
Bouquet of Instruction Pointers: Instruction Pointer
Classifier-based Spatial Hardware Prefetching

Samuel Pakalapati
Intel Technology Private Limited

Birla Institute of Technology and Science, Pilani*
Hyderabad, India

samuel.pakalapati@intel.com

Biswabandan Panda
Dept. of Computer Science and Engineering

Indian Institute of Technology Kanpur
Kanpur, India

biswap@cse.iitk.ac.in

Abstract—Hardware prefetching is one of the common off-chip
DRAM latency hiding techniques. Though hardware prefetchers
are ubiquitous in the commercial machines and prefetching tech-
niques are well studied in the computer architecture community,
the “memory wall” problem still exists after decades of micro-
architecture research and is considered to be an essential problem
to solve. In this paper, we make a case for breaking the memory
wall through data prefetching at the L1 cache.

We propose a bouquet of hardware prefetchers that can handle
a variety of access patterns driven by the control flow of an
application. We name our proposal Instruction Pointer Classifier
based spatial Prefetching (IPCP). We propose IPCP in two
flavors: (i) an L1 spatial data prefetcher that classifies instruction
pointers at the L1 cache level, and issues prefetch requests
based on the classification, and (ii) a multi-level IPCP where
the IPCP at the L1 communicates the classification information
to the L2 IPCP so that it can kick-start prefetching based on
this classification done at the L1. Overall, IPCP is a simple,
lightweight, and modular framework for L1 and multi-level
spatial prefetching. IPCP at the L1 and L2 incurs a storage
overhead of 740 bytes and 155 bytes, respectively.

Our empirical results show that, for memory-intensive single-
threaded SPEC CPU 2017 benchmarks, compared to a baseline
system with no prefetching, IPCP provides an average perfor-
mance improvement of 45.1%. For the entire SPEC CPU 2017
suite, it provides an improvement of 22%. In the case of multi-
core systems, IPCP provides an improvement of 23.4% (evaluated
over more than 1000 mixes). IPCP outperforms the already high-
performing state-of-the-art prefetchers like SPP with PPF and
Bingo by demanding 30X to 50X less storage.

Index Terms—Hardware Prefetching, Caching

I. INTRODUCTION

Improved hardware prefetchers at the different levels of

cache hierarchy translate to performance gain by reducing the

off-chip costly DRAM accesses. Hardware prefetchers such

as next-line (NL) and stride based on instruction pointer (IP-

stride) [18] are some of the simple, efficient, and light-weight

data prefetchers employed at the L1 level. Well-established and

recent spatial L2 prefetchers (prefetchers that prefetch within a

spatial region) [33], [13], [14], [38], [11], [45] have pushed the

limits of data prefetching. Apart from these spatial prefetchers,

there are temporal prefetchers [54], [55], [24], [12], [59], [58]

that target irregular but temporal accesses. In general, spatial

* A major part of the work was done through a remote internship, while
the author was at BITS Pilani.

prefetchers demand less storage (closer to tens of KBs, except

spatial memory streaming (SMS) [47] and Bingo [11]) as

compared to the temporal ones (closer to hundreds of KBs). In

the 3rd Data Prefetching Championship (DPC-3) [3], variations

of these proposals were proposed1.

It is well understood that the prefetchers at L1 and L2 would

need to be different as the access patterns at the L2 are different

from those at the L1 (filtered by the L1). The primary reason

being, identifying access patterns at the L2 is not trivial as

the L1 prefetcher may cover a few demand misses or may

trigger additional inaccurate prefetch requests jumbling the

access pattern at the L2. Note that, most of the recent spatial
prefetchers are L2 based with prefetchers like NL and IP-stride
dominating the space of L1 data prefetching.

The opportunity: One of the key objectives behind design-

ing hardware prefetchers is to break the memory wall by hiding

the costly off-chip DRAM accesses. An ideal solution to the

memory wall problem would be an L1-D cache (L1-D) hit rate

of 100%, with permissible access latency. One of the ways to

achieve the same is through L1-D prefetching. Prefetching at

the L1-D provides the following benefits (i) unfiltered memory

access pattern, (ii) prefetched blocks can get filled into all the

levels of cache hierarchy (more importantly, the L1-D), (iii) an

ideal L1-D prefetcher can make the L2 prefetcher superfluous.

The challenges: The benefits mentioned above come with

the following challenges. (i) Hardware overhead: an L1-

D prefetcher should be light-weight. (ii) Prefetch address

generation should meet the lookup latency requirement of

L1-D. (iii) An L1-D prefetcher should not probe the L1-D on

every prefetch access (to make sure that the address is already

not present in the L1 cache) as L1-D is bandwidth starved. (iv)

Aggressive hardware prefetching may not be possible at the

L1-D because of limited entries at the supporting hardware

resources such as prefetch queue (PQ) and miss-status-holding-

registers (MSHRs). For example, typically, the #entries in the

PQ and MSHR of L1-D is one-half of L2’s. (v) An L1-D

prefetcher with low accuracy can pollute the small L1-D.

The problem: State-of-the-art spatial prefetchers [45] [33],

[11], [14], [13] are designed specifically for L2’s access patterns.

1A preliminary version of bouquet of prefetchers won the 3rd data
prefetching championship.

118

2020 ACM/IEEE 47th Annual International Symposium on Computer Architecture (ISCA)

978-1-7281-4661-4/20/$31.00 ©2020 IEEE
DOI 10.1109/ISCA45697.2020.00021

Prefetchers like SMS [47], [49] and Bingo [11] are capable

of prefetching at the L1-D. However, both SMS and Bingo

demand hardware overhead closer to 100KB.

Our goal is to propose a lightweight spatial L1-D prefetcher

that can overcome the challenges and seize the opportunities

mentioned above without compromising the prefetch accuracy

and prefetch coverage.

Our approach: We propose a prefetching framework in the

form of a bouquet of prefetchers based on instruction pointer

(IP) classification (driven by the control flow of an application).

We cover a wide variety of memory access patterns like (i)

only control flow, (ii) control flow predicted data flow, and

(iii) control flow coupled with data flow. We find that each

IP can be classified into unique IP-classes based on its access

patterns, and the resulting classification could be used for better

prefetching. We perform IP classification at the L1-D and use it

for L1-D prefetching. We also extend our framework to the L2

prefetcher by communicating the IP classification information

from the L1-D prefetcher.

Overall, we make the following key contributions:

• We find that spatial access patterns can be correlated with

the IPs and motivate the need for lightweight spatial L1-D

prefetchers (Section III).

• We propose Instruction Pointer Classification based spatial

Prefetching (IPCP) that classifies IPs into three classes

and design a tiny prefetcher per class (Section IV). These

tiny prefetchers cover more than 60%, 70%, and 80% of

the L1, L2, and last-level cache (LLC) demand misses

for memory-intensive (LLC MPKI≥1) SPEC CPU 2017

applications, respectively (refer Figure 10).

• We propose a bouquet of tiny prefetchers that work in

harmony with each other through per-class throttling and

hierarchical priority (Section V).

• We also communicate the classification information from

L1-D to L2, facilitating multi-level prefetching using the

common theme. Overall, IPCP is an extremely lightweight

framework that demands 895 bytes (Section V).

• On average, compared to no prefetching, IPCP provides

a performance improvement of 45.1%, 22%, and 23.4%

for single-core memory-intensive applications, single-core

all applications, and multi-core mixes with 4 and 8-cores,

respectively. IPCP provides this performance with 30X to

50X lower hardware overhead when compared to state-

of-the-art spatial prefetchers (Section VI).

II. RELATED WORK

Spatial prefetchers: Spatial prefetchers predict strides,

streams, or complex strides within a spatial region providing

competitive coverage. Prefetchers like variable length delta

prefetching (VLDP) [45] and signature path prefetching (SPP)

[33] are well known delta prefetchers. VLDP stores the

history of deltas to predict future deltas. SPP is a state-of-the-

art delta prefetcher that predicts the non-constant (irregular)

strides (commonly known as deltas). SPP works based on the

signatures (hash of deltas) seen within a physical OS page

to index into a prediction table that predicts future delta. It

dynamically controls the prefetch aggressiveness based on the

success probability of future deltas.

Spatial Memory Streaming (SMS) [47], [49] is a spatial

prefetcher that exploits the relationship between the IP of a

memory request, and access pattern within a spatial region

based on the IP and the first offset within that region. SMS

incurs huge storage overhead, which is larger than the L1-D

size. A recent work called Bingo [11], uses multiple signatures

(like IP, IP+Offset, and memory region) and fuses them into

a single hardware table. Bingo provides better coverage than

SMS. However, Bingo incurs similar overhead as SMS (around

119KB). There are component prefetchers like division of labor

(DOL) [35] that target specific program semantics (like pointer

chains, loops, etc.) for prefetching by getting the information

of interest from the processor core.

Offset prefetchers: Offset based prefetchers such as Best-

offset Prefetcher (BOP) [38] and Sandbox [42] prefetcher

explore multiple offsets. An offset of k means the cache block

that is distanced by k cache blocks. These prefetchers choose

the offset that provides the maximum likelihood of future use.

BOP continues to prefetch with a particular offset till a new

offset performs better than the current offset. Multi-Look-ahead

Offset Prefetcher (MLOP) [44] is an extension of BOP that

considers several lookaheads for each offset, and finds the best

offset for each look-ahead. MLOP is motivated by Jain’s Ph.D.

thesis that proposed an Aggregate Stride Prefetcher (ASP) [23].

Temporal Prefetchers: Temporal prefetchers like temporal

streaming [55], Irregular Stream Buffer (ISB) [24], and Domino

[12] track the temporal order of accesses. Usually, temporal

prefetchers demand hundreds of KBs. Recently, Managed ISB

(MISB) [59] and Triage [58] have optimized the hardware

overhead without compromising coverage.

Prefetch filters/throttlers: To further improve the effective-

ness of hardware prefetchers, prefetch filters like Perceptron-

Prefetch-Filter (PPF) [14] and Evicted-Prefetch-Filter (EPF)

[43] have been proposed. Apart from filters, there are aggres-

siveness controllers (throttlers) [16], [20], [30], [31], [39]–[41],

[50] that control the prefetch degree and prefetch distance based

on prefetch metrics like accuracy, coverage, LLC pollution, and

DRAM bandwidth. Dual Spatial Pattern Prefetcher (DSPatch)

[13] is an adjunct spatial prefetcher that works like a throttler. It

improves the effectiveness of SPP based on DRAM bandwidth

utilization.

III. MOTIVATION

Unique and persistent IP behavior: One of the major

insights that drive IPCP is that each IP has a specific behavior

associated with it. For example, here is an L1-D access pattern

(in terms of cache-line aligned addresses) of an IPA from SPEC

CPU 2017 benchmark named bwaves: C0,C3,C6,C7,C9.

This IP follows a constant stride of three for the most part. A

simple IP-stride prefetcher can provide high prefetch coverage,

in this case. Here is another access pattern for IPB from a

benchmark named mcf: C0,C1,C3,C4,C6,C7. The stride

pattern of this IP is 1,2,1,2,1. In this case, an IP-stride prefetcher

provides zero coverage as the prefetcher fails to get high

119

1.2
1.25

1.3
1.35

1.4

IP-stride Bingo MLOP

Sp
ee

du
p

ov
er

 n
o

pr
ef

et
ch

in
g

L1 prefetching L2 prefetching
Prefetching at L1, filling till L2

Fig. 1: Utility of L1-D prefetching.

confidence for either of the strides. Another access pattern

that is common in streaming benchmarks like lbm and gcc
is the following: IPC(C0,C2,C1),IPD(C3,C6,C4,C5),

and IPE(C9,C8,C7). It is a global stream. Looking at the

global pattern, we can see that all the accesses are contiguous

and limited to a small memory region. However, their access

pattern is a bit jumbled based on the program order. In this

case, many IPs like IPC ,IPD, and IPE follow the global stream.

