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Abstract—Large instruction working sets are common with
modern client and server workloads. These working sets often fit
in the large last-level cache (LLC). However, the L1 instruction
cache (L1-I) suffers from a high miss rate blocking the instruction
supply to the front-end of the processor. Instruction prefetching
is a latency hiding technique that can bring instructions from
the LLC into the L1-I. We propose a bouquet of instruction
pointer (IP) jumpers, named JIP. JIP is a high-performance
L1-I prefetcher that uses different prefetching techniques by
classifying instructions into the following categories: (i) a non-
branch, (ii) a branch that jumps to a single target IP on all
instances, and (iii) a branch that jumps to different target
IPs on different instances. Compared to a baseline with no
instruction prefetching, averaged across 50 traces, JIP provides
a prefetch coverage of 91.33% (as high as 99.99%), which leads
to a performance improvement of 27.75% (as high as 93%).
JIP makes a strong case for instruction prefetching as the
performance gap between the perfect L1-I and JIP is just 7.49%.
JIP demands a hardware overhead of 127.8 KB.

I. INTRODUCTION

Modern client and server workloads operate on large code
footprints that do not fit in a small L1 instruction cache (L1-
I). L1-I prefetchers play an essential role in improving system
performance by mitigating the front-end bottleneck. Existing
instruction prefetching techniques [1]–[8] mitigate the front-
end bottleneck up to a great extent.
Opportunity: To understand the impact of instruction
prefetching, we simulate the perfect L1-I (miss rate of 0%).
Compared to a baseline system with no prefetching, next-
line (NL) and next-two-line (N2L) prefetchers, provide per-
formance improvement of 6.92% and 9.99%, respectively. In
contrast, the perfect L1-I provides a performance improvement
of 35.24%. This trend shows that there is ample opportunity
available for high-performance instruction prefetching.
Challenges: The code footprints of most applications usually
fit into the on-chip caches like L2 and the last-level cache
(LLC). The challenge is to perform inter-cache prefetching
and prefetch the instruction cache lines into the L1-I from
L2 and LLC, on time. If prefetch responses come late, then
demand requests do not get L1-I hits. So, prefetch timeliness
is the key. Further, the prefetcher’s performance is dependent
on the frequency of control flow jumps.
Our goal and approach: We aim to bridge the gap between
the perfect L1-I and N2L prefetcher by on time instruction
prefetching of control flow jumps (target-IPs). Our prefetching

framework takes an IP as input (trigger-IP) and prefetches the
cache lines containing the target-IPs. We classify trigger-IPs
into three different classes: (i) a non-branch, (ii) a branch
that jumps to a single target-IP on all instances (mostly
direct-jump/call and conditional IPs)1, and (iii) a
branch that jumps to different target-IPs on different instances
(mostly indirect-jump/call and return IPs). We
name our framework JIP, a bouquet of IP jumpers. We are
motivated by the bouquet of IPs for data prefetching [9]. For
each IP class, JIP provides a prefetching technique that is
most suitable for the IPs belonging to that class. On average,
JIP covers 91.33% of the L1-I misses by prefetching on-time
96.9% of the time, and provides a performance improvement
of 27.75% (closer to the perfect L1-I with a gap of just
7.49%).

II. BOUQUET OF IP JUMPERS

In this section, we make a case for a bouquet based
instruction prefetching framework. At a 10,000 feet view, our
framework falls into the category of branch-predictor directed
instruction prefetching, where the effectiveness of the branch
predictor is the key. The championship infrastructure provides
a highly accurate hashed-perceptron branch predictor. The
outcomes of the branch predictor, along with the branch targets
are available at the L1-I, providing the illusion of a perfect
Branch Target Buffer (BTB). Note that, the infrastructure
provides a target-IP of zero in two cases: if the branch
predictor predicts that (i) the branch is not taken or (ii) the
branch is taken, but the prediction is wrong. We leverage
branch prediction and branch target information in designing
our prefetching framework.

