process it searches for eligible
bit vectors (Done field zero) with the Master field different
from the current sender core ID (Master).

Step 3 : In 3 of Figure 8, for PC/1, XStream Detector
searches for the first eligible bit vector from its current entry
to entry 0 (for every spatial signature, entry 0 stores oldest
entry). In this case, XStream Detector gets a hit for the bit
vector sent by the core ID 0 in 1 . Then to find commonality
between the bit vectors of different cores (in this example,
core ID 0 and core ID 1), it performs the set-intersection (bit-
wise AND) of BV0 and BV1 and counts the #1s in it.

Step 4 : If the #1s crosses a threshold called cross-
corethresh, in 4 of Figure 8 (b), XStream Detector treats
the prefetcher of core ID 0 as the master prefetcher and the
prefetcher of core ID 1 as the worker prefetcher of PC/1.
XStream Detector communicates the time difference between
insertions of bit vectors from two different cores
(core ID 0 and core ID 1) to the master core ID (core ID 0). In
this case, the difference is δ time units. Along with the time
difference, it sends the worker core ID (core ID 1) also. As
shown in 4 of Figure 8 (b), PHT of master core (core ID 0)
updates its Worker field with 1 and Time field with δ . At the
same time XStream Detector sets the Done bit for the entry
maintained by core ID 0.

4.3. XCore Communication

In this section, we describe the next phase of XStream,
which is called as the XCore communication phase. The
communication phase kicks in when the AGT of a master
prefetcher sends its bit vector to a trained cross-core spatial
signature (spatial signature with a valid Worker and Time
field in the PHT). In case of a valid Worker field, the mas-
ter prefetcher sends its bit vector to the predicted worker
prefetcher (through XBuff-P) based on the Time field3. Please
note, the master core does not prefetch for the worker core.
The worker core is responsible for sending the prefetch re-
quests for its own private MLC. The following steps describe

3It helps the master prefetcher gauge how much time it has, to communi-
cate the bit vector to the worker prefetcher before the worker core may start
demanding the cache lines.
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Figure 9: Steps involved in the XCore communication.

the cross-core communication.
A spatial signature is eligible for XCore communication if its
Worker field is different from the core ID it belongs to. For
example, a spatial signature of core ID 0 is eligible for XCore
communication if its Worker field contains any valid core ID
except 0. Figure 9 illustrates the steps involved in this phase.

Steps 1 - 3 : In 1 of Figure 9, AGT of core ID 0 commu-
nicates the bit vector along with the core ID to the shared
XBuff-S. In 2 of Figure 9, XBuff-S transfers the bit vector
along with the core ID to the XStream Detector. 1 and 2 of
Figure 9 correspond to 1 of Figure 8 (a). In 1 of Figure 9,
when PHT0 receives the trained bit vector, it counts the #1s in
BV0. If the #1s crosses numonesthresh and the corresponding
Worker field is different from its own core ID then it sets the
Init bit. In this example, the bit is set for PC/1 in PHT0. Once
the Init bit is set, the master prefetcher can communicate the
bit vector to the worker prefetcher. In 3 of Figure 9, PHT0
communicates BV0 to the private cross-core buffer (XBuff-
P) of core ID 0 after δ units of time, where δ is predicted
time initiated during the detection phase. At a given moment,
multiple PHTs can send their bit vectors and their predicted
Worker fields for the cross-core communication. To buffer
them, we use XBuff-P. Kindly note, we subtract the average
communication latency (65 clock cycles, with minimum of
25 clock cycles, and maximum of 83 clock cycles) between
PHT0 and PHT1 from the δ , at the time of XStream detection.
This helps XStream to communicate the streams in-time.

Steps 4 - 5 : Based on the interconnect scheduling, PHT1
gets BV0 as shown in 4 of Figure 9. PHT1 updates its bit
vector BV1 to the set union4 (bitwise OR) of BV0 and BV1.
In the future, when a demand miss to the trained entry in PHT1
occurs, it triggers the prefetch requests based on the updated
bit vector (set union of BV1 and BV0) as shown in 5 of Fig-
ure 9. In this way, the spatial locality, both within and across
the cores, are exploited at the worker prefetcher.

4.4. XCore Timeliness

The effectiveness of XStream depends on two factors: 1)
how timely a bit vector is communicated from the master
prefetcher to the worker prefetcher (XCore timeliness) and 2)
the accuracy of XStream detector.

XStream maintains timeliness using the clock domain that
drives the LLC, to clock all the per core PHTs, the interconnect
as well as the XStream Detector. XStream maintains a set of
local registers (local to each PHT), which stores the current
clock cycle. It also maintains a shared global register in the
XStream Detector. During the XStream detection phase, when
an entry is inserted into the XStream Detector, the Time field
is set to the current clock cycle based on the global register.
In future, when a bit vector from a different core satisfies
crosscorethresh as shown in 4 of Figure 8, the XStream
Detector sends the time difference (in terms of the difference
in clock cycles) between the insertions of the bit vectors by
two different cores to the master prefetcher. In future, when
AGT of the master prefetcher sends its bit vector to PHT, it
checks for the numonesthresh. If it satisfies numonesthresh, it
checks the Worker field and the Time field. Based on the
current clock cycle, PHT of the master core schedules the
communication of the bit vector after Time clock cycles from
the current clock cycle and sends it to XBuff-P. For example
if the present clock cycle is x, the master core schedules the
communication at x+δ , where δ is the content of the Time
field. All the registers are reset at fixed intervals. To reduce
the hardware overhead, we store the Time field in an encoded
format.