It is clear that IPs are unique and can be classified into different

classes based on its access patterns. Note that a particular IP

can move from one access pattern to another and it can stay

active with one or more access patterns.

Utility of L1 prefetching: To understand the importance of

prefetching into the L1-D, we perform a simple experiment

with prefetchers like IP-stride, Bingo, and MLOP over 46

memory-intensive SPEC CPU 2017 traces [8] [9] (refer Table

II for the simulated systems parameters). Figure 1 shows the

utility of prefetching into the L1. On average, compared to a

baseline with no prefetching, prefetching into the L1 provides

6% to 13% additional speedup over L2 prefetching. The reasons

for the performance difference is obvious: (i) in case of L2

prefetching, prefetched blocks are brought till L2 only, and

(ii) access patterns learned at the L2 are noisy because of the

L1 filtered accesses. To improve the learning, we also perform

experiments where L1 prefetchers learn at L1 but prefetch

till the L2. It brings the performance gap to 3-7%. However,

there are traces (e.g., gcc-2226B) that show a performance

difference of more than 73% for Bingo and MLOP. Out of 46

memory-intensive traces, only one trace (bwaves-2931B)

shows prefetching till L2 is better and by a marginal 1.4%,

making a strong case for L1 prefetching.

Dearth of spatial L1-D prefetchers: Note that state-of-

the-art spatial prefetchers like SMS, VLDP, SPP, Bingo, and

DSPatch are designed for L2 or the LLC. VLDP, SPP, and

DSPatch that are specifically designed for L2, provide better

performance when employed at the L2 only. SMS and Bingo at

L1 do a good job but demand too much storage (∼100KB) for

an L1-D prefetcher. Bingo provides better performance density

(speedup/KB) over SMS. Figure 1 shows Bingo’s performance

with a 48KB L1 (our L1-D is of size 48KB, same as the

upcoming Intel Ice Lake’s L1 [7]).

Key observations: The persistent behavior of IPs demands

for an IP classification. Each class can be handled by one

prefetcher. It is in contrast to global access based prefetchers

where a huge monolithic prefetcher is expected to learn and

predict all the memory access patterns. Also, as the state-of-

the-art spatial prefetchers are not designed for L1-D or are

heavy-weight, combining them at the L1-D to cater a variety

IP-tag Last-vpage Last-line-offset Stride Confidence
IP Table

Fig. 2: Hardware table for the CS class.

of access patterns is not a promising direction to improve

performance. With IPCP, we seek for high performance with
simplicity and modularity using the minimum silicon area. We

use extremely simple and tiny L1-D prefetchers enabling a

highly practical design. On top of that, a new access pattern

can be added to the existing classes as a new class seamlessly,

thus enabling modularity.

IV. IP CLASSIFIER

We propose a spatial IPCP that classifies an IP into three

classes. We do not prefetch crossing the page boundary as

IPCP is a simple spatial prefetcher that prefetches within a

small region (2KB and 4KB)2.

A. Constant stride (CS):only control flow

IPs that show constant stride in terms of cache line aligned

addresses belong to this class. It is a common pattern seen by

IPs and can be prefetched using an IP-stride prefetcher.

Figure 2 shows an IP table for prefetching based on the

constant strides (CS). For the CS class, an IP table is tagged

and indexed by an IP. Each entry in the table has a stride
field that corresponds to the stride seen by the IP. A 2-bit

confidence counter confidence is incremented every time

the same stride is seen, and decremented otherwise. It is used

to determine whether to prefetch using the constant stride or

not. The entry also stores the last-vpage (last two least

significant bits (lsbs) of the last-virtual-page), and the last

cache-line-offset (last-line-offset) within a page. In

the virtual address space, pages are mostly contiguous and

a change in the last two lsbs is sufficient to detect a page

change (previous page or the next page) seen by the IP. For

a 4KB page and 64B cache lines, offset can vary from 0 to

63). The last-line-offset, along with the last-virtual-page, is

used to calculate the stride between two accesses from the

same IP. The virtual page information is used for learning and

calculating the stride when a new page is seen. For example, a

change from an offset 63 to 0, with page change in the forward

direction, would be (0-63) + 64 = stride of one. It is a small

addition to the IP-stride prefetcher.

Training phase: An IP goes through training till it gains

enough confidence (counter value greater than one) to prefetch.

Trained phase: Once an IP gains confidence, it is termed

as trained, and it starts prefetching as follows: prefetch address

= (current cache-line-address) + k × (learned-stride), where

k varies from one to the prefetch degree. Note that a learned

IP stops prefetching in case of low confidence and starts

prefetching again after gaining confidence.

2Exploring IPCP as a light-weight spatio-temporal prefetcher like STeMS
[48] along with a synergistic TLB prefetcher is a promising direction of
research and we leave the exploration to future work.

120

IP-tag Signature

Stride Confidence
Complex Stride Prediction Table (CSPT)

IP Table

Signature << 1

Prefetch using the Stride till
(#Prefetch-issued < degree)

❶
❷ ❷❸

XOR ❷
New
signature

Fig. 3: Hardware table(s) for the CPLX class.

B. Complex stride (CPLX):control flow coupled with data flow

For access patterns like C,C+3,C+6,C+10,C+13,C+16,

and C+20 with strides of 3,3,4,3,3,4, a CS class prefetcher

would provide 66% coverage since it would be unable to predict

stride 4. Also, if the stride pattern is 1,2,1,2,1,2, a CS class

prefetcher would lack the confidence to prefetch any stride

since the two strides compete for the same entry in the IP table.

In this case, coverage would be zero. We call these patterns

as complex strides and create a complex stride class (CPLX)

for the corresponding IPs.

We create an n-bit signature of strides seen by an IP and

use it to index into a complex stride prediction table (CSPT)

that predicts future complex strides. An n-bit signature
captures the last n strides seen by an IP by hashing. The IP

table of CPLX class is also tagged and indexed by an IP. The

IP table of CPLX class stores the IP-tag and the signature
that points to the previous stride(s) predicted by the IP. CSPT

stores the next predicted stride pointed to by a signature and

a 2-bit confidence counter (similar to the CS class). Figure 3

shows the IP table of CPLX class and the CSPT table.

Training phase: An IP with its signature field finds the

stride at the CSPT. Every time it sees the same stride the

confidence counter is incremented by one and decremented

otherwise. This stride is hashed with the existing signature,

and the CSPT is looked up again to issue prefetch requests. The

stride obtained previously is added to the signature according

to the equation: signature = (signature << 1) ˆ stride. Note

that we shift the signature by a single bit so that we can

accommodate a highly complex stride pattern. Thus a pattern

can produce many signatures, but we do not observe too many

collisions in the CSPT because there are not many CPLX IPs

at the same point of time.

Trained phase: Every time the signature points to the stride,

and if the confidence is high enough (≥ one in our case), the

complex stride is added to the cache line to produce the prefetch

address. This look-ahead continues until the prefetch degree

count is reached (2 , 3 , and 1). If the confidence value is

zero, then the stride is added to the signature using the above

equation to predict the next stride (3) and no prefetching is

done.

CPLX and SPP: Fundamentally, CPLX class is different

from SPP. The latter uses a memory region (an OS page) and

captures the deltas observed within a page. However, CPLX

IP-tag Last-vpage Last-line-offset Stream Valid? Direction

Region-
id

Last-line
offset

Bit
Vector

Pos/neg
count

Dense
count

Trained? Tentative? Direction LRU bits
Region Stream Table (RST)

IP Table

L1 Access❶
❶

Fig. 4: Hardware table(s) for the GS class.

uses an IP and there is a difference in the access patterns

captured by CPLX. We find, there are cases where IP driven

complex strides hold the key. (i) The memory accesses (for a

given IP) are sometimes not in the powers of two (memory

layout in data structures across cache lines), causing an non-

constant stride pattern. For example, consider a cache line of

8 bytes, and if every 12th byte is accessed, the accesses create

strides as follows: byte addresses: 0, 12, 36, 48, 72; cache line

aligned addresses: 0, 1, 3, 4, 6; strides: 1, 2, 1, 2. (ii) Another

case is where the accesses are made by loops at various levels.

An outer loop could make constant stride accesses (can be

easily captured by the CS class). However, an inner loop could

make different stride accesses (depending on the strides of the

outer loop), thus causing bumps in the stride pattern. An IP

based CPLX can exploit this pattern.

Also, CPLX class focuses on local order of complex strides

(capturing control and data flow) unlike the global order (data

flow) seen by SPP. Note that, SPP is a high performing

prefetcher designed for L2 and CPLX alone cannot match SPP’s

effectiveness (apples vs oranges). CPLX’s implementation is

extremely lightweight since it is an L1-D prefetcher and has

the added benefit of reduced latency on the critical path of

issuing a prefetch at the L1 (SPP has to calculate confidence

by using logic or lookup tables).

C. Global stream (GS):control flow predicted data flow

A global stream is a set of cache aligned accesses (within a

small memory region) that usually follow a bursty pattern, and

these accesses can come from different IPs. Prefetching based

on the global stream makes more sense as it preserves the global

order of accesses (data flow within a region) and results in much

better timeliness. We propose a new prefetching technique to

prefetch global streams. Figure 4 shows the prefetch tables of

interest for the GS class.

Training phase: GS class prefetcher uses an IP ta-

ble (tagged and indexed in the same way as the previous

classes) and an IP corresponds to the GS class based on a

stream-valid bit with a direction of the stream. The

IP table gets this information from a Region Stream Table

(RST).

RST keeps track of regions and their denseness (#accesses).

Each region is of size 2KB (bigger size regions take more

time to train and provide marginal performance improvement)

and it maintains a 32-bit bit-vector (for tracking 32 cache

lines). When a new region is accessed, we allocate an entry

in RST. If a cache line within that region is accessed for the

first time, we set the corresponding bit in the bit-vector and

121

increment a saturating counter called dense-count. The

last-line-offset within the region is also stored. Note

that the width of last-line-offset in the IP table is 6 bits whereas

in RST it is 5 bits. If dense-count counter crosses a GS

threshold (75% of the cache blocks accessed within a region),

then the region is a dense region contributing to the GS, and all

the IPs accessing this region are classified as GS IPs. Also, the

trained bit of the corresponding RST entry is set. Note

that if a bit in the bit-vector is already set, the counter is not

incremented.

RST also uses an n-bit saturating counter (pos/neg
count) to determine the direction of the stream. Note that

this counter does not start from zero. It is initialized to 2n

2 . The

direction is calculated by finding out the difference between

two consecutive cache accesses (the difference between the

last-cache-line-offset and current access-offset within a region).

The pos/neg count gets incremented on positive direction

and gets decremented on negative direction. Depending on

the most significant bit (msb) of the pos/neg count, the

direction of a GS IP is determined.

When a GS IP encounters a new region, we look at the

previous region it had accessed (using last-vpage and the

msb of last-line-offset of the IP table). If the region

had already been trained as dense, i.e., the trained bit is set

in the RST, we assume the new region to be dense, tentatively
(control flow predicted data flow). The tentative bit in the

RST entry of the new region is set. If the trained bit is not

set in the previous region, it may mean that the GS nature is

no longer exhibited by the IPs and the tentative bit is not

set. This feature is designed to prevent locking of behavior

due to initial conditions. The reason we are using this scheme

is because it takes some time for the region to be trained as

dense, and we may not be able to issue GS prefetches during

this time. Hence we correlate the training information from

the previous region to tentatively issue GS prefetches in the

new region.