A. JIP Prefetching framework

Our prefetching framework comprises of three components:
a runner and two IP jumpers, where the input to the run-
ner/jumper is a trigger-IP, and the output is a target-IP. JIP
also uses two supporting components for improving prefetch
timeliness and storage density.
The Runner: For non-branch IPs, the framework uses a
runner that continues to prefetch the next cache line following
the sequential control flow (next sequential IP). Whenever

1Self-modifying codes are one of the exceptions.



Tag Target IPs Array of Targets Target Confidence
15 bits 3 targets x 25 bits 8 indices x 2 bits 3 targets x 2 bits

MJT-I (1024 entries, Direct Mapped)

Trigger IP Target IP NRU
25 bits 25 bits 1 bit

SJT (7800 entries, Fully Associative)

Tag Target IPs Array of Targets Target Confidence
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MJT-II (512 entries, Direct Mapped)

Uncompressed IP Compressed IP
Upper 48 bits 9 bits

Mapper Table 
(512 entries, Fully Associative)

Leader IP Follower IP
25 bits 25 bits

Temporal Table 
(7150 entries,  Fully Associative)

Fig. 1. Hardware tables with the JIP prefetching framework. NRU: Not
recently used.

the championship infrastructure provides a branch target of
zero, the runner component assumes that the control flow is
sequential. For a branch IP, the framework uses two different
jumpers to predict the target-IPs.
Jumper-I (Single target jumper): Single target jumper han-
dles branches that jump to the same target-IPs on all instances.
We maintain the trigger-IP and target-IP relationship using a
hardware table that we call Single Target Jump Table (SJT).
SJT mostly deals with direct-calls/jumps, with a few
exceptions. This table also stores the trigger-IP and target-
IP pairs for conditional-jumps. These jumps have only
two branch outcomes i.e., either the branch is taken (in which
case SJT stores the target-IP), or the branch is not taken. In the
latter case, the program continues with the sequential control
flow on the basis of the runner component of our prefetching
framework. SJT issues a prefetch request for the cache line
containing the target-IP if the trigger-IP is present in SJT. On
average, across 50 client, server, and SPEC CPU traces, SJT
handles 85% of the total branches.
Jumper-II (Multiple targets jumper): In contrast to branches
that have the same target-IPs for all instances, branches of type
indirect-jump/call and return can have different
target-IPs for different instances of a given trigger-IP. The
target-IPs recur forming a target-IP sequence. For an indirect
branch with trigger-IP A, suppose the target-IP for A1 is B,
and for A2 is C (where Ax is the xth instance of a trigger-
IP A). It is likely that this sequence will recur in the future
i.e., for trigger-IP Ax, if the target-IP is B, then for trigger-IP
Ax+1, the target-IP will be C. So we store multiple target-IPs
for a given trigger-IP using a direct mapped hardware table
called Multiple Targets Jump Table (MJT). We also store the
temporal sequence of last n target-IPs in an array called array-
of-targets. We prefetch on the basis of the target-IP information
present in MJT. Before prefetching, for a given trigger-IP, we
compare the recent k target-IPs with the array-of-targets, k at
a time. In case of a perfect match of k target-IPs with the
array-of-targets from index i to j, we use the target at j + 1th

index as the target-IP for the next instance of the trigger-IP.
We also store a confidence-counter per target-IP to select

amongst the multiple target-IPs if the recent k target-IPs do
not get a perfect match with the array-of-targets. In such cases,

MJT selects the target-IP with the highest confidence as the
target-IP for the next instance. We observe that some trigger
branch IPs have fewer unique target-IPs than others. So, we
use two MJTs (MJT-I and MJT-II) to store four and eight
target-IPs per trigger-IP. We use (8,4) and (16,4) as the values
of (n, k), for MJT-I and MJT-II, respectively. We store two and
three bits indices in the array-of-targets that point to target-
IPs of MJT-I and MJT-II, respectively. The array-of-targets for
MJT-I and MJT-II store the last eight instances of three target-
IPs and last 16 instances of eight target-IPs, respectively.
Migration among the jumpers: We classify a trigger-IP’s
branch behaviour on the basis of the number of unique target-
IPs it jumps to on different instances.

