TCPT - Thread Criticality-driven Prefetcher
Throttling

Biswabandan Panda
Dept. of CSE, Indian Institute of Technology, Madras
Email: biswa@cse.iitm.ac.in

Abstract—A single parallel application running on a multicore
system shows sub-linear speedup because of slow progress of one
or more threads known as critical threads. Identifying critical
threads and accelerating them can improve system performance.
One of the metrics that correlate to thread criticality is the
number of cache misses and the penalty associated with it.
This paper proposes a throttling mechanism called TCPT which
throttles hardware prefetchers by changing the prefetch degree
based on the thread criticality.

Motivation: Prefetcher throttling technique like HPAC [2] has
been explored for sequential applications running on muticore
systems. HPAC coordinates and controls the aggressiveness of
multiple prefetchers using prefetch metrics. HPAC [2] does
well for sequential applications. However, in case of a single
parallel application, the effectiveness of HPAC [2] is marginal.
Per core prefetch metrics like accuracy and DRAM bandwidth
consumption does not consider the constructive interference
among threads of a single parallel application. HPAC [2] does
consider inter core pollution but for applications with high
degree of sharing, it is nullified by the constructive interference
among threads. We propose a hardware prefetcher throttling
technique called TCPT which controls the aggressiveness
of the prefetcher based on the progress of the threads and
the number of prefetches issued (PFjssyeq). Aggressiveness
prefetching makes the critical threads faster that causes reduc-
tion in the number of cache misses.

TC, Slack and TP: We modify a recently proposed thread
criticality predictor [1], which accounts for L1 and L2 cache
misses and the miss penalty associated with it. We extend
the predictor for a three level cache hierarchy which also
accounts for demand responses from remote cores. Thread
Criticality (TC) of thread i is defined as

TC (i) = L2hira(i) + L * L3nits (i) + Ri * Remotenirs (i)
+LL; * DRAMp;4(4)

_ _ remotepenalty _ __ LlL2penalty
Where’ R’ - Llpenalty ’ L‘ ~— Llpenalty °

 _ L1L2L3penalty
and LL‘ - Llpenalty

L2j15(i) is the number of L1 misses that hit in the local L2.
L3j15(1) is the number of L1 misses that also miss in L2
and hit in the shared L3. Remotep;:s(i) is the number of L1
or L2 misses that hit in the L1 or L2 of the remote cores.
DRAMyp;5(i) is the number of L1 misses that miss in L2
and L3 and hit in the DRAM. We use a metric called Slack
which tracks the difference between speed of the threads. For a
given thread i, Slack(i) = max(TC(j))vj=0 to n—1 — TC(2),
where n is the total number of threads in an application.

The thread with slack = 0 is treated as the critical(slowest)

978 -1-4799-1021-2/13/$31.00 ©2013 IEEE 399

Shankar Balachandran
Dept. of CSE, Indian Institute of Technology, Madras
Email: shankar@cse.iitm.ac.in

thread. We also use a metric called Normalized Thread
Criticality(WTC) of thread ¢ which we define as
NTC(i) = TC(i)/LS(:) where, LS(i) is the number of Loads
and Stores that miss in L1. We use a Slackipresholq register
to find multiple critical threads, if any. Threads with slack
value less than Slackip.,eshoiqa are treated as critical threads.
The objective of TCPT is to speedup the critical threads
which are prefetch friendly. To check whether a thread ¢, is
prefetch friendly or not, we define a metric called Thread
Progress(TP). TP of a given thread ¢ at a given simulation
window j as TPj; = NTC(i)j—y — NTC(i);. If TP;; is
positive then the thread i is progressing.

TCPT: We use TP (i), Slack (i) and PFjssuca(i) of a
thread ¢ to throttle a prefetcher. We place TCPT beside the
shared L3 cache which collect these metrics at a regular
interval of 100K cycles and resets it to zero after making a
decision. Each thread maintains a set of counters to calculate
the relevant metrics and a lastT'C; register which stores the TC
value of the previous simulation window. Table I shows the
throttling decisions in TCPT which are based on the progress
of a thread.

TABLE 1. DECISIONS BASED ON TCPT

Critical?| Progress? PFissyea | Throttling Rationale

Yes Yes - degree=4 minimize criticality
Yes No Low degree=2 prefetcher unfriendly
Yes No High degree=1 minimize pollution
No Yes Low degree=4 prefetcher friendly
No Yes High degree=2 minimize pollution
No No - degree=1 minimize pollution

Results: We use gem5 FS simulator to simulate a three level
cache hierarchy. Our baseline system setup has a shared L3
cache with HPAC controlling the per core stride prefetchers
which prefetches into L3 from DRAM. We compare TCPT
with the baseline prefetcher in terms of execution time. On
an average, TCPT beats the baseline prefetcher by 8.13%
for 4 cores. Benchmarks like streamcluster and vips
show improvement of 13.4% and 17%. In case of 8 cores,
TCPT improves the execution time by 7% as compared to
the baseline prefetcher. For applications, where all the threads
progress with the same speed, the effectiveness of TCPT is
marginal(less than 1%) . We observe this trend in applications
like blackscholes and canneal.

REFERENCES

[1] Bhattacharjee et al.,“Thread criticality predictors for dynamic perfor-
mance, power, and resource management in chip multiprocessors”, ISCA
2009, pp. 290-301

[2] Ebrahimi et al., “Coordinated control of multiple prefetchers in multi-
core systems”, MICRO 2009, pp. 316-326