Trained phase: On a demand access, we check the trained

and tentative bits in the RST entry. If either of the bits is set, we

call the corresponding IP a GS IP and set the stream-valid
and direction bits in the IP table. Note that, through this

scheme, all IPs that access a dense region become GS IPs.

Once trained, a GS IP prefetcher just prefetches the next k
cache lines based on the trained direction (positive/negative

direction), where k is the prefetch degree.

D. A case for tentative NL (tentative data flow)

In case a demand access does not fall into any of the

three classes (CS, CPLX, and GS), we use the NL prefetcher.

However, the usage of NL prefetcher can be detrimental to

performance, especially in case of irregular access patterns.

So, we make it tentative. We calculate the L1 misses per kilo

instructions (MPKI) per core. Two counters are used, one

to count the number of L1 misses and the other to count the

number of retired instructions (if this information is unavailable

then misses per kilo cycles can also be used and it is equally

effective). Since we cannot afford useless prefetches when the

MPKI is too high, we turn off NL prefetching at the L1. Based

on the MPKI values, a tentative-NL bit is set for each cache

level when the MPKI is low (50, chosen empirically based on

average MPKI when prefetching turned off). NL prefetching

is ON only when tentative-NL is set.

V. BOUQUET OF PREFETCHERS

Based on the classification done in the previous Sections,

we design a single IP table shared by all three classes as four

fields of the IP table are used by all the classes. We have

auxiliary tables like CSPT and RST for CPLX and GS class,

respectively. Figure 5 shows the IPCP as a framework. On L1

access, IPCP uses the corresponding IP-tag bits to compare

entries with the IP table. Our IP table is a direct-mapped, 64

entry table. We get marginal performance improvements with

a 128 and 256 entry IP tables, corroborating with recent works

[38] and [13] that use IP-stride at the L1 with 64 entries. We

use a 128 entry direct-mapped CSPT table that captures a

signature of width seven (seven strides).

Since a replacement policy would add latency into the

critical path, we use a direct-mapped implementation instead.

All the confidence counters are 2-bit wide. We use an

eight entry RST to keep track of eight recent regions and

maintain LRU order among the regions. As the IP table

is shared among the classes, IPCP learns the constant and

complex strides by sharing the IP-tag, last-vpage, and

last-line-offset fields. GS class use last-vpage,

and the msb of last-line-offset to index into the RST

as mentioned in Section IV-C. Now, both CS and CPLX learn

their respective strides when they see a new page, as mentioned

in Section IV-A.

IP table and hysteresis: As the IP table is direct-mapped

and tagged, it is a challenge to decide which IP to keep for

prefetching, as there can be collisions between IPs matching to

the same table entry, we add an additional field valid bit to

maintain hysteresis (Figure 5). When an IP is encountered for

the first time, it is recorded in the IP table and the valid bit

is set. When another IP maps to the same entry, the valid bit

is reset, but the previous entry remains active. If the valid bit

is reset when a new IP is seen then the table entry is allocated

to the new IP and the valid bit is set again, ensuring that at

least one of the two competing IPs is tracked in the IP table.

Note that, valid bit is also shared by all the classes.

Priority of classes: In case of an IP table hit (1 of Figure

5), IPCP checks all three classes concurrently (2). Note that,
at a given point of time, an IP can be a part of no class, one
class or multiple classes. RST is checked concurrently for its

training. In step 2 , IPCP finds out if the IP belongs to CS

or GS class. IPCP prioritizes GS over CS if an IP gets a tie
between GS and CS (primarily for better timeliness and global

order). So, at the end of step 2 , IPCP either prefetches based

on GS or CS. In step 3 , IPCP goes for the CPLX class (it

means the IP does not belong to CS or GS class) by indexing

into the CSPT, and if it gets a low-confidence in the CSPT,

then it goes for the tentative NL class by looking at the MPKI.

In a nutshell, IPCP uses the following hierarchical priority:

122

IP-tag Valid? last-vpage Last-line-offset Stride Confidence Stream Valid? Direction Signature

9 bits 1 bit 2 bits 6 bits 7 bits 2 bits 1 bit 1 bit 7 bits

CS GS

L1 access [IP, Access address]

Region-id Last-line-offset Bit-
vector

Pos/neg
count

Dense? Trained? Tentative? Direction LRU bits

3 bits 5 bits 32 bits 6 bits 1 bit 1 bit 1 bit 1 bit 3 bits

❶
❶RST (8 entries)

IP Table (64 entries) CPLX

Stride Confidence

7 bits 2 bits

CSPT (128 entries)

❷GS > CS

Tentative NL

❷
CPLX

(!GS) && (!CS)

!CPLX

❸
Fields of IP table shared by CS, CPLX, and GS:
IP-tag, valid, last-vpage, Last-line-offset ❸

Fig. 5: IPCP as a bouquet of IP classes.

GS, CS, CPLX, and then NL. If an IP belongs to multiple

IP classes, then this priority order is used. Note that IPCP

does not access the table multiple times to find out the class

of particular demand access, because all the information is

stored as part of a single entry. IPCP checks all the classes

concurrently and finally selects the highest priority class, in

case an IP belongs to multiple (or all) classes. We discuss the

utility of priority orders in Section VI (Figure 13 (b)).

Lookup latency: The latency incurred during the issue of

a prefetch request is three cycles (cycle one: IP-table-lookup,

cycle two: prefetch based on CS or GS class as per the priority,

and CSPT table lookup, and cycle three: prefetch based on

CSPT if confidence is high else tentative-NL prefetching).

Since an L1-D lookup is around 5 cycles (48KB L1-D), a

prefetch can be issued by the time the corresponding demand

request is serviced. In case an L1-D reads two requests per

cycles (which is the case in our simulation framework and

also in the commercial machines), we go for a pipelined IPCP.

Now, the second request is pipelined with the first request’s

CSPT access, such that the second request’s prefetch can be

issued at the 4th cycle. We synthesize IPCP (at the RTL level

by using VHDL code) with the help of a Design Compiler for

7nm technology, and verify the latency, clocked at 4GHz.

If critical path of L1-D latency is an issue then for CSPT
table lookups, the prefetch distance can be increased. For
example, if CPLX generates the following prefetch addresses:
10, 25, and 30 then instead of prefetching from address 10,
CPLX would start prefetching from address 25. Note that this
applies only to the CPLX class.

Coordinated Prefetch Throttling: IPCP issues prefetch

requests with a default prefetch degree of three for CS and

CPLX classes and six for the GS class at L1. One of the primary

reasons for an aggressive GS is, once an IP becomes GS, it

means more than 75% of the cache blocks will be accessed

within that region. For coordination among the classes, we use

an epoch based prefetch accuracy driven throttling mechanism

to control the prefetch degrees of the various classes at the

L1-D. Each cache line at the L1 contains two bits to indicate

the class of the issued prefetch. Two counters are assigned to

every class, one to count the number of issued prefetches and

the other for the number of useful prefetches.

For each class, once in 256 per-class prefetch fills, we

measure the accuracy. We use two watermark thresholds (based

on empirical studies) in terms of prefetch accuracy: prefetch

accuracy of 0.75 (high water mark) and 0.40 (low water-mark).

We do not throttle degrees if the accuracy of a class lies in

between 0.40 to 0.75. If the accuracy is greater than 0.75, IPCP

keeps on increasing the degree till it reaches the default degree

for that class. Similarly, if the accuracy is lower than 0.40,

IPCP throttles down the prefetcher until it reaches a prefetch

degree of one. With this throttling, IPCP allows other classes

like CS and CPLX to prefetch if the accuracy of the high

priority class (GS) is too low. For example, if the accuracy of

the GS class is below 0.4, then IPCP prefetches based on GS

class with the throttled degree and also explores prefetching

using CS and CPLX.

L1-D bandwidth and Recent Request Filter: An L1-D

prefetcher probes the L1-D before issuing prefetch requests

to make sure that it is generating a prefetch address that is

not present in the L1-D. However, as mentioned in Section I,

L1-D is bandwidth-starved and heavily ported, and adding an

additional port, only for a prefetcher is costly, and may not

be feasible. To solve this problem, we use a small (32 entry)

recent-request filter (RR filter) [15], that keeps track of recently

seen tags (partial tag is sufficient) in the demand access and

recent prefetch addresses generated by the IPCP. These tags

123

IP-tag Valid? Class-type Stride/Stream-direction
9 bits 1 bit 2 bits 7 bits

L1 Prefetcher

L1 Miss Metadata Stride/stream-direction (7 bits)

Class-type: CS, GS, NL, No class (2 bits)

IP table (64 entries)

Note: IPCP does not prefetch with CPLX at L2.
The stride/stream-direction field stores the stream-direction in case of GS class.

Fig. 6: IPCP at the L2.

are most likely to stay in the L1-D or the L1 MSHRs (for the

misses). Before generating a prefetch request, IPCP probes this

filter and in case there is a hit, the prefetch request is dropped.

Multilevel Holistic IPCP: We implement IPCP at two

cache levels: L1 and L2. We do not implement it at the LLC,

as we do not see any considerable benefit. The prefetch requests

issued into L2 and L1 are also filled into the LLC. The access

stream at the L2 is now jumbled since it consists of prefetch

requests and demand misses from the L1. Thus we cannot

train on the L1 misses since some of the misses are converted

to hits due to L1 prefetching. This corruption of the stream

makes pattern matching at the L2 difficult.

Another alternative is to train the prefetcher at the L1 but

to fill it till L2. As IPCP at the L1 is already aggressive, if

we issue further prefetch requests (just to fill till the L2), PQ

(a FIFO) becomes full and starts dropping prefetch requests,

frequently and creates indirect throttling at the L1, affecting

both coverage and timeliness. For example, if IP-A and IP-B

are accessing the L1 concurrently and if we prefetch for IP-A

at the L1 and also for fills till L2 on top of IPCP at the L1

(by prefetching additional requests) then PQ will become full,

frequently and prefetch requests for IP-B will be dropped. Note

that even if the PQ is not full and the PQ occupancy is high

all the time, it affects the timeliness of L1 prefetch requests.

Hence we use the L1 prefetch requests to communicate the IP
classification information to the L2 prefetcher by transmitting
lightweight metadata along with the prefetch requests. With
our communication, we prefetch deep based on the L1 access
stream but from L2 and till L2, only. Note that L2 has relatively
more resources (PQ=16 entries and MSHR=32 entries) for
aggressive prefetching.

The IP table at the L2 (Figure 6) is only used for book-

keeping purposes. IPCP at the L2 does not issue prefetch

requests for the CPLX class. CPLX at the L2 does not yield

any benefits. It even causes performance degradation for some

of the benchmarks when used on top of IPCP at the L1. For

the benchmarks that we use, CPLX with prefetch degree of

three at the L1 provides a sweet-spot In terms of prefetch

coverage and accuracy. CPLX helps IPCP mostly for high

MPKI applications with irregular stride patterns. With degree

4 and above, CPLX degrades the performance for high MPKI

benchmarks. As we find no utility of deep CPLX prefetching

using higher degrees (in contrast to CS and GS classes where

we go for deep prefetching), we drop the idea of using CPLX

at the L2. Note that, with SPP, large depth (more degree) works

well as SPP works on a global access pattern whereas CPLX

TABLE I: Hardware Overhead with IPCP at L1 and L2.

entry-size in bits × entries overhead

IPCP at L1 IP table (36×64) + CSPT (9×128) + RST (53×8) +
2 class-bits per line ×64 sets×12 ways (48KB L1)
+ RR filter (12 bit tag×32 entries)

5800 bits

Others 1 bit: tentative-NL + 8×4 bits: prefetch-issued/class +
8×4 bits: prefetch-hits/class + 10 bits: miss-counter
+ 10 bits: instruction-counter + 7×4 bits: per-class
accuracy registers and one 7-bit MPKI register

113 bits

IPCP at L2 IP table (19 × 64) + 1 bit: tentative-NL + 10 bits:
miss counter + 10 bits: instruction counter

1237 bits

Total overhead: 740 bytes at L1 + 155 bytes at L2 895 bytes

works on a local per-IP access pattern.