We do not insert non-branch IPs into SJT and MJTs.
Initially, we insert every branch trigger-IP into SJT. On a future
instance of the same trigger-IP, we index into SJT and compare
the current target-IP with the target-IP in SJT. If the target-IPs
are different then we speculate that the trigger-IP can jump
to different target-IPs in the future instances, and migrate that
entry into MJT-I. Further, if the number of unique target-IPs
for a trigger-IP crosses the number of target-IPs that MJT-I
stores then we migrate it to MJT-II. However, if the number
of unique target-IPs crosses the number of target-IPs that MJT-
II stores then we use a replacement policy. The policy replaces
the oldest target on the basis of the temporal order of targets.
Improving prefetch timeliness with a temporal table: We
observe that runner and jumpers are accurate in terms of
predicting the target-IPs (with an average accuracy of more
than 65%). However, more than 16% of the prefetch requests
are late, on average. To improve the timeliness of prefetch
requests, we store the IPs corresponding to the recent n L1-I
accesses in an n-entry Recent Access Queue (RAQ).

We observe that the temporal sequence in which an appli-
cation accesses IPs usually recurs. So, we correlate the last
nth L1-I access IP (head of the RAQ) with the current L1-I
access IP, if the current L1-I access is a miss. We refer to the
former as leader IP and the latter as follower IP. We store such
[leader IP, follower IP] pairs in a table we call the temporal
table, and whenever we observe an access to the leader IP, we
prefetch the cache line containing the follower IP, too. The
temporal table uses a random replacement policy. With the
temporal table, the prefetcher’s lateness reduces to 3.1%.
Improving storage density with a mapper table: We find
that storing IPs in a 64-bit format demands a huge amount
of storage for our framework. To make our design practical,
we use an IP mapper. We observe that the number of unique
values that the upper 48 bits of IPs represent is much less
than 248. So, we use a mapper that maps unique upper 48
bits of an IP to unique nine bits, and stores the mappings in
a fixed size, fully associative mapper table. Note that if the
number of unique values of the upper 48 bits crosses 29, then
we expect the accuracy of the prefetcher to drop. We use the
first-in-first-out (FIFO) replacement policy when the mapper
table is full.

Figure 1 shows all the hardware tables of interest, including
temporal and mapper tables. Note that, to index into the direct
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mapped MJTs, we right shift the 25-bit compressed IP by two
bits and then use the lsbs for indexing (10 and nine for MJT-I
and MJT-II, respectively) and use the rest of the bits as tag.

III. DESIGN AND IMPLEMENTATION

Access flow: Figure 2 shows the flow of our JIP framework.
On every L1-I access, we use IP mapper to generate the
compressed trigger-IP that we use to index into JIP tables
( 1©). If there is a hit in JIP tables, we get the target-IP from
JIP tables. If there is a miss in JIP tables, we prefetch the
cache line containing the next IP in the sequential control flow
assuming that the IP is a non-branch IP. Note that this may not
always be the case as JIP tables can not store all the branch
IPs to abide by the storage budget. We continue the lookahead
from the prefetch IP until we reach the lookahead-depth or the
prefetch-degree ( 2©). We use a Recent Prefetch Queue (RPQ)
as a filter to avoid making redundant prefetch requests ( 3©).
We use the reverse IP mapper to decompress the prefetch IP
and issue the prefetch request ( 4©).

Whenever an L1-I access occurs, JIP uses the access IP
(trigger-IP) to lookup JIP Tables and find the target-IP for the
given trigger-IP. Suppose, for trigger-IP A; JIP finds that the
target-IP is B. JIP prefetches B, begins another table lookup
with B as the trigger-IP, and finds the target-IP for B. We define
maximum lookahead-depth as the number of times JIP looks
up JIP tables with a trigger-IP. We define prefetch-degree as
the maximum number of prefetch requests JIP makes to unique
cache lines during the lookahead process.