Our experiments show that the on an average, the estimates
of δ are accurate 67% of the time. A slight difference (+/−
3) between the actual and the predicted encoded δ values
leads to an accuracy of 83.2%. Incorrect delta estimates can
affect the timeliness and the overall accuracy and a fine grain
feedback mechanism (feedback on delta estimates per spatial
signature) can be used to further improve the accuracy of delta
estimates. It is important to note that the clock domain that is
used at the LLC is typically different from the clock domain
that drives the processor cores (similar to intel’s haswell [1]).
Also, this domain is unaffected by power modes of the cores
and the C-states at which the cores may be in. This choice of
clock domain source for XStream ensures that all the steps in
Sections 4.2 and 4.3 are executed with respect to the same
reference clock, thus ensuring correct operation no matter
what states the cores are in. In our experimental setup, the
clock domain for LLC is clocked at the same rate as that of
the cores.

4.5. Special Cases

In this section, we highlight some of the special cases that
can happen in a CMP with more than 2 cores.

4Set union operation between two bit vectors preserve both the local and
cross-core bits.
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Figure 10: Enhanced CMP with XStream. Dashed blocks and
dashed lines are from XStream.

System Address Space 32 bits
Hashed Spatial Signature (PC/offset) 16 bits
Size of the Spatial Region 2 KB
Width of the Bit Vector 32 bits
Private Cross Core Buffer(XBuff-P) 8 entries
Shared Cross Core Buffer(XBuff-S) 8 entries
numonesthresh, cross-corethresh 8
Local and Global Clock Registers 16 bits

Table 2: Parameters specific to XStream.

Case 1: In the enhanced PHT, we store the core ID of only
one worker core but within a small window of time, a spatial
signature can have more than one worker core. XStream re-
solves this issue implicitly. For example, in a 4-core CMP, for
a given spatial signature, with core i as the master core if core
j, k and l follow core i then PHTs of core i, core j and core
k store core j, k and l in their respective Worker fields. In
this way, XStream does not incur extra hardware to store more
than one worker core.

Case 2: Section 4.4 describes the mechanism by which the
master prefetcher sends its bit vector to the worker prefetcher.
But there are scenarios where a spatial signature recurs multi-
ple times at the master core before it recurs at the worker core.
In this case, XStream communicates the latest bit vector from
the master prefetcher to the worker prefetcher.

Figure 10 shows the new hardware added to the baseline
CMP system to make it cross-core streams aware. The addi-
tional hardware and the interconnect transactions are shown
as dashed blocks and dashed lines.

5. HARDWARE IMPLEMENTATION

5.1. Storage, Energy, and Power Requirements

Table 2 shows the details of the various parameters used
in XStream. For all the parameters mentioned in Table 2,
we sweep through values in powers of two and we find that
the combination of values mentioned in Table 2 achieves the
maximum coverage. We use 4K entry PHT, which is organized

PHT (Per Core) XStream Detector
(Shared)

Size 19.5 KB 33.5 KB
Access Energy 0.024nJ 0.008nJ
Static Power 24.77mW 59.04mW
Access Time 0.61ns 0.24ns
Area (Data Array) 0.13 mm2 0.19mm2

Area (Tag Array) 0.07 mm2 -

Table 3: Storage, Energy, and Power requirements.

as an associative cache with tag and data arrays. XStream
Detector, the heart of XStream keeps track of 4096 signatures.
Both PHT and XStream Detector are indexed using the spatial
signature (PC/offset). We vary the number of spatial signatures
(in powers of two) and compared the coverage achieved by
XStream and we find that the table with 4096 signatures gives
the best coverage. Table 3 shows the storage, energy, and
power requirements of XStream on a 4-core CMP. We use
CACTI 6.0 [15] with 45nm technology to obtain the access
energy, static power, access time, and the area overhead. As
XStream does not augment additional bits in the AGT, the
storage requirement of AGT is same as that of the baseline
SMS. In PHT, XStream augments a few additional fields. The
major chunk of storage overhead comes from the XStream
Detector. The ideal cross-core streamer requires 64 MB of
additional storage for in-time cross-core communication. The
storage requirements of each table are as follows:
• Per core AGT: 16 way, 64 entries (4 sets * 16 entries).

Tag Store: 64 * (325 - 116 - log2 (4)) bits = 0.14 KB
Data Store: 64 * (32 + 217 + 16) bits = 0.53 KB

• Per core PHT: 8 way, 4096 entries (512 sets * 8 entries).
Tag Store: 4096 * (16 - log2 (512)) bits = 3.5 KB
Data Store: 4096 * (32 + 4 + 2 + 1) bits = 19.5 KB

• Shared XStream Detector: 4096 entries
Data Store: 4096 * (32 + 16 + 16 + 2 + 1) bits = 33.5 KB

Data store of the PHT uses bit vector (32 bits), Time (4 bits),
Worker (2 (3) bits for 4 (8) cores), and Init (1 bit) fields. The
size of PHT in the baseline SMS is (4096 * 32) bits = 16 KB.
So XStream incurs additional 3.5 KB per core (14 KB for a 4-
core CMP) for PHT. The total hardware overhead of XStream
for a 4-core CMP is 14 KB + 33.5 KB = 47.5 KB, which is
a little more than 1