IPCP at the L2 uses an IP table of 64 entries (similar to L1

IP table entries). Each entry contains an IP tag, an IP-valid

bit, a 2-bit class-type field (based on the metadata information

there are four possibilities, three classes along with the case

of no-class), 7-bit stride or the direction of the stream.

On demand access at the L2, the L2 prefetcher issues

prefetch requests by consulting the L2 IP table that is populated

based on the metadata information communicated by the L1

prefetcher. The stride values of the classes are passed down to

the L2 through the metadata only when the accuracy of the

respective classes is greater than 75, preventing the L2 from

learning and issuing low accuracy prefetches. For the NL class,

similar to the L1 level, we use the L2 MPKI threshold (40,

chosen empirically, as per the guideline discussed for L1-D)

for tentative-NL prefetching. This threshold is essential for

high MPKI applications like mcf. Note that, if the L2 sees a

prefetch request from L1-D with class NL, it simply prefetches

NL at the L2. At the L2, for the CS class, IPCP uses a prefetch

degree four. We use a higher prefetch degree at L2 because of

presence of additional MSHR and PQ entries.

Metadata Decoding at L2: When a prefetch request is

issued from L1, IPCP communicates the metadata containing

the class type along with its stride/stream-direction (in total 9

bits, only). Modern caches use L1 to L2 bus width of 128-bits,

256-bits [32] or more for carrying information for various

micro-architecture optimizations. Usually 20 to 30 bits are

unused and IPCP can leverage it. However, a hardware vendor

may not consider metadata transfer in case the bus width is

already utilized, fully. We discuss the utility of metadata transfer

in Section VI-B2. The metadata does not contain the IP because

the IP of the request is passed to the L2. IP information has

been used extensively at the L2 and the LLC [14] [56], [60],

[25], [29], [11], [24], [59]. However, if a hardware vendor does

not wish to communicate IP information to L2 (as mentioned

in [34]), then IPCP provides a simple alternative. As both L1

and L2 IPCP tables are of the same size and use IP-tag, IPCP

can communicate the IP-tag and the IP-index, which take up

to 15 bits together instead of a 64-bit IP.

Storage overhead: A self-contained Table I shows the

storage demand of IPCP at L1 and IPCP as a framework. IPCP

is extremely light-weight and tiny with a storage demand of 740

bytes at the L1 and 895 bytes for the entire cache hierarchy.

This is a significant improvement compared to lightweight

versions of MLOP [44], SPP+PPF [14], and Bingo [11] that

124

TABLE II: Simulated System parameters.

Core One to eight cores, 4GHz, 4-wide, 256-entry ROB

TLBs 64 entries ITLB, 64 entries DTLB, 1536 entry shared L2 TLB

L1I 32KB, 8-way, 3 cycles, PQ: 8, MSHR: 8, 4 ports

L1D 48KB, 12-way, 5 cycles, PQ: 8, MSHR: 16, 2 ports

L2 512KB, 8-way, 10 cycles, PQ: 16, MSHR: 32, 2 ports

LLC 2MB/core, 16-way, 20 cycles, PQ: 32×#cores, MSHR: 64×#cores

DRAM 4GB 1 channel/1-core, 8GB 2 channels/multi-core, 1600 MT/sec

demands 10X, 30X, and 50X more storage, respectively. Note

that, IPCP at L1 uses virtual address for its training as our L1

is virtually-indexed and physically-tagged. In case of physical-

indexed and physically-tagged L1, IPCP demands around 2KB

of storage.

A. IPCP and DOL

DOL [35] is a recent prefetching framework that uses

component prefetchers (similar to IPCP). However, there are

subtle differences that manifest in the performance difference

(refer Figure 7). The key differences are as follows: (i) DOL

uses a prefetcher that identifies loops and calculates strides to

prefetch. Similarly it identifies pointer chains. IPCP does not

depend on such application semantics and is only concerned

with accesses observed at the memory side. (ii) A component

prefetcher called C1 is similar to our GS class, but the former

does not have a mechanism to declassify stream-based IPs

once they stop being dense. Also, we measure the direction

of the global order, whereas DOL randomly prefetches all

the cache lines in a region into the L2. (iii) DOL has a P1

component which is a prefetcher for linked data structures

(LDSs) that can be integrated into our framework. However,

IPCP focusses on spatial prefetching only. Overall, DOL uses

narrow component prefetchers that are tightly coupled with the

core’s 256 entry loop predictor, register files, 32 entry return

address stack (RAS), and 192 entry ROB. DOL also demands

32 MSHR (too large for an L1-D) as the components do not

have an upper limit on the prefetch degree. DOL’s performance

is tightly coupled with the core’s parameters whereas IPCP is

independent of the dynamics of the processor core. The above

points are the primary reasons for DOL’s poor performance

compared to state-of-the-art spatial prefetchers [11], [13], [14].

VI. EVALUATION

We evaluate IPCP with an extensively modified ChampSim

[4] that faithfully models the entire memory system, including

the virtual memory system. ChampSim was used for the 2nd

and 3rd data prefetching championships (DPC-2 and DPC-3)

[2], [3]. The simulation framework is enhanced with multi-level

prefetching for DPC-3. ChampSim is an effective framework

to compare the recent cache replacement and prefetching

techniques as the fine-tuned source codes of the state-of-the-

art techniques are available on the public domain. Recent

prefetching proposals [11], [14], [33] have also been coded

and evaluated with ChampSim, helping the community for

a fair comparison of techniques. Table II shows the simula-

tion parameters. We simulate single-core, 4-core, and 8-core

simulations. For single-core, we warm-up caches for 50M sim-

point instructions and report the performance (normalized to no
prefetching) for the next 200M sim-point instructions. For four-

core and eight-core simulations, we warm-up caches for 50M

instructions per core and then report the normalized weighted-

speedup (
∑i=N−1

i=0
IPCtogether(i)
IPCalone(i)

) compared to a baseline with

no prefetching for the next sim-point 200M instructions. For

each mix, we simulate the benchmarks until each benchmark

has executed at least 200M instructions. If a benchmark finishes

fast, it gets replayed until all the benchmarks finish their

respective 200M instructions. IPCtogether(i) is the instructions

per cycle (IPC) of core i when it runs along with other N–1

applications on an N-core system. IPCalone(i) is the IPC of

core i when it runs alone on a multi-core system of N cores.

A. Benchmarks and workloads

We use the SPEC CPU 2017 [8], [9] and CloudSuite [5], [17]

(four-core mixes spread across six phases [1], [5]) benchmarks.

We also use a set of Convolutional Neural Networks (CNNs)

and a Recurrent Neural Network (RNN) [19], [21], [22], [36],

[37], [46] that are commonly used in applications like object

recognition and image classification. We evaluate IPCP on the

entire SPEC CPU 2017 suite based on the sim-point traces

provided by DPC-3 [9]. However for brevity, we discuss in

detail only the memory-intensive ones (46 traces with LLC

MPKI ≥ 1). For multi-core (4-core and 8-core) simulations,

we simulate homogeneous mixes and heterogeneous mixes.

In case of homogeneous mixes, we simulate 92 (46 for 4-

core and 46 for 8-core) memory-intensive mixes where a mix

contains the same memory-intensive traces, for all the cores.

For heterogeneous mixes, we simulate 1000 mixes: 500 random

mixes (includes the entire SPEC CPU 2017 suite) and 500

mixes containing only the memory-intensive traces.

Evaluated Prefetching Techniques: We compare the effec-

tiveness of IPCP with L1 prefetchers like NL, Stream [51],

BOP, VLDP, SPP, DSPatch, MLOP, TSKID, DOL, SMS, and

Bingo. Table III provides the details of top four multi-level

prefetching combinations based on their performance on single-

core and multi-core mixes. Note that for all the prefetchers, we

have used their highly tuned equivalent by sweeping through

all of the possible parameter space including prefetch table

sizes (from 0.5KB onwards). Also, we sweep through all the

possible combinations of L1, L2, and LLC prefetchers. We do

not implement Bingo at the LLC as it provides low performance

(the reason being, Bingo [11] is implemented with 37.5GBps

DRAM bandwidth, fixed latency DRAM. So with 12GBps it is

unable to perform to its peak). Also, for L2 prefetching, SPP

with PPF [14] and DSPatch [13] (SPP+Perceptron+DSPatch)

provides better performance than SPP+PPF and SPP+DSPatch3.

3The SPP+PPF code available at DPC-3 is buggy. The authors of SPP
shared the bug-free SPP+PPF (P. Gratz, Personal Communication, October 28,
2019). Applying DSPatch on top of SPP+PPF has mixed utility. So we decided
to use both PPF and DSPatch as DSPatch provides additional coverage.

125

1.2

1.25

1.3

1.35

1.4

1.45

NL (0 KB) Stream
(0.5KB)

SPP
(6.4KB)

IP-Stride
(0.23KB)

BOP
(1.3KB)

DOL
(4.5KB)

MLOP
(8KB)

Bingo
(48KB)

TSKID
(52KB)

IPCP
(0.72KB)

Bingo
(119KB)

N
or

m
al

iz
ed

 S
pe

ed
up

Fig. 7: L1 prefetchers for memory-intensive traces.

B. Single-core Results

1) IPCP as an L1 only prefetcher: Figure 7 shows the

performance of competing prefetchers (for memory-intensive

SPEC CPU 2017 traces) when employed at the L1 (L2 and LLC

prefetchers are turned off). We do not show the performance

of VLDP and DSPatch as on average, SPP performs better

than VLDP and DSPatch, at the L1. Similarly, Bingo performs

better than SMS [47] with relatively less storage demand. Note

that Bingo demands 119KB at the L1-D. On average, Bingo

provides similar performance with 44KB to 72KB hardware

overhead. So, we tune Bingo to make it same as the L1-D size

(48KB). We simulate Bingo with 119 KB, too. We also relax

the lookup latency bottleneck at the L1-D for all the competing

prefetchers. This helps us in understanding the best performance

that we can get with the ideal L1-D implementations. Clearly,

IPCP outperforms all others except Bingo with 119KB. As

expected, SPP does not perform well at the L1-D. One of

the reasons for this is a region based global order driven

prefetching. Same applies to VLDP and DSPatch. Note that,

these prefetchers improve performance when employed at L2.

Next, we try to see the effects of L2 and LLC prefetchers on

top of these prefetchers. We sweep through all the prefetchers

and their possible combinations at different cache levels and

find that the combinations proposed at the DPC-3 are the best

multi-level prefetching options (Table III). Bingo at L1 with

48KB and a restrictive NL at L2 and LLC (NL on demand

accesses only) provides similar effectiveness as 119KB at L1.