JIP uses a lookahead-depth of 260 IPs and prefetch-degree
of seven cache lines on every L1-I access. Note that the
lookahead stops if we reach the limit of either lookahead-depth
or prefetch-degree. On average, across 50 traces, we find that
JIP uses a degree of 2.2, which means it generates a similar
amount of prefetch traffic as an N2L prefetcher.
The extended lookahead process: If there are no L1-I
accesses for two cycles after the last L1-I access, we decide
to perform lookahead beyond the look-ahead depth (extended
lookahead). We store the last cycle in which we make a
prefetch request in a register (last-prefetch-cycle). If we per-
form the extended lookahead the cycle after the last-prefetch-
cycle, and another L1-I access comes at the next cycle, then
the extended lookahead prefetch request may cause contention.
It can block the prefetch requests from the actual L1-I access
lookahead path as the L1-I prefetch queue is a FIFO. So, we
wait till two cycles after the last-prefetch-cycle to begin the
extended lookahead in case another L1-I access occurs.

We distribute the extended lookahead process across the
subsequent three clock cycles. To perform the extended looka-
head for three cycles, we use a counter remaining-lookahead-
cycles, which we initialize to three before starting the extended
lookahead and decrement it in every cycle in which we
perform the extended lookahead. Also, we use a prefetch-
degree of one in the subsequent clock cycles as it is possible
that the extended lookahead may be following the incorrect
control flow path. If another L1-I access occurs before the
extended lookahead process is complete, then we stop the

L1-I Access IP

L1-I Prefetch Queue

48 bits 16 bits

1IP Mapper

9 bits 16 bitsCompressed  IP

JIP Tables

Next/Target IP

Prefetch IP 9 bits 16 bits

Reverse IP Mapper

48 bits 16 bitsUncompressed  IP

Recent Prefetch Queue

Lookahead based on 
depth and degree

2

3

4

HitMiss

Fig. 2. Access flow of JIP framework. IP mapper and reverse IP mapper use
the same mapper table.

extended lookahead and begin a new lookahead starting with
the latest L1-I access.
Lookahead path selector: While performing the extended
lookahead in the subsequent cycles, we may have multiple
control flow paths to select from: (i) starting from the last-
prefetch-IP and (ii) another starting from the last-temporal-
table-target-IP (if the trigger-IP gets a hit in the temporal
table). We use a 9-bit saturating LAP (lookahead path)-
confidence-counter that we initialize to 256. The counter
selects between these two control flow paths. We modify
the LAP-confidence-counter for every accurate request that
JIP makes during the extended lookahead, increment it by
two or decrement it by one when we perform the extended
lookahead starting from the last-temporal-table-target-IP or the
last-prefetch-IP, respectively. Note that we favor the temporal
table target path over the last prefetch IP path. We reset the
LAP-confidence-counter to 256 after every 256 L1-I accesses.
This requires a counter (L1-I-accesses) to track the number of
L1-I accesses.

To track the accuracy of both the extended lookahead
paths, JIP uses two 64-entry queues that we call lookahead
prefetch request queues (LAPRQs). LAPRQs store the cache
line addresses for two paths: one for the path following last-
temporal-table-target-IP and another for the path following the
last-prefetch-IP. Whenever JIP observes an L1-I hit for an
entry in one of the LAPRQs, it modifies the LAP- confidence-
counter to favor the path corresponding to that LAPRQ.

Practical Implementation of JIP: For the sake of competi-
tion, we use fully-associative tables. However, we find making
the fully-associative tables direct-mapped, causes an average
performance degradation of just 1.31%. As it is impractical
to access JIP tables lookahead-depth times in a single cycle,
we can implement a Bloom filter [10] to classify each IP as
branch or non-branch. As we only store branches in the JIP
tables, we need to access the tables only if the IP is a branch
IP which is only about 20% of the instructions on average.
Further, if JIP predicts the following branch path for trigger
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Fig. 3. Speedup normalized to no prefetching with JIP and the Perfect L1-I.