6 th of a single MLC (256 KB). XStream
Detector table is implemented as an SRAM (not as SRAM
cache) with 4096 signatures and each signature consists of 8
entries. Each entry consists of bit vector (32 bits), Signature
(16 bits), Time (16 bits8), Master (2 (3) bits for 4 (8) cores)
and Done (1 bit) fields. XStream Detector is also power
efficient with power consumption of less than 60mW. In terms
of area, the overhead because of XStream Detector is a little
more than 1

14 th of a single MLC (2.74 mm2). XStream also
uses encoders (16 : 4) for encoding the 16 bit clock cycle into

532 bits because of address space and not because of the bit vector.
6log2 (2 KB), where 2 KB is the size of the spatial region.
7spatial region tag.
8This unencoded field is different from the encoded 4 bit Time field of

PHT.
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4 bit Time field and combinational circuits to count the #1s
(popcount) present in bit vectors. The encoding logic takes
less than a cycle to encode and the popcount circuit takes less
than 4 clock cycles9 to count the #1s in a bit vector. XStream
also uses 32 bit registers (one per core at the private SMS and
one at the shared XStream Detector) to store the popcounts.

Processor 4-core and 8-core CMP, 3.7 GHz
Out of Order

Fetch/Decode/Commit width 8
ROB/LQ/SQ/Issue Queue 192/96/64/64 entries
L1 D/I Cache 32 KB,4 way
L2 Unified Cache 256 KB,8 way
L3 Shared Unified Cache 2(4) MB for 4(8) cores, 16 way
MSHRs 16, 32, 64(128) MSHRs

at L1, L2, L3 with 4(8) cores,
Targets per MSHR = 4

Cache Line Size 64B in L1, L2 and L3
Replacement Policy LRU at L1 and L2,

EAF [17] at the shared L3
Prefetchers at L2 Data - SMS [19],

Inst - Stream Prefetcher,
with Prefetch Degree = 4
and Prefetch Distance = 16

Coherence Protocol MOESI
On-chip Interconnect Crossbar Topology,

Transfer/Arbitration
Latency - 4/5 clock cycles,
Channel Width - 64B
Peak Bandwidth/link - 29.9 GB/s

DRAM Controller On-chip, Open Row,
64 read & write queues,
FR-FCFS scheduler,
drain-when-full

DRAM Bus split-transaction, 800 MHz, BL=8
DRAM DDR3 1600 MHz (11-11-11)

1(2) channels for 4(8) core CMPs,
2 Ranks/channel and
8 Banks/Rank
Peak Bandwidth = 12.8 GB/s

Table 4: Parameters of the simulated system.

5.2. On-chip Interconnect Support

To support XStream, we introduce three new interconnect
transactions, which we name as XStream transactions. The
first transaction named X-request, is a transaction between
MLC prefetchers and the shared XStream Detector. The trans-
action consists of the bit vector along with the core ID of the
sender core. The second transaction named X-response is a
response transaction between XStream Detector and the mas-
ter prefetcher. The transaction consists of the Worker and the
Time fields. The third transaction named X-comm is between
the MLC prefetchers, which carries the bit vector from the
master prefetcher to the worker prefetcher.

5.3. Timeliness

To support in-time transfer of bit vectors, we use multiple
local registers at the MLCs and a global register at the XStream
Detector. Both local and global registers are 16 bits wide. We
reset these registers after every 64K clock cycles. We use
encoding logic, which converts a 16 bit clock cycle into a 4

9We verify it using Synopsys design compiler for 45nm technology.

bit Time field of PHT. Time=
⌊

clockcycle
4096

⌋
, where the Time

field varies from 0 to 15. When XStream Detector sends the
Worker, it also sends the encoded Time. All the PHT entries
store these 4 bit Time fields. The Time field of a spatial
signature is decremented every 4K clock cycles. Once a Time
field becomes zero, PHT of the master core sends the bit
vector along with the Worker core ID to its private XBuff-P.
We fine tune the width of the local and global registers based
on the average interconnect latency and average residence time
of cache lines at the MLC to capture the XCore timeliness.

6. EXPERIMENTAL EVALUATION

6.1. Methodology

We use gem5 Full System (FS) [7] simulator to simulate
4-core and 8-core CMP. We run PARSEC [6] benchmarks on
4-core and 8-core simulated systems and take a detailed look at
the cross-core spatial streams. For our evaluation, we consider
the parallel region of each program as our region-of-interest
(ROI) with sim-large as the input size. We use the execution
time of an application to measure the performance. To min-
imize the variability in execution time, we pin the software
threads to the hardware threads (cores) and we run all the
simulations five times and take the average of the execution
time as the final execution time. Table 4 shows the parame-
ters of our simulated system. We compare XStream with the
baseline SMS prefetcher (which is oblivious to the cross-core
streaming) and with the ideal cross-core spatial streamer that
has the knowledge of all the cross-core streams.