Note that, we find, if the L1 prefetcher is high performing
then L2 and LLC prefetchers bring marginal utility. This is
surprising and counter-intuitive. To understand this statement,

we simulate IPCP at the L1 with various L2 prefetchers

(SPP+Perceptron+DSPatch, BOP, VLDP, MLOP, IP-Stride, and

Bingo) and find that the utility of L2 prefetchers is negligible

(less than 1.7%). SPP+Perceptron+DSPatch is the best L2

prefetcher. Normally, L2 prefetchers should provide additional

performance on top of an L1-D prefetcher by prefetching deep

into the access stream based on the L1-D’s prefetch accesses at

the L2. However, with an aggressive IPCP at L1, the opportunity

for the other L2 prefetchers is limited. This observation applies

to other high performing L1 prefetchers like MLOP and Bingo.

We observe a trend that is same as the DPC-3 [3] where

prefetchers used at L2 and LLC on top of a high performing

L1-D prefetcher are NL prefetchers. This observation opens up

an interesting dimension on the multi-level prefetching where

we need L2 prefetchers that can complement L1-D prefetchers.

TABLE III: Combinations for multi-level prefetching.

Combination
name

Prefetchers at L1, L2, and L3

SPP+Perceptron
+DSPatch

SPP+Perceptron+DSPatch(L2), throttled-NL(L1) [10], NL(LLC) =
32KB at L2 + 0.6KB at L1

MLOP MLOP(L1) and NL(L2+LLC) = 8KB (L1)
Bingo Bingo(L1) and NL(L2+LLC): 6K entry history table = 48KB (L1)
TSKID TSKID(L1) and SPP(L2): 52KB at L1 + 6.4KB at L2 = 58.4KB
IPCP IPCP(L1+L2): 740 bytes at L1 + 155 bytes at L2 = 895B

TABLE IV: Prefetch Coverage and prefetch accuracy for

different Combinations of multi-level prefetching.

Combination name Coverage Accuracy

SPP+Perceptron+DSPatch 0.50 at L1, 0.75 at L2,and 0.83 at L3 0.75 at L2

MLOP 0.59 at L1, 0.72 at L2, and 0.78 at L3 0.64 at L1

Bingo 0.54 at L1, 0.72 at L2,and 0.80 at L3 0.79 at L1

TSKID 0.67 at L1, 0.72 at L2, and 0.80 at L3 0.60 at L1

IPCP 0.60 at L1, 0.79 at L2, and 0.83 at L3 0.80 at L1

2) Performance with multi-level prefetching: Due to space

limitations, we compare (Figure 8), in detail, IPCP with the top

three prefetching combinations (in terms of performance) as

mentioned in Table III. The effectiveness of Bingo goes down

in case of multi-level prefetching as two other combinations

use the state-of-the-art SPP at their respective L2s (Bingo

does not perform well with SPP at L2 as discussed in Section

VI-B). MLOP at L1 complements well with an NL at L2. Our

observations for Bingo are same as the trend observed at the

DPC-3 (refer slide no.4 [6]). For multicore workloads, the

trend changes as Bingo joins the league of top-performing

prefetchers. IPCP at the L2 improves performance on top of

L1 because of the holistic semantics of IPCP, both at the

L1 and L2. DOL [35] at L1 and L2 fails to outperform the

top four prefetchers. IPCP performs better than DOL for the

reasons mentioned in Section V-A.

Detailed Performance: Figure 8 shows the effectiveness

of IPCP along with the next top three prefetchers (in terms

of performance) for a set of 46 memory-intensive traces.

On average, IPCP provides 45.1% improvement, where the

rest three prefetchers perform equally well (improvements ∼
42.5%). We also evaluate the entire SPEC CPU 2017 suite

(a collection 98 traces) where on average, IPCP provides

an average improvement of 22% whereas the next top three

provide performance in the range of 18.2% to 18.8%. Note

that there is only one benchmark named 623.xalancbmk
(not shown in Figure 8 as it is not memory-intensive) where

all the prefetchers fail to improve performance for traces

that start after 325 billion instructions [9]. IPCP outperforms

other prefetchers for all the traces (or provide the same level

of effectiveness) except for cactusBSSN and fotonik.

For cactusBSSN, TSKID and MLOP outperform all the

prefetchers at the L1-D. cactusBSSN has many IPs whose

reuse distance is more than 1024. So in an extreme case, we

need a 1024 associative table, which is practically not feasible

at the L1. When we simulate with a 1024 associative table,

we get performance closer to MLOP but not TSKID. Also,

the prefetched blocks, even though correct, are prefetched too

early and are replaced by other loads before they are used

126

0.95
1.15
1.35
1.55
1.75
1.95
2.15
2.35

60
0.

pe
rlb

en
ch

_s
-5

70
B

60
2.

gc
c_

s-
18

50
B

60
2.

gc
c_

s-
22

26
B

60
2.

gc
c_

s-
73

4B
60

3.
bw

av
es

_s
-1

74
0B

60
3.

bw
av

es
_s

-2
60

9B
60

3.
bw

av
es

_s
-2

93
1B

60
3.

bw
av

es
_s

-8
91

B
60

5.
m

cf
_s

-1
15

2B
60

5.
m

cf
_s

-1
53

6B
60

5.
m

cf
_s

-1
55

4B
60

5.
m

cf
_s

-1
64

4B
60

5.
m

cf
_s

-4
72

B
60

5.
m

cf
_s

-4
84

B
60

5.
m

cf
_s

-6
65

B
60

5.
m

cf
_s

-7
82

B
60

5.
m

cf
_s

-9
94

B
60

7.
ca

ct
uB

SS
N

_s
-2

42
1B

60
7.

ca
ct

uB
SS

N
_s

-3
47

7B
60

7.
ca

ct
uB

SS
N

_s
-4

00
4B

61
9.

lb
m

_s
-2

67
6B

61
9.

lb
m

_s
-2

67
7B

61
9.

lb
m

_s
-3

76
6B

61
9.

lb
m

_s
-4

26
8B

62
0.

om
ne

tp
p_

s-
14

1B
62

0.
om

ne
tp

p_
s-

87
4B

62
1.

w
rf

_s
-6

67
3B

62
1.

w
rf

_s
-8

06
5B

62
3.

xa
la

nc
bm

k_
s-

10
B

62
3.

xa
la

nc
bm

k_
s-

16
5B

62
3.

xa
la

nc
bm

k_
s-

20
2B

62
7.

ca
m

4_
s-

49
0B

62
8.

po
p2

_s
-1

7B
64

1.
le

el
a_

s-
10

83
B

64
9.

fo
to

ni
k3

d_
s-

10
88

1B
64

9.
fo

to
ni

k3
d_

s-
11

76
B

64
9.

fo
to

ni
k3

d_
s-

70
84

B
64

9.
fo

to
ni

k3
d_

s-
82

25
B

65
4.

ro
m

s_
s-

10
07

B
65

4.
ro

m
s_

s-
10

70
B

65
4.

ro
m

s_
s-

13
90

B
65

4.
ro

m
s_

s-
16

13
B

65
4.

ro
m

s_
s-

29
3B

65
4.

ro
m

s_
s-

29
4B

65
4.

ro
m

s_
s-

52
3B

65
7.

xz
_s

-2
30

2B
G

eo
m

ea
n

N
or

m
al

ize
d

Sp
ee

du
p SPP+Perceptron+DSPatch Tskid MLOP IPCP

3.6
3.3

3.13.8
3.7

3.0

Fig. 8: Normalized performance compared to no prefetching.

0

5

10

15

20

25

30

LLC L2 L1

Av
er

ag
e

D
em

an
d

M
PK

I

NOPF SPP+Perceptron+DSPatch Tskid MLOP IPCP

Fig. 9: Reduction in demand MPKI for all the prefetchers.

-0.1

0.1

0.3

0.5

0.7

0.9

60
0.

pe
rlb

en
ch

_s
-5

70
B

60
2.

gc
c_

s-
18

50
B

60
2.

gc
c_

s-
22

26
B

60
2.

gc
c_

s-
73

4B
60

3.
bw

av
es

_s
-1

74
0B

60
3.

bw
av

es
_s

-2
60

9B
60

3.
bw

av
es

_s
-2

93
1B

60
3.

bw
av

es
_s

-8
91

B
60

5.
m

cf
_s

-1
15

2B
60

5.
m

cf
_s

-1
53

6B
60

5.
m

cf
_s

-1
55

4B
60

5.
m

cf
_s

-1
64

4B
60

5.
m

cf
_s

-4
72

B
60

5.
m

cf
_s

-4
84

B
60

5.
m

cf
_s

-6
65

B
60

5.
m

cf
_s

-7
82

B
60

5.
m

cf
_s

-9
94

B
60

7.
ca

ct
uB

SS
N_

s-
24

21
B

60
7.

ca
ct

uB
SS

N_
s-

34
77

B
60

7.
ca

ct
uB

SS
N_

s-
40

04
B

61
9.

lb
m

_s
-2

67
6B

61
9.

lb
m

_s
-2

67
7B

61
9.

lb
m

_s
-3

76
6B

61
9.

lb
m

_s
-4

26
8B

62
0.

om
ne

tp
p_

s-
14

1B
62

0.
om

ne
tp

p_
s-

87
4B

62
1.

w
rf_

s-
66

73
B

62
1.

w
rf_

s-
80

65
B

62
3.

xa
la

nc
bm

k_
s-

10
B

62
3.

xa
la

nc
bm

k_
s-

16
5B

62
3.

xa
la

nc
bm

k_
s-

20
2B

62
7.

ca
m

4_
s-

49
0B

62
8.

po
p2

_s
-1

7B
64

1.
le

el
a_

s-
10

83
B

64
9.

fo
to

ni
k3

d_
s-

10
88

1B
64

9.
fo

to
ni

k3
d_

s-
11

76
B

64
9.

fo
to

ni
k3

d_
s-

70
84

B
64

9.
fo

to
ni

k3
d_

s-
82

25
B

65
4.

ro
m

s_
s-

10
07

B
65

4.
ro

m
s_

s-
10

70
B

65
4.

ro
m

s_
s-

13
90

B
65

4.
ro

m
s_

s-
16

13
B

65
4.

ro
m

s_
s-

29
3B

65
4.

ro
m

s_
s-

29
4B

65
4.

ro
m

s_
s-

52
3B

65
7.

xz
_s

-2
30

2B
Av

er
ag

e

Pr
ef

et
ch

 C
ov

er
ag

e

L1 L2 LLC

Fig. 10: Demand misses covered by IPCP at L1, L2, and LLC.

(small L1-D). TSKID takes care of that by prefetching at

the right time, but by consuming more than 50KB at L1-D.

Overall, for the entire SPEC CPU 2017 suite, the maximum

performance improvement with IPCP is 380% while the

minimum is a 2% degradation (only for post-325 billion

xalancbmk traces).

Prefetch coverage: Figure 9 shows the reduction in demand

MPKI for the competing prefetchers at all the cache levels. To

better understand the MPKI improvements, Figure 10 shows

the demand misses that are covered by IPCP at all the levels

of the cache hierarchy. On average, IPCP covers 60%, 79.5%,

and 83% of the demand misses at L1, L2, and the LLC,

respectively. For some of the irregular traces of benchmarks

like mcf and omnetpp, IPCP provides poor coverage. This

trend is well-known, and state-of-the-art spatial prefetchers,

including IPCP, fail to cover a majority of misses for these

two benchmarks. TSKID provides the best L1 coverage of

67%, and MLOP covers 59% of the L1 misses.