TABLE I
HARDWARE OVERHEAD. REFER FIGURE 1 FOR THE DETAILS ABOUT

DIFFERENT HARDWARE TABLES.
#Entries

(A)
Entry size

(B bits) A×B (bits)

Hardware Tables
SJT 7800 51 397800
MJT-I 1024 112 114688
MJT-II 512 280 143360
Temporal Table 7150 50 357500
Mapper Table 512 57 29184

Queues
RPQ 64 19 1216
RAQ 25 25 625
LAPRQ (for two paths) 64×2 19 2432

Counters and Registers
Degree, Depth, L1-I-accesses, LAP-confidence-counter 3+9+8+9=29
Last-prefetch-IP, Last-temporal-table-target-IP 25+25 = 50
Last-prefetch-cycle, Remaining-lookahead-cycles 64+3 = 67
Total 127.8 KB

IP A: (B, C, D, E, F, G, H), then we can store this control flow
and verify the temporal access order. So if we observe an L1-I
access to IP B, we know that JIP tables predict the same path
from IP C for trigger IP B. So, we can avoid accessing the JIP
tables until we see L1-I accesses for say IP F or G, or we get
to know that JIP’s prediction is wrong in which case we need
to access the JIP tables immediately to predict a new branch
path. This can help us in reducing the number of accesses to
JIP tables by four to five times on the basis of JIP’s accuracy.

Hardware overhead: A self-contained Table I shows the
hardware overhead with the JIP prefetching framework.

IV. EVALUATION

Performance: Figure 3 shows speedup with JIP normalized
to a system with no instruction prefetching. On average, JIP
provides a speedup of 27.75%. The gap between the speedup
of JIP and the perfect L1-I is less than 5% for 25 out of the 50
traces. gcc is one of the benchmarks where we fail to bridge
the performance gap when we compare it with the perfect
L1-I. Recent lightweight prefetcher return-directed instruction
prefetching [4] provides performance improvement of 21%
with a 128KB storage budget. Our SJT component provides
closer to 24% with around 50KB of storage budget (refer
Figure 4). Temporal table provides a competitive advantage
to JIP, and pushes performance closer to 28%.

SJT SJT + MJTs JIP
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27.75%SJT
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Temporal Table

Fig. 4. Utility of different components in our JIP framework. Runner is an
integral part in all three cases.

Prefetch coverage and timeliness: JIP achieves a prefetch
coverage of 91.33% (as high as 99.99%). To quantify
the prefetch timeliness, we use the following metric: 1-

late−prefetch
late−prefetch+useful−prefetch . JIP is a timely prefetcher with
average timeliness of 96.9%.

V. SUMMARY

We proposed a bouquet of instruction pointer (IP) jumpers
(JIP) that uses runner and jumpers, to predict the control flow
target IPs for non-branch and branch instructions, respectively.
JIP covers 91.33% of the L1-I misses by prefetching on
time 96.9% of the time, resulting in a high performance
improvement of 27.75%.

VI. ACKNOWLEDGEMENTS

We would like to thank all the anonymous reviewers for
their helpful comments and suggestions.We would also like to
thank members of CARS research group for their feedback
on the initial draft. This work is supported by the SRC grant
SRC-2922.001.

REFERENCES

[1] Reinman et al., “Fetch directed instruction prefetching,” in MICRO,
1999.

[2] Ferdman et al., “Temporal instruction fetch streaming,” in MICRO, 2008.
[3] Kaynak et al., “SHIFT: shared history instruction fetch for lean-core

server processors,” in MICRO, 2013.
[4] Kolli et al., “RDIP: return-address-stack directed instruction prefetch-

ing,” in MICRO, 2013.
[5] Ferdman et al., “Proactive instruction fetch,” in MICRO, 2011.
[6] Kaynak et al., “Confluence: unified instruction supply for scale-out

servers,” in MICRO, 2015.
[7] Kumar et al., “Boomerang: A metadata-free architecture for control flow

delivery,” in HPCA, 2017.

4



[8] Kumar et al., “Blasting through the front-end bottleneck with shotgun,”
in ASPLOS, 2018.

[9] S. Pakalpati and B. Panda, “Bouquet of instruction pointers: Instruction
pointer classifier-based spatial hardware prefetching,” in ISCA, 2020.

[10] B. H. Bloom, “Space/time trade-offs in hash coding with allowable
errors,” in ACM Communications, 1970.

5


	Introduction
	Bouquet of IP jumpers
	JIP Prefetching framework

	Design and Implementation
	Evaluation
	Summary
	ACKNOWLEDGEMENTS
	References