We also compare XStream with shared SMS (SSMS),
wherein the demand miss streams from all the cores are trained
by a common AGT (of 128 entries) and the predicted streams
are stored at a common PHT (of 8192 entries). Both the AGT
and PHT steal a fraction of LLC space to predict and store the
streams. SSMS is similar to SHIFT [10]. SHIFT is proposed
for the lean core servers in which the instruction streams are
common across all the cores. SHIFT does not store the instruc-
tion streams of each core locally, SHIFT stores the instruction
streams of only one core at the LLC and all the other cores use
it for prefetching. SHIFT can also be extended for data streams
provided a significant fraction of the data streams are common
across all the cores. But in the case of shared memory parallel
applications, the degree (#cores involved in XCore communi-
cation) of XCore communication varies throughout the parallel
phase of an application. The major difference between SHIFT
and SSMS is that SHIFT uses the stream of a particular core
and all other cores use it for prefetching, but SSMS uses a
single AGT and PHT to train and store the streams coming
from all the cores. Table 5 shows the programming models,
sharing patterns and various metrics related to MLC, LLC,
and MLC prefetchers. Kindly note that these values are for a
4-core CMP with SMS as the MLC hardware prefetcher. In
Table 5, prefetcher sensitivity refers to the degree of reduction
in execution time with SMS over a system without prefetching.
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Application Programming
Model

Communication
Pattern

Prefetcher Sen-
sitivity

XCore
Ratio

MLC
MPKI

LLC
MPKI

MLC
PPKI

Pf Accuracy (in
%)

bodytrack Data Read Only Low High 0.73 0.46 0.15 36
canneal Irregular Read Only Low High 17.85 9.09 0.8 15
dedup Pipeline Migratory, P & C High High 1.80 0.90 1.40 59
x264 Pipeline Read Only High High 0.76 0.73 0.22 67
ferret Pipeline Migratory, P & C Low High 6.52 0.85 4.00 70
fluidanimate Data Read Only High Medium 1.82 1.78 0.23 47
freqmine Data Read Only High Medium 4.76 0.04 0.40 50
vips Data Read Only Medium High 1.73 1.16 0.09 48
streamcluster Data Read Only High High 11.32 5.55 14.07 46
facesim Data Read Only High High 1.68 14.69 9.02 95
swaptions Data Read Only Low Low 0.02 0.09 1.53 86
blackscholes Data Read Only Low Low 0.22 0.10 0.18 89
raytrace Data Read Only Medium Low 0.18 0.36 0.14 51

Table 5: Characteristics of PARSEC benchmarks. P & C stands for producer & consumer, MPKI stands for misses per kilo
instructions. PPKI stands for prefetch issued per kilo instructions. We define Pf Accuracy in Section 6.5.
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Figure 11: Speedup (Reduction in Execution time) on a 4-core
CMP.

The sensitivity of an application is considered to be High if
the reduction is more than 10%, Medium if the reduction is
in between 2% to 10%, and Low if the reduction is less than
2%. XCore ratio refers to the ratio of XCore signatures to the
sum of XCore signatures and intra-core signatures. This ratio
is only for the spatial signatures that recur at-least 4 times.
XCore ratio is considered to be High if the ratio is greater than
0.85, Medium if the ratio is in between 0.60 and 0.85, and
Low if it is less than 0.6.

6.2. Execution Time

We evaluate XStream on both 4-core and 8-core systems.
Figure 11 compares the execution time of SSMS, XStream,
and the ideal cross-core prefetcher normalized to SMS on a
4-core CMP. On an average (geomean), compared to SMS,
XStream reduces the execution time by 11.3%. Applications
such as dedup, vips, streamcluster, ferret, and facesim are
the major benefactors with reductions of 13%, 20%, 22%,
24%, and 28% respectively. Cores associated with these ap-
plications communicate heavily as compared to rest of the
PARSEC applications. SSMS does a poor job compared to
SMS because of the cross-core noise that comes from non-
recurring non-cooperative streams. We use 256 and 8192
entries (provides the best coverage) for the shared AGT and
PHT respectively in SSMS. swaptions and blackscholes have
negligible cross-core spatial streams and their performance
with SSMS is similar to their performance with SMS. The
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Xstream IDEAL

Figure 12: Speedup (Reduction in Execution time) on an 8-
core CMP.

ideal cross-core spatial streamer reduces the execution time by
23.13%. Figure 12 compares the reduction in execution time
with XStream and with the ideal cross-core prefetcher normal-
ized to SMS on an 8-core system. We do not compare XStream
with SSMS because SSMS causes increase in the execution
time for all the benchmarks except swaptions and blacksc-
holes. For 8-core CMP, on an average (geomean), XStream
reduces the execution time by 9.4%. streamcluster, x264,
ferret, and vips are the major benefactors with reduction of
29.09%, 15%, 14% and 15.2% respectively.

6.3. Analysis

Table 5 shows that the applications such as dedup, x264,
facesim and streamcluster are highly sensitive to prefetching
and their XCore ratio is also high. XStream delivers its best
for these applications except for x264. For x264, XStream
increases the LLC pollution (eviction of demand lines because
of prefetching, that are later used) by 6%.
facesim uses an iterative Newton-Raphson method over a

matrix, which is used by multiple cores. Hence, it has high
cross-core spatial correlation. dedup and ferret use pipeline
programming model where each stage of the pipeline is oc-
cupied by one or more threads and each stage communicates
heavily to its successor stage. Applications such as canneal
also shows high XCore ratio but XStream fails to deliver per-
formance because of irregular and non-deterministic behavior
of spatial signatures that recur.

Applications such as swaptions and blackscholes do not
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Figure 13: Miss rate on a 4-core CMP.

communicate heavily. blackscholes uses data parallel model
and it partitions its data structures in such a way that each
thread works in its own partition, which limits the XCore
communication. So XStream reduces the execution time of
swaptions and blackscholes only by 2% and 3%.