Note that for cactusBSSN, IPCP provides zero or less

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6

60
0.

pe
rlb

en
ch

_s
-5

70
B

60
2.

gc
c_

s-
18

50
B

60
2.

gc
c_

s-
22

26
B

60
2.

gc
c_

s-
73

4B
60

3.
bw

av
es

_s
-1

74
0B

60
3.

bw
av

es
_s

-2
60

9B
60

3.
bw

av
es

_s
-2

93
1B

60
3.

bw
av

es
_s

-8
91

B
60

5.
m

cf
_s

-1
15

2B
60

5.
m

cf
_s

-1
53

6B
60

5.
m

cf
_s

-1
55

4B
60

5.
m

cf
_s

-1
64

4B
60

5.
m

cf
_s

-4
72

B
60

5.
m

cf
_s

-4
84

B
60

5.
m

cf
_s

-6
65

B
60

5.
m

cf
_s

-7
82

B
60

5.
m

cf
_s

-9
94

B
60

7.
ca

ct
uB

SS
N_

s-
24

21
B

60
7.

ca
ct

uB
SS

N_
s-

34
77

B
60

7.
ca

ct
uB

SS
N_

s-
40

04
B

61
9.

lb
m

_s
-2

67
6B

61
9.

lb
m

_s
-2

67
7B

61
9.

lb
m

_s
-3

76
6B

61
9.

lb
m

_s
-4

26
8B

62
0.

om
ne

tp
p_

s-
14

1B
62

0.
om

ne
tp

p_
s-

87
4B

62
1.

w
rf_

s-
66

73
B

62
1.

w
rf_

s-
80

65
B

62
3.

xa
la

nc
bm

k_
s-

10
B

62
3.

xa
la

nc
bm

k_
s-

16
5B

62
3.

xa
la

nc
bm

k_
s-

20
2B

62
7.

ca
m

4_
s-

49
0B

62
8.

po
p2

_s
-1

7B
64

1.
le

el
a_

s-
10

83
B

64
9.

fo
to

ni
k3

d_
s-

10
88

1B
64

9.
fo

to
ni

k3
d_

s-
11

76
B

64
9.

fo
to

ni
k3

d_
s-

70
84

B
64

9.
fo

to
ni

k3
d_

s-
82

25
B

65
4.

ro
m

s_
s-

10
07

B
65

4.
ro

m
s_

s-
10

70
B

65
4.

ro
m

s_
s-

13
90

B
65

4.
ro

m
s_

s-
16

13
B

65
4.

ro
m

s_
s-

29
3B

65
4.

ro
m

s_
s-

29
4B

65
4.

ro
m

s_
s-

52
3B

65
7.

xz
_s

-2
30

2B
Av

er
ag

eCo
ve

ra
ge

 a
nd

 o
ve

rp
re

di
ct

io
ns Covered Uncovered Overpredicted

Fig. 11: Coverage and accuracy with IPCP at the L1.

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

60
0.

pe
rlb

en
ch

_s
-5

70
B

60
2.

gc
c_

s-
18

50
B

60
2.

gc
c_

s-
22

26
B

60
2.

gc
c_

s-
73

4B
60

3.
bw

av
es

_s
-1

74
0B

60
3.

bw
av

es
_s

-2
60

9B
60

3.
bw

av
es

_s
-2

93
1B

60
3.

bw
av

es
_s

-8
91

B
60

5.
m

cf
_s

-1
15

2B
60

5.
m

cf
_s

-1
53

6B
60

5.
m

cf
_s

-1
55

4B
60

5.
m

cf
_s

-1
64

4B
60

5.
m

cf
_s

-4
72

B
60

5.
m

cf
_s

-4
84

B
60

5.
m

cf
_s

-6
65

B
60

5.
m

cf
_s

-7
82

B
60

5.
m

cf
_s

-9
94

B
60

7.
ca

ct
uB

SS
N_

s-
24

21
B

60
7.

ca
ct

uB
SS

N_
s-

34
77

B
60

7.
ca

ct
uB

SS
N_

s-
40

04
B

61
9.

lb
m

_s
-2

67
6B

61
9.

lb
m

_s
-2

67
7B

61
9.

lb
m

_s
-3

76
6B

61
9.

lb
m

_s
-4

26
8B

62
0.

om
ne

tp
p_

s-
14

1B
62

0.
om

ne
tp

p_
s-

87
4B

62
1.

w
rf_

s-
66

73
B

62
1.

w
rf_

s-
80

65
B

62
3.

xa
la

nc
bm

k_
s-

10
B

62
3.

xa
la

nc
bm

k_
s-

16
5B

62
3.

xa
la

nc
bm

k_
s-

20
2B

62
7.

ca
m

4_
s-

49
0B

62
8.

po
p2

_s
-1

7B
64

1.
le

el
a_

s-
10

83
B

64
9.

fo
to

ni
k3

d_
s-

10
88

1B
64

9.
fo

to
ni

k3
d_

s-
11

76
B

64
9.

fo
to

ni
k3

d_
s-

70
84

B
64

9.
fo

to
ni

k3
d_

s-
82

25
B

65
4.

ro
m

s_
s-

10
07

B
65

4.
ro

m
s_

s-
10

70
B

65
4.

ro
m

s_
s-

13
90

B
65

4.
ro

m
s_

s-
16

13
B

65
4.

ro
m

s_
s-

29
3B

65
4.

ro
m

s_
s-

29
4B

65
4.

ro
m

s_
s-

52
3B

65
7.

xz
_s

-2
30

2B
Av

er
ag

e

Pe
r c

la
ss

 co
nt

rib
ut

io
n

to
th

e
pr

ef
et

ch
 co

ve
ra

ge

GS CS CPLX NL

Fig. 12: Contribution of each class on L1 prefetch coverage.

than zero coverage at the L1. IPCP does not incur cache

pollution at L1 and L2 that can impact performance for all

the traces (except for mcf, cactusBSSN, and omnetpp).

At the L2 and LLC, IPCP covers 4.5% to 8% more misses

compared to SPP+Perceptron+DSPatch, TSKID, and MLOP.

SPP+Perceptron+DSPatch provides a coverage of 75% while

the rest provide a coverage of 72%. Table IV provides the

details about prefetch coverage and prefetch accuracy of all

the multi-level prefetching combinations.

Predictions, over-predictions, and utility of classes:
Figure 11 shows the demand misses that are covered,

uncovered, and over-predicted with IPCP, at the L1. The

trend remains similar for the L2 IPCP prefetcher (except for

cactusBSSN), with no contribution from the CPLX class.

Figure 12 digs deep into the prefetch coverage numbers at

the L1 and shows which class contributes how much to the

prefetch coverage. On average, GS and CS classes contribute

127

1.12
1.17
1.22
1.27
1.32
1.37
1.42
1.47

GS
 a

t L
1

(C
0)

NL
 a

t L
1

(C
1)

CP
LX

 a
t L

1
(C

2)

CS
 a

t L
1

(C
3)

C2
+C

3
at

 L1

C1
+C

2+
C3

 a
t L

1

C0
+C

1+
C2

+C
3

at
L1

 (I
PC

P_
L1

)

IP
CP

_L
1

+
IP

CP
_L

2

No
rm

al
ize

d
Sp

ee
du

p

(a)

1.34

1.39

1.44

CPLX>GS>CS CPLX>CS>GS GS>CPLX>CS CS>CPLX>GS CS>GS>CPLX GS>CS>CPLX

No
rm

al
ize

d
Sp

ee
du

p

(b)

Fig. 13: (a) Utility of IPCP classes and (b) class priority.

30% and 46.7% of the total coverage, respectively. CPLX

and NL cover some of the complex and irregular strides in

the irregular benchmarks like mcf and omnetpp. Streaming

benchmarks like lbm, and gcc benefit from GS class the

most, and in case the GS class fails, the CS class does a good

job to cover most of the misses. Some of the phases of mcf
are regular (like the trace mcf-1152B) and are covered by

the CS class. However, mcf-1536B has irregular accesses

and gets the coverage from CPLX class only. NL helps in

covering some of the irregular accesses. However, in the

process, brings in-accurate blocks too. The impact of NL’s

inaccurate prefetch is low as it is not called often and is only

triggered when none of the classes deliver. So, in terms of

absolute prefetch count, NL contributes marginally.

DRAM bandwidth: Compared to no prefetching, IPCP

demands additional bandwidth of 16.1% for performance

improvement of 45.1%. SPP+Perceptron+DSPatch and

MLOP demand 28% additional bandwidth, whereas TSKID

demands bandwidth of 38% (with a maximum of 692% for

mcf-994B).

Utility of IPCP classes and metadata: Figure 13 (a)

shows the utility of each class when used in isolation, and

when used as a bouquet in the form of IPCP. It is interesting

to see that GS class at the L1 alone is unable to provide more

than 15% performance improvement. CS and CPLX are the

top performers in isolation, providing more than 30% when

employed at the L1. CS+CPLX crosses 34%, and with the

help of tentative NL, it covers some of the irregular accesses

providing a performance improvement of 36%. GS class alone

is not effective. However, when added to the bouquet, it

improves the effectiveness of IPCP to 40%. IPCP at the L2

provides an additional 5.1% performance improvement by

prefetching deep based on the L1 metadata.

To understand the utility of IPCP class priority, we perform

prefetching with different combinations of priorities. Figure

13 (b) shows the utility of different priority orders. Prioritizing

an aggressive GS over others provides the maximum benefit

showing the effectiveness of IPCP’s priority order. If we

change the priority order, then there is a performance gap of

9%. IPCP without meta-data transfer sees a performance drop

of 3.1%. So, if a hardware vendor cannot use metadata then

there will be a performance loss of 3.1% on memory-intensive

applications. Metadata helps in synergistic IPCP prefetching

at the L2.

Differentiating factor: Compared to the competing

prefetchers, the differentiating factor with IPCP is (i) the usage

of the GS class, (ii) its aggressiveness, and (iii) prioritization

order among the classes. Note that with GS, IPCP gets better

coverage and timeliness at the expense of accuracy. In the

process, the GS class covers misses that are hard to cover by

the competing prefetchers.

In summary, a lightweight IPCP covers a majority of

demand misses throughout the hierarchy resulting in 45.1%

improvement for the memory-intensive traces and 22%

improvement on the entire SPEC CPU 2017 suite. This

improvement comes with 16% additional DRAM traffic and

895B storage overhead.

C. Sensitivity studies

Effect of LLC replacement policies: We study the ef-

fectiveness of IPCP with a variety of replacement policies

[25]–[29], [56], [57], [60]. IPCP is resilient to the underlying

replacement policies with marginal performance difference

(less than 1%). However, with multiperspective placement,

promotion, and bypass (MPPPB) [29], all the prefetchers see

an average performance drop of 3%. TSKID goes down by

6% with HAWKEYE [25], [26], which is mostly attributed to

the inaccurate prefetch requests.

Effect of cache sizes and hierarchies: Based on the recent

industry trends, we quantify the effect of IPCP with different

combinations of cache sizes (32KB and 48KB of L1; 256KB,

512 KB, and 1MB of L2; and 1MB, 2MB, and 4MB of LLC).

IPCP is resilient to all the combinations with a maximum

performance difference of 1.05%. We also test IPCP with

an extremely small LLC (512KB/core) and find that IPCP

outperforms other prefetchers by the same margin as in the case

of 2MB/core. However, in terms of an absolute performance

improvement, it goes down by 3%, which is the case for all

competing prefetchers too.

Sensitivity to DRAM bandwidth: To understand the effect

of DRAM bandwidth, we perform experiments with low DRAM

bandwidth of 3.2GBps and high DRAM bandwidth of 25GBps

(dual channel DDR4-1600). With 3.2GBps, benchmarks like

mcf, fotonik3d, and omnetpp see a performance degrada-

tion for all the prefetchers. On average, IPCP beats the second-

best prefetcher (MLOP in this case) by 1%. With 25GBps,

all prefetchers (except MLOP) improve their performance by

2% to 3%. SPP+Perceptron+DSPatch does a good job with

high DRAM bandwidth and IPCP beats it by 1.5%. MLOP’s

performance does not scale well with the increase in DRAM

bandwidth and the performance does not improve.