From all the applications mentioned in Table 5, ferret has
an interesting trend. ferret is an application which belongs to
the Low prefetch sensitive class but with XStream, the execu-
tion time reduces significantly. Figure 11 shows, there is a gap
between XStream and the ideal cross-core prefetcher. One of
the factors that limits XStream as compared to the ideal cross-
core prefetcher is the number of harmful prefetches issued
by XStream. To bridge the gap between the ideal cross-core
prefetcher and XStream, we propose feedback-driven XStream
in Section 6.9. On a 4-core system, applications such as
dedup, ferret, x264 and facesim suffer from this trend. For
these applications, more than 88% of the harmful prefetches
are issued from 37 spatial signatures. Out of these 37 spatial
signatures, only 9 of them issue useful prefetches.

On an 8-core system, streamcluster has an interesting be-
havior as it communicates consistently with other threads but
after a fixed window of 128K clock cycles, the communica-
tion becomes intensive. This happens in case of fluidanimate
also.

Impact of XCore Timeliness: XCore timeliness plays
an important role in improving the effectiveness of XStream.
To quantify the effect of timeliness, we compare XStream
with and without XCore communication. In case of XStream
without in-time communication, the AGT of the master core
sends the bit vector to the PHT of the master core and com-
municates the same to the worker core also. Compared to
XStream with in-time communication, on an average (ge-
omean), XStream without in-time communication increases
the execution time by 6.5% (7.18%) on 4-core (8-core) system.
On a 4-core system, applications such as dedup and facesim
show an increase of 35% and 29.2% in their respective execu-
tion times as compared to XStream with in-time communica-
tion. The XCore timeliness plays a bigger role for the 8-core
system. Applications such as facesim, dedup, fluidanimate
and x264 are sensitive to the in-time communication of the
streams.
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Figure 14: Miss rate on an 8-core CMP.

6.4. MLC and LLC Miss rates

Figure 13 compares the reduction in MLC and LLC miss
rates for 4-core system with SMS and XStream. On an average,
XStream reduces the MLC miss rate (average across all the
private MLCs) from 37% (with SMS) to 20%. Similarly at the
LLC, on an average, XStream reduces the miss rate from 44%
(with SMS) to 39%. Please note, miss rate here indicates only
the demand miss rate and it does not account for additional
prefetch requests and their misses at the LLC. Figure 14 shows
the reduction in MLC and LLC miss rates for an 8-core system.
On an average, XStream reduces the MLC miss rate from 60%
(with SMS) to 46% and LLC miss rate from 42% (with SMS)
to 34%. The reduction in miss rates help XStream in reducing
the execution time.

6.5. Accuracy, Coverage, and Pf Traffic

Prefetch accuracy (in %) of XStream is defined as

Prefetch Accuracy =
#Pf Hits

#Pf Issued
∗100 (1)

wherein Pf Hits is the demand hits to the prefetched cache
lines and Pf Issued is the prefetch requests sent to the LLC
because of XStream only (we do not add the prefetch requests
issued because of the local streams). To find the accuracy,
we augment each cache line with an additional bit that is set
if the line is brought in to the cache because of cross-core
streaming (not because of the intra-core spatial streaming). To
achieve this, we change the PHT by augmenting an additional
bit for every bit in the bit vector. This additional bit is set
whenever a bit is set in the bit vector because of the XCore
communication.
Prefetch coverage (in %) of XStream is defined as

Prefetch Coverage=
#Pf Hits

#Demand Misses + #Pf Hits
∗100 (2)

where Demand Misses stands for data misses at the MLC.
Additional Pf traffic is the additional prefetch requests issued
by the XStream as compared to SMS. Kindly note that this
traffic does not include the communication between PHTs and
communication between a PHT and the XStream Detector.
Figure 15 shows that, on an average (not geomean), for 4-core
CMP, XStream delivers an accuracy of 63.7% and a coverage
of 39.61% with additional prefetch traffic of 19.07%. Applica-
tions such as swaptions and blackscholes have high accuracy
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Figure 15: Accuracy, Coverage, and additional Pf Traffic in %
of XStream on a 4-core CMP.

with low coverage. The reason behind this behavior is the
#prefetches issued by XStream, which is very low (additional
10% compared to SMS). Figure 16 shows the accuracy, cover-
age, and additional traffic because of XStream on an 8-core
CMP. We also quantify the additional interconnect bandwidth
consumed because of XStream detection and communication.
On an average, for 4-core and 8-core CMP, XStream con-
sume additional interconnect bandwidth of 18% and 15.53%
respectively. This additional bandwidth is because of the
communication of streams from PHTs to the shared XStream
Detector and from master prefetcher to worker prefetcher. Ap-
plications such as vips, dedup, and facesim consumes an
additional bandwidth of more than 40% as compared to the
baseline SMS. Note that with XStream, all the applications
from PARSEC do not saturate the interconnect bandwidth.
Table 6 summarizes the overall results of XStream for 4-core
and 8-core systems.

6.6. Comparison with TMS and SORDS

We do not compare XStream with TMS [25] and
SORDS [26] because as compared to the baseline SMS, both
of them perform poorly with the practical on-chip hardware
budget of 256 KB per core. Both [25] and [26] perform better
than SMS when we increase the hardware budget to 2 MB per
core (with hardware budget of less than 2 MB per core, TMS
is unable to beat SMS).

6.7. Scalability

When we move from a 4-core to a 8-core system, the aver-
age reduction in the execution time drops from 11.3% to 9.4%.
The scalability of XStream depends on the factors which deal
with the application behavior such as 1) degree of XCore com-
munication and 2) application scaling.

degree of XCore communication: If more number of
threads participate in crosscore streams, we can anticipate
an increase in Xcore communication. For applications such
as x264 and streamcluster, this is the case. On moving to
a 8-core system from a 4-core system, the degree of Xcore
communication increases for these applications resulting in
reduction of execution time.

application scaling: XStream scales poorly if the ratio of
the number of software threads spawned to the number of cores

Reduction in Additional Additional
Execution Time Pf Traffic Interconnect

Bandwidth
4-core 11.3%( max of 24%) 19.07% 18%
8-core 9% (max of 29.09%) 17.69% 15.53%

Table 6: Summary of results for XStream.
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Figure 16: Accuracy, Coverage, and additional Pf Traffic in %
of XStream on an 8-core CMP.

is high. For instance, dedup and ferret spawn 2+3n threads
and 2+4n threads respectively in an n core system. The other
factor that can limit the true scaling of an application is the
number of synchronization primitives (such as locks) used
and how frequently synchronization is required. The number
of locks acquired by a particular thread per number commit-
ted kilo instruction (LPKI) is a clear indicator of application
scaling. For instance fluidanimate(1.36), freqmine(0.03) and
vips(0.01) have orders of magnitude higher LPKI than others.
Naturally, these applications do not scale well with core count
and see a drop in the savings of execution time.

organization of XStream framework: Another important
factor related to scaling is to understand how scalable the hard-
ware organization of XStream is for 4-core and 8-core systems,
the shared XStream detector with an on-chip interconnect such
as crossbar does a good job but for many-core systems (16-
core and above), shared XStream detector with a crossbar may
become a scalability bottleneck. On an average, on each link,
XStream uses 57% of the spared interconnect bandwidth in
XStream detection and communication but with the increase
in the core count, the bandwidth utilization goes down because
of more number of cores compete for XStream detector. As
part of our future work, we would like to explore a distributed
XStream, wherein chunks of XStream will be distributed with
the LLC banks and also over a scalable interconnect such as
ring.

6.8. Sensitivity Studies and Tradeoffs

We analyze the sensitivity of XStream to the #signatures
present in XStream Detector and to the size of MLC and L1
on a 4-core CMP. Our baseline evaluation has 4096 signatures
at the XStream Detector with 256 KB of MLC and 32KB of
L1 D-cache. With 2048 signatures, the coverage of XStream
decreases by 18% for applications such as canneal, fluidani-
mate, and facesim. These applications have more than 4000
distinct XCore signatures. For MLC size of 64 and 128 KB,
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XStream reduces the execution time by 13.27% and 15.24%
respectively. In case of MLC size of 512 KB, XStream reduces
the execution time by 10.91%. If one is allowed to change
only L2’s size to increase performance, the size of L2 has to
be increased to at-least 1MB/core (512KB/core is enough for
applications such as bodytrack and blackscholes) to match
the performance of XStream. Our experiments also show that
the increase in size of L1 from 32KB to 64KB/128KB pro-
vides only a marginal improvement of less than 1.5% over the
baseline.

6.9. Feedback Driven XStream

The performance of XStream can be further improved
with prefetch throttling techniques such as feedback directed
prefetching (FDP) [20]. FDP throttles the prefetcher by chang-
ing the prefetch degree and prefetch distance based on prefetch
metrics such as accuracy, coverage, and cache pollution. As
SMS does not use parameters such as prefetch degree and
prefetch distance, simple integration of FDP with XStream is
not possible. So we use the prefetch accuracy to enable/disable
cross-core prefetching. For every prefetch request generated
because of the cross-core bits, we add an additional bit with
the prefetch requests and the responses. We also add an addi-
tional bit for each cache line brought into the cache because of
cross-core streaming. After every 64K clock cycles, we enable
XStream if the prefetch accuracy is more than 0.45 else we
disable it. On an average (geomean), feedback driven XStream
reduces the execution time by 14.25% over SMS. Due to space
constraints, we do not present the performance results in detail.
Feedback driven XStream reduces the Pf traffic by 7.45% over
XStream. XStream when integrated with pollution filtering
mechanism [28] reduces the execution time by 12.38% and
10.17% on 4-core and 8-core system respectively.

6.10. Effect On Multiprogrammed Workloads

We assess the effectiveness of the proposed XStream by
evaluating it in a multiprogrammed scenario also. In mul-
tiprogrammed setup, multiple independent applications run
independently with minimal or no XCore communication. The
XCore communication comes from the operating system code
and not from the independent applications. We test the ro-
bustness of XStream by simulating 32 4-core and 16 8-core
workload mixes from SPEC 2006 benchmark suite [3] and
in terms of weighted speedup, XStream performs similar to
SMS.

7. RELATED WORK

TMS: Wenisch et al.’s TMS prefetcher [25] exploits tempo-
ral correlation among coherent miss streams at the L1 D-cache
that spread across the cores. TMS minimizes the coherent
read misses in DSMs. The idea targets commercial workloads
and scientific applications and it works well for applications
with migratory sharing pattern. The major disadvantage of

this approach is the large hardware overhead (24 MB on an
4 core CMP) and frequent use of cache directories. Wenisch
et al.’s STMS [24] implements TMS by storing the streams
at the DRAM Though 48 MB is a small fraction of memory
for large scale servers, it is not the case for CMPs. Modern
day CMPs use multiple levels of cache with the last level
cache (LLC) being shared by all cores. which results in ad-
ditional DRAM traffic and consumption of additional L2-L3
bandwidth. In an 8-core CMP, on an average, compared to
SMS, STMS increases the DRAM traffic by 51%. Wenisch’s
Ph.D. thesis [23] proposed an extension of TMS to CMPs and
showed the effectiveness of TMS on a 4-core CMP. Similar to
TMS in DSMs, TMS in CMPs incurs hardware overhead of 9
MB per core.