PQ and MSHR entries: The effectiveness of an aggressive

IPCP at the L1 is limited by the #entries in the MSHR and

PQ. So far, we have evaluated IPCP with PQ of eight entries

and MSHR of 16 entries. We sweep through the following pair

of (PQ,MSHR) entries: (2,4), (4, 8), and (16, 32) and evaluate

128

0.95
0.97
0.99
1.01
1.03
1.05
1.07
1.09
1.11

Cassandra Classification Cloud9 nutch streaming Geomean

Sp
ee

du
p

0.9

1.1

1.3

1.5

1.7

1.9

2.1

Cifar10 Lstm Nin Resnet-50 Squeezenet Vgg-19 Vgg-m Geomean

Sp
ee

du
p

Bingo T-SKID SPP+Perceptron+DSPatch MLOP IPCP

(a)

(b)

Fig. 14: Speedup for (a) CloudSuite and (b) CNNs/RNN.

the effectiveness of IPCP. Compared to the baseline pair (8,16),

(2,4) sees a performance drop of 2.7% (maximum drop for

gcc-2226B that drops from 380% to 323%). We observe

marginal performance drop (around 1.5%) for applications like

lbm and bwaves. On average, applications with high memory

level parallelism (MLP) get affected with the (2,4) pair.

Sensitivity to prefetch table size: IPCP, in its current form

is extremely light-weight and only brings marginal average

improvement (0.7%) when we increase the size of IP table,

RST, and the CSPT, two to 100 times. This is not a surprising

trend. With 895 bytes, IPCP is able to capture the IPs that are

sufficient for competitive spatial prefetching, for SPEC CPU

2017, CloudSuite, and CNNs/RNN. Note that, for large code

footprints or in case of outliers like cactusBSSN, size of the

tables should be increased for better performance.

D. Multicore results

For the evaluation of multi-core systems, we compare IPCP

with one additional prefetcher named Bingo that performs well

in the multi-core system. One of the primary reasons is that

Bingo uses an NL prefetcher at the LLC that covers some of

the costly misses, and it complements well with Bingo.

Homogeneous memory-intensive mixes: For homoge-

neous mixes, on average, IPCP provides a 16.5% im-

provement, whereas Bingo provides 14% improvement, and

SPP+Perceptron+DSPatch and MLOP provide just above 13%.

For homogeneous mixes of omnetpp, xalancbmk, and

xz, it degrades performance by 1%, whereas for mix of

605.mcf-994B, IPCP degrades the performance by 4%, and

it is the only mix where it fails. IPCP provides maximum im-

provement of 66% for the mix containing fotonik.1176B.

TSKID degrades performance significantly (67% for mcf),

whereas others (SPP+Perceptron+DSPatch, MLOP, and Bingo)

degrade performance in the range of 10 to 14%. One of

the primary reasons for this trend across all the prefetchers,

including IPCP is, contention at the LLC and the DRAM

bandwidth. It is specific to these mixes as all cores run the

same applications. We find that DRAM bandwidth is the major

limiting factor compared to the LLC contention.

Heterogeneous mixes: For heterogeneous mixes, we use

both memory-intensive and non-intensive traces and evaluate

1

1.1

1.2

1.3

1.4

1.5

1.6

SPEC 2K17: Homo.
Mixes

SPEC 2K17: Hetero.
Mixes

CloudSuite CNNs/RNN Geomean (All)

Sp
ee

du
p

Bingo T-SKID SPP+Perceptron+DSPatch MLOP IPCP

Fig. 15: Summary of multi-core performance.

on 1000 mixes as discussed in Section VI-A. On average,

Bingo, MLOP, and IPCP perform similarly. IPCP provides an

improvement of 27.4%, whereas Bingo and MLOP improve

performance by 26.1% and 25.9%. Note that, this trend is a bit

different with the DPC-3 trend for multi-core mixes. One of

the key changes that help IPCP’s performance is the accuracy

based coordinated throttling, which is crucial for heterogeneous

mixes with non-uniform DRAM bandwidth demands.

Differentiating factor: Except TSKID, all prefetchers

perform on a similar scale for the majority of the mixes.

The differentiating factor is the performance improvement

in the case of mixes that are not well predicted by all the

prefetchers, including IPCP. Some examples of these kinds of

mixes are mixes that contain memory-intensive applications.

A mix containing 605.mcf-1536B, 605.mcf-1554B,
605.mcf-1644B, and 605.mcf-994 is one such mix

where the competing prefetchers lose performance in the

scale of 50 to 70%, whereas IPCP degrades by 9% thanks

to coordinated throttling. Improving performance for these

mixes is not trivial. Turning off all the prefetchers is the

obvious approach. We believe there is a need of future

research for these kinds of mixes. Overall, we find that

SPP+Perceptron+DSPatch’s coverage is highly dependent on

the accuracy of throttling decisions and some of the thresholds

used are too strict (threshold of 90 in the scale of 100).

MLOP uses coverage and timeliness to select prefetch offsets,

providing better performance.

Performance for CloudSuite and Neural Networks: Fig-

ures 14 (a) and (b) show performance improvement with

CloudSuite benchmarks and some of the applications from

the world of CNNs and RNN. Classification is one of

the benchmarks where all the prefetchers fail. On average,

SPP+Perceptron+DSPatch, Bingo, and IPCP perform on the

same scale. It is well known that spatial prefetchers fail to

improve performance for server workloads like CloudSuite

[14], [33], [53], [58], [59] and additional prefetchers [12], [24],

[52], [58], [59] can be used on top of IPCP to improve the

performance. As IPCP demands less than 900 bytes, all the

temporal prefetchers can use IPCP as their spatial counter-part.

For the neural networks, IPCP outperforms the rest of the

prefetchers primarily because these applications are mostly

streaming in nature.

Figure 15 summarizes multi-core results spanning across

SPEC CPU 2017 homogeneous and heterogeneous mixes,

CloudSuite, and neural networks. On average, IPCP provides

129

performance improvement of 23.4% while the next best- Bingo

and MLOP provide 20.9% and 20%, respectively.

VII. SUMMARY

In this paper, we make a case for tiny high-performing

prefetchers at the L1-D level. We find that a high-performing

L1-D prefetcher can bring more performance and make the

utility of L2 prefetching marginal. To achieve high performance

with extremely low storage overhead, we propose an IP

Classifier based spatial Prefetching framework (IPCP). IPCP

classifies IPs into three classes that cover the majority of

access patterns and they work in harmony. We extend IPCP to

the L2 level by communicating the classification information,

making IPCP an attractive prefetching framework for the multi-

level cache hierarchy. In summary, IPCP, as a framework,

incurs a hardware overhead of 895 bytes only, and outperforms

state-of-the-art spatial prefetchers and multi-level prefetching

combinations. Based on the observations and insights, we

believe IPCP opens up new directions of research on multi-

level prefetching, which are as follows: (i) designing a high-

performing L2 prefetcher that can cover the misses that are

not covered by the L1 prefetcher and (ii) enhancing IPCP

with a temporal component for covering temporal and irregular

accesses.

VIII. AVAILABILITY

The source code is available at https://www.cse.iitk.ac.in/

users/biswap/ipcp.html.

IX. ACKNOWLEDGEMENTS

We would like to thank all the anonymous reviewers for their

helpful comments and suggestions. Special thanks to Nilay

Shah for helping us in running multi-core experiments. We

would also like to thank members of CARS research group,

Andre Seznec, Pierre Michaud, R. Govindarajan, Rahul Bera,

and Nayan Deshmukh for their feedback on the initial draft.

This work is supported by the SRC grant SRC-2922.001.

REFERENCES

[1] “2nd cache replacement championship.” [Online]. Available: https:
//crc2.ece.tamu.edu/

[2] “2nd data prefetching championship.” [Online]. Available: http:
//comparch-conf.gatech.edu/dpc2/

[3] “3rd data prefetching championship.” [Online]. Available: https:
//dpc3.compas.cs.stonybrook.edu/?final programs

[4] “Champsim simulator.” [Online]. Available: https://github.com/
ChampSim/ChampSim

[5] “Cloudsuite traces.” [Online]. Available: https://www.dropbox.com/sh/
pgmnzfr3hurlutq/AACciuebRwSAOzhJkmj5SEXBa/CRC2 trace?dl=
0&subfolder nav tracking=1

[6] “Dpc-3 closing remarks.” [Online]. Available: https://dpc3.compas.cs.
stonybrook.edu/slides/dpc3 closing.pdf

[7] “Intel ice lake.” [Online]. Available: https://en.wikipedia.org/wiki/Ice
Lake (microprocessor)

[8] “Spec cpu 2017.” [Online]. Available: https://www.spec.org/cpu2017/
[9] “Spec cpu 2017 traces (spec speed: 6xx numbered).” [Online]. Available:

http://hpca23.cse.tamu.edu/champsim-traces/speccpu/
[10] “Throttled {NL at L1 with spp+ppf.” [Online]. Available: https:

//dpc3.compas.cs.stonybrook.edu/src/enhancing.zip

[11] M. Bakhshalipour, M. Shakerinava, P. Lotfi-Kamran, and H. Sarbazi-Azad,
“Bingo spatial data prefetcher,” in 2019 IEEE International Symposium
on High Performance Computer Architecture (HPCA), Feb 2019, pp.
399–411.

[12] M. Bakhshalipour, P. Lotfi-Kamran, and H. Sarbazi-Azad, “Domino
temporal data prefetcher,” in IEEE International Symposium on High
Performance Computer Architecture, HPCA 2018, Vienna, Austria,
February 24-28, 2018, 2018, pp. 131–142. [Online]. Available:
https://doi.org/10.1109/HPCA.2018.00021

[13] R. Bera, A. V. Nori, O. Mutlu, and S. Subramoney, “Dspatch: Dual
spatial pattern prefetcher,” in Proceedings of the 52nd Annual IEEE/ACM
International Symposium on Microarchitecture, MICRO 2019, Columbus,
OH, USA, October 12-16, 2019., 2019, pp. 531–544. [Online]. Available:
https://doi.org/10.1145/3352460.3358325

[14] E. Bhatia, G. Chacon, S. H. Pugsley, E. Teran, P. V. Gratz, and
D. A. Jiménez, “Perceptron-based prefetch filtering,” in Proceedings
of the 46th International Symposium on Computer Architecture, ISCA
2019, Phoenix, AZ, USA, June 22-26, 2019, 2019, pp. 1–13. [Online].
Available: https://doi.org/10.1145/3307650.3322207

[15] M. Chaudhuri and N. Deshmukh, “Sangam: A multi-component core
cache prefetcher,” in 3rd Data Prefetching Championship, 2019.