SORDS: Wenisch et al.’s SORDS prefetcher [26] exploits
the producer-consumer sharing pattern. The main observa-
tion of SORDS is the correlation between the producer and
consumer cores. Based on this observation, SORDS stores
the streams generated by the producer that is initiated by a
write request. On a future demand miss at the consumer core,
SORDS forwards the streams produced by the producer core.
Similar to TMS, SORDS incurs additional storage of 22 MB
on a 4-core CMP.

STeMS: Somogyi et al.’s spatio temporal memory stream-
ing (STeMS) [18] prefetcher is based on the temporal correla-
tion among streams within a spatial region. STeMS correlates
the temporal streams that are local to a particular core and
it is oblivious to the cross-core streams. STeMS incurs stor-
age overhead of 6.52 MB on a 4-core CMP. Also, TMS and
SORDS consult the cache coherence directory to decide which
core’s main memory holds the temporal streams.

Cross-core Stride Prefetcher: Panda and Balachandran
proposed a cross-core stride prefetcher [16] , which exploits
spatial strides (based on the demand misses at L1) present
within and across the cores. The idea is similar to Bhattachar-
jee et al.’s ICC [5], which is an inter-core cooperative prefetch-
ing framework proposed for TLBs. The authors evaluated their
framework for a 2 level cache hierarchy. Though cross-core
strides dominate the demand misses at the L1, MLC misses
do not contribute to cross-core strides. In case of PARSEC,
on an average, cross-core strides are of more than 128 cache
lines. In applications such as blackscholes and facesim, on an
average, 42% of strides cross the virtual page boundaries and
cross-core strides contribute negligibly in applications such as
streamcluster and ferret.

Kamruzzaman et al. proposed inter-core prefetch-
ing(ICP) [9], which uses helper thread(s) to prefetch data
into a core and then it migrates the execution to the prefetched
core. Apart from cross-core streaming techniques, there are
data forwarding techniques which forward data from one core
to another. Data forwarding method, proposed by Koufaty et
al. [11] uses compiler hints to forward data across the cores.
The effectiveness of these techniques depend on the cache size
because on an average, on a 4-core CMP, with MLC of 256
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KB, 82% of the time, data forwarded by one core gets evicted
before the same gets consumed by the other core. Recently,
Manivanan et al. proposed a consumer initiated forwarding
technique [14] for task-based programming models. Koufaty
et al. compared data prefetching techniques with the data
forwarding techniques in [12] . Other techniques such as
Data Marshaling [21] eliminates cross-core write misses with
the help of marshal instructions in staged executionmodels.
Techniques such as stealth prefetching [8] uses coarse grain
coherence tracking to prefetch aggressively in broadcast based
shared multiprocessors.

There are proposals such as PACMAN [27] and PADC [13],
which provide prefetch awareness at the LLC and at the
DRAM controller. We do not evaluate XStream with PAC-
MAN and PADC but we believe prefetch awareness will boost
the performance of XStream further as the awareness tech-
niques are orthogonal to the baseline XStream. Recently, Cao
at al.’s [22] proposed a framework called ICHAT, which assists
inter-cache data transfer for heterogeneous chip multiproces-
sors. Exploring XStream with ICHAT is a promising future
work.

8. CONCLUDING REMARKS

This paper proposed cross-core spatial streaming (XStream),
a prefetching technique for the MLCs that exploits cross-core
spatial streams. With negligible hardware overhead, XStream
results in 11.3% and 9% reduction in execution time for 4-core
and 8-core CMPs, respectively. As part of future work, we
would like to extend XStream for multi-chip configurations,
where each chip will have 4-cores to 8-cores and an XStream
framework of one chip can communicate spatial streams to
XStream frameworks of other chips. But in multi-chip configu-
rations, all the cores do not share a single monolithic LLC and
the placement of the XStream Detector will play an important
role.

9. Acknowledgments

The authors thank the anonymous reviewers and the Shep-
herd of this paper Ravishankar Iyer for their valuable sugges-
tions. Special thanks to Anju Moosad, T V Kalyan, Tripti
Warrier, Akanksha Jain, Vivek Seshadri, Madhu Mutyam and
Mainak Chaudhuri for their insightful feedback on the initial
versions of this paper. Biswabandan is supported by the TCS
Ph.D. fellowship. This work is also supported by the IBM
India SUR grant. The authors gratefully acknowledge the
support of TCS and IBM.

References
[1] http://www.hotchips.org/wp-content/uploads/hc_

archives/hc25/HC25.80-Processors2-epub/HC25.27.
820-Haswell-Hammarlund-Intel.pdf .

[2] Intel 64 and ia32 architecture software developer’s manuals. http:
//www.intel.com/products/processor/manuals/.

[3] Spec benchmark suite. http://www.spec.org/cpu2006/.

[4] N. Barrow Williams, C. Fensch, and S. Moore. A communication
characterisation of splash-2 and parsec. In IISWC, 2009.

[5] A. Bhattacharjee and M. Martonosi. Inter-core cooperative tlb for chip
multiprocessors. In ASPLOS, 2010.

[6] C. Bienia, S. Kumar, J. P. Singh, and K. Li. The parsec benchmark
suite: characterization and architectural implications. In PACT, 2008.

[7] N. Binkert, B. Beckmann, G. Black, S. K. Reinhardt, A. Saidi, A. Basu,
J. Hestness, D. R. Hower, T. Krishna, S. Sardashti, R. Sen, K. Sewell,
M. Shoaib, N. Vaish, M. D. Hill, and D. A. Wood. The gem5 simulator.
SIGARCH Comput. Archit. News, 39(2), Aug. 2011.

[8] J. F. Cantin, M. H. Lipasti, and J. E. Smith. Stealth prefetching. In
ASPLOS, 2006.

[9] M. Kamruzzaman, S. Swanson, and D. M. Tullsen. Inter-core prefetch-
ing for multicore processors using migrating helper threads. In ASP-
LOS, 2011.

[10] C. Kaynak, B. Grot, and B. Falsafi. Shift: Shared history instruction
fetch for lean-core server processors. In MICRO, 2013.

[11] D. Koufaty, X. Chen, D. K. Poulsen, and J. Torrellas. Data forwarding
in scalable shared-memory multiprocessors. IEEE Trans. Parallel
Distrib. Syst., 7(12), 1996.

[12] D. Koufaty and J. Torrellas. Comparing data forwarding and prefetch-
ing for communication-induced misses in shared-memory mps. In ICS,
1998.

[13] C. J. Lee, O. Mutlu, V. Narasiman, and Y. N. Patt. Prefetch-aware dram
controllers. In MICRO, 2008.

[14] M. Manivannan, A. Negi, and P. Stenstrom. Efficient forwarding of
producer-consumer data in task-based programs. In ICPP, 2013.

[15] R. B. N. Muralimanohar and N. P. Jouppi. Cacti 6.0: A tool to un-
derstand large caches, technical report, university of utah and hewlett
packard laboratories. 2007.

[16] B. Panda and S. Balachandran. Hardware prefetchers for emerging
parallel applications. In PACT, 2012.

[17] V. Seshadri, O. Mutlu, M. A. Kozuch, and T. C. Mowry. The evicted-
address filter: A unified mechanism to address both cache pollution
and thrashing. In PACT, 2012.

[18] S. Somogyi, T. F. Wenisch, A. Ailamaki, and B. Falsafi. Spatio-
temporal memory streaming. In ISCA, 2009.

[19] S. Somogyi, T. F. Wenisch, A. Ailamaki, B. Falsafi, and A. Moshovos.
Spatial memory streaming. In ISCA, 2006.

[20] S. Srinath, O. Mutlu, H. Kim, and Y. N. Patt. Feedback directed
prefetching: Improving the performance and bandwidth-efficiency of
hardware prefetchers. In HPCA, 2007.

[21] M. A. Suleman, O. Mutlu, J. A. Joao, Khubaib, and Y. N. Patt. Data
marshaling for multi-core architectures. In ISCA, 2010.

[22] J. G. T. Cao and B. Beckmann. ichat: Inter-cache hardware-assistant
data transfer for heterogeneous chip multiprocessors. 2013.

[23] T. F. Wenisch. Temporal memory streaming. phd thesis, carnegie
mellon university. 2007.

[24] T. F. Wenisch, M. Ferdman, A. Ailamaki, B. Falsafi, and A. Moshovos.
Practical off-chip meta-data for temporal memory streaming. In HPCA,
2009.

[25] T. F. Wenisch, S. Somogyi, N. Hardavellas, J. Kim, A. Ailamaki, and
B. Falsafi. Temporal streaming of shared memory. In ISCA, 2005.

[26] T. F. Wenisch, S. Somogyi, N. Hardavellas, J. Kim, C. Gniady, A. Aila-
maki, and B. Falsafi. Store-ordered streaming of shared memory. In
PACT, 2005.

[27] C. J. Wu, A. Jaleel, M. Martonosi, S. C. Steely, Jr., and J. Emer. Pacman:
Prefetch-aware cache management for high performance caching. In
MICRO, 2011.

[28] X. Zhuang and H. Lee. A hardware-based cache pollution filtering
mechanism for aggressive prefetches. In ICPP, 2003.

13

http://www.hotchips.org/wp-content/uploads/hc_archives/hc25/HC25.80-Processors2-epub/HC25.27.820-Haswell-Hammarlund-Intel.pdf
http://www.hotchips.org/wp-content/uploads/hc_archives/hc25/HC25.80-Processors2-epub/HC25.27.820-Haswell-Hammarlund-Intel.pdf
http://www.hotchips.org/wp-content/uploads/hc_archives/hc25/HC25.80-Processors2-epub/HC25.27.820-Haswell-Hammarlund-Intel.pdf
http://www.intel.com/products/processor/manuals/
http://www.intel.com/products/processor/manuals/
http://www.spec.org/cpu2006/

	INTRODUCTION
	BACKGROUND
	Baseline CMP Design
	Cross-core Sharing Patterns
	Spatial Memory Streaming (SMS)

	MOTIVATION FOR XSTREAM
	CROSS-CORE SPATIAL STREAMING
	XStream Detector
	XStream Detection
	XCore Communication
	 XCore Timeliness
	Special Cases

	HARDWARE IMPLEMENTATION
	Storage, Energy, and Power Requirements
	On-chip Interconnect Support
	Timeliness

	EXPERIMENTAL EVALUATION
	Methodology
	Execution Time
	Analysis
	MLC and LLC Miss rates
	Accuracy, Coverage, and Pf Traffic
	Comparison with TMS and SORDS
	Scalability
	Sensitivity Studies and Tradeoffs
	Feedback Driven XStream
	Effect On Multiprogrammed Workloads

	RELATED WORK
	CONCLUDING REMARKS
	Acknowledgments