[16] E. Ebrahimi, O. Mutlu, C. J. Lee, and Y. N. Patt, “Coordinated
control of multiple prefetchers in multi-core systems,” in 42st Annual
IEEE/ACM International Symposium on Microarchitecture (MICRO-42
2009), December 12-16, 2009, New York, New York, USA, 2009, pp.
316–326. [Online]. Available: https://doi.org/10.1145/1669112.1669154

[17] M. Ferdman, A. Adileh, Y. O. Koçberber, S. Volos, M. Alisafaee,
D. Jevdjic, C. Kaynak, A. D. Popescu, A. Ailamaki, and B. Falsafi,
“Clearing the clouds: a study of emerging scale-out workloads on
modern hardware,” in Proceedings of the 17th International Conference
on Architectural Support for Programming Languages and Operating
Systems, ASPLOS 2012, London, UK, March 3-7, 2012, 2012, pp. 37–48.
[Online]. Available: https://doi.org/10.1145/2150976.2150982

[18] J. W. C. Fu, J. H. Patel, and B. L. Janssens, “Stride directed prefetching
in scalar processors,” in Proceedings of the 25th Annual International
Symposium on Microarchitecture, ser. MICRO 25. Los Alamitos, CA,
USA: IEEE Computer Society Press, 1992, pp. 102–110. [Online].
Available: http://dl.acm.org/citation.cfm?id=144953.145006

[19] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in 2016 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), June 2016, pp. 770–778.

[20] W. Heirman, K. D. Bois, Y. Vandriessche, S. Eyerman, and I. Hur,
“Near-side prefetch throttling: Adaptive prefetching for high-performance
many-core processors,” in Proceedings of the 27th International
Conference on Parallel Architectures and Compilation Techniques, ser.
PACT ’18. New York, NY, USA: ACM, 2018, pp. 28:1–28:11. [Online].
Available: http://doi.acm.org/10.1145/3243176.3243181

[21] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural
Comput., vol. 9, no. 8, pp. 1735–1780, Nov. 1997. [Online]. Available:
http://dx.doi.org/10.1162/neco.1997.9.8.1735

[22] F. N. Iandola, S. Han, M. W. Moskewicz, K. Ashraf, W. J. Dally,
and K. Keutzer, “Squeezenet: Alexnet-level accuracy with 50x fewer
parameters and <0.5mb model size,” arXiv:1602.07360, 2016.

[23] A. Jain, “Exploiting long-term behavior for improved memory system
performance,” in Ph.D. dissertation. Austin TX, USA, 2016.

[24] A. Jain and C. Lin, “Linearizing irregular memory accesses for
improved correlated prefetching,” in The 46th Annual IEEE/ACM
International Symposium on Microarchitecture, MICRO-46, Davis, CA,
USA, December 7-11, 2013, 2013, pp. 247–259. [Online]. Available:
https://doi.org/10.1145/2540708.2540730

[25] A. Jain and C. Lin, “Back to the future: Leveraging belady’s
algorithm for improved cache replacement,” in 43rd ACM/IEEE Annual
International Symposium on Computer Architecture, ISCA 2016, Seoul,
South Korea, June 18-22, 2016, 2016, pp. 78–89. [Online]. Available:
https://doi.org/10.1109/ISCA.2016.17

[26] A. Jain and C. Lin, “Rethinking belady’s algorithm to accommodate
prefetching,” in 45th ACM/IEEE Annual International Symposium
on Computer Architecture, ISCA 2018, Los Angeles, CA, USA,
June 1-6, 2018, 2018, pp. 110–123. [Online]. Available: https:
//doi.org/10.1109/ISCA.2018.00020

[27] A. Jaleel, W. Hasenplaugh, M. Qureshi, J. Sebot, S. Steely, and J. Emer,
“Adaptive insertion policies for managing shared caches,” in 2008
International Conference on Parallel Architectures and Compilation
Techniques (PACT), Oct 2008, pp. 208–219.

130

[28] A. Jaleel, K. B. Theobald, S. C. S. Jr., and J. S. Emer, “High
performance cache replacement using re-reference interval prediction
(RRIP),” in 37th International Symposium on Computer Architecture
(ISCA 2010), June 19-23, 2010, Saint-Malo, France, 2010, pp. 60–71.
[Online]. Available: https://doi.org/10.1145/1815961.1815971

[29] D. A. Jiménez and E. Teran, “Multiperspective reuse prediction,”
in Proceedings of the 50th Annual IEEE/ACM International
Symposium on Microarchitecture, MICRO 2017, Cambridge, MA,
USA, October 14-18, 2017, 2017, pp. 436–448. [Online]. Available:
https://doi.org/10.1145/3123939.3123942

[30] V. Jiménez, A. Buyuktosunoglu, P. Bose, F. P. O’Connell, F. J.
Cazorla, and M. Valero, “Increasing multicore system efficiency through
intelligent bandwidth shifting,” in 21st IEEE International Symposium
on High Performance Computer Architecture, HPCA 2015, Burlingame,
CA, USA, February 7-11, 2015, 2015, pp. 39–50. [Online]. Available:
https://doi.org/10.1109/HPCA.2015.7056020

[31] V. Jiménez, R. Gioiosa, F. J. Cazorla, A. Buyuktosunoglu, P. Bose, and
F. P. O’Connell, “Making data prefetch smarter: adaptive prefetching
on POWER7,” in International Conference on Parallel Architectures
and Compilation Techniques, PACT ’12, Minneapolis, MN, USA -
September 19 - 23, 2012, 2012, pp. 137–146. [Online]. Available:
https://doi.org/10.1145/2370816.2370837

[32] H. Kim and P. V. Gratz, “Leveraging unused cache block words
to reduce power in CMP interconnect,” Computer Architecture
Letters, vol. 9, no. 1, pp. 33–36, 2010. [Online]. Available:
https://doi.org/10.1109/L-CA.2010.9

[33] J. Kim, S. H. Pugsley, P. V. Gratz, A. L. N. Reddy, C. Wilkerson,
and Z. Chishti, “Path confidence based lookahead prefetching,” in
49th Annual IEEE/ACM International Symposium on Microarchitecture,
MICRO 2016, Taipei, Taiwan, October 15-19, 2016, 2016, pp. 60:1–60:12.
[Online]. Available: https://doi.org/10.1109/MICRO.2016.7783763

[34] J. Kim, E. Teran, P. V. Gratz, D. A. Jiménez, S. H. Pugsley, and
C. Wilkerson, “Kill the program counter: Reconstructing program
behavior in the processor cache hierarchy,” in Proceedings of the
Twenty-Second International Conference on Architectural Support for
Programming Languages and Operating Systems, ASPLOS 2017, Xi’an,
China, April 8-12, 2017, 2017, pp. 737–749. [Online]. Available:
https://doi.org/10.1145/3037697.3037701

[35] S. Kondguli and M. Huang, “Division of labor: A more effective approach
to prefetching,” in 2018 ACM/IEEE 45th Annual International Symposium
on Computer Architecture (ISCA), June 2018, pp. 83–95.

[36] A. Krizhevsky, “Learning multiple layers of features from tiny images,”
University of Toronto, 05 2012.

[37] M. Lin, Q. Chen, and S. Yan, “Network In Network,” arXiv e-prints, p.
arXiv:1312.4400, Dec 2013.

[38] P. Michaud, “Best-offset hardware prefetching,” in 2016 IEEE Interna-
tional Symposium on High Performance Computer Architecture (HPCA),
March 2016, pp. 469–480.

[39] B. Panda, “SPAC: A synergistic prefetcher aggressiveness controller
for multi-core systems,” IEEE Trans. Computers, vol. 65, no. 12, pp.
3740–3753, 2016. [Online]. Available: https://doi.org/10.1109/TC.2016.
2547392

[40] B. Panda and S. Balachandran, “CAFFEINE: A utility-driven prefetcher
aggressiveness engine for multicores,” TACO, vol. 12, no. 3, pp.
30:1–30:25, 2015. [Online]. Available: https://doi.org/10.1145/2806891

[41] B. Panda and S. Balachandran, “Expert prefetch prediction: An
expert predicting the usefulness of hardware prefetchers,” Computer
Architecture Letters, vol. 15, no. 1, pp. 13–16, 2016. [Online]. Available:
https://doi.org/10.1109/LCA.2015.2428703

[42] S. H. Pugsley, Z. Chishti, C. Wilkerson, P. Chuang, R. L. Scott, A. Jaleel,
S. Lu, K. Chow, and R. Balasubramonian, “Sandbox prefetching: Safe
run-time evaluation of aggressive prefetchers,” in 20th IEEE International
Symposium on High Performance Computer Architecture, HPCA 2014,
Orlando, FL, USA, February 15-19, 2014, 2014, pp. 626–637. [Online].
Available: https://doi.org/10.1109/HPCA.2014.6835971

[43] V. Seshadri, S. Yedkar, H. Xin, O. Mutlu, P. B. Gibbons, M. A. Kozuch,
and T. C. Mowry, “Mitigating prefetcher-caused pollution using informed
caching policies for prefetched blocks,” TACO, vol. 11, no. 4, pp.
51:1–51:22, 2014. [Online]. Available: https://doi.org/10.1145/2677956

[44] M. Shakerinavaet, M. Bakhshalipour, P. L. Kamran, and H. Sarbazi-
Azad, “Multi-lookahead offset prefetching,” in 3rd Data Prefetching
Championship, 2019.

[45] M. Shevgoor, S. Koladiya, R. Balasubramonian, C. Wilkerson, S. H.
Pugsley, and Z. Chishti, “Efficiently prefetching complex address patterns,”
in Proceedings of the 48th International Symposium on Microarchitecture,
MICRO 2015, Waikiki, HI, USA, December 5-9, 2015, 2015, pp.
141–152. [Online]. Available: https://doi.org/10.1145/2830772.2830793

[46] K. Simonyan and A. Zisserman, “Very deep convolutional networks for
large-scale image recognition,” arXiv 1409.1556, 09 2014.

[47] S. Somogyi, T. F. Wenisch, A. Ailamaki, B. Falsafi, and A. Moshovos,
“Spatial memory streaming,” in 33rd International Symposium on
Computer Architecture (ISCA’06), June 2006, pp. 252–263.

[48] S. Somogyi, T. F. Wenisch, A. Ailamaki, and B. Falsafi, “Spatio-
temporal memory streaming,” in Proceedings of the 36th Annual
International Symposium on Computer Architecture, ser. ISCA ’09.
New York, NY, USA: ACM, 2009, pp. 69–80. [Online]. Available:
http://doi.acm.org/10.1145/1555754.1555766

[49] S. Somogyi, T. F. Wenisch, M. Ferdman, and B. Falsafi, “Spatial
memory streaming,” J. Instruction-Level Parallelism, vol. 13, 2011.
[Online]. Available: http://www.jilp.org/vol13/v13paper8.pdf

[50] S. Srinath, O. Mutlu, H. Kim, and Y. N. Patt, “Feedback directed
prefetching: Improving the performance and bandwidth-efficiency of
hardware prefetchers,” in 13st International Conference on High-
Performance Computer Architecture (HPCA-13 2007), 10-14 February
2007, Phoenix, Arizona, USA, 2007, pp. 63–74. [Online]. Available:
https://doi.org/10.1109/HPCA.2007.346185

[51] J. M. Tendler, J. S. Dodson, J. S. Fields, H. Le, and B. Sinharoy, “Power4
system microarchitecture,” IBM Journal of Research and Development,
vol. 46, no. 1, pp. 5–25, Jan 2002.

[52] J. Wang, R. Panda, and L. K. John, “Selsmap: A selective stride
masking prefetching scheme,” ACM Trans. Archit. Code Optim.,
vol. 15, no. 4, pp. 42:1–42:21, Oct. 2018. [Online]. Available:
http://doi.acm.org/10.1145/3274650

[53] J. Wang, R. Panda, and L. K. John, “Prefetching for cloud workloads:
An analysis based on address patterns,” in 2017 IEEE International
Symposium on Performance Analysis of Systems and Software, ISPASS
2017, Santa Rosa, CA, USA, April 24-25, 2017, 2017, pp. 163–172.
[Online]. Available: https://doi.org/10.1109/ISPASS.2017.7975288

[54] T. F. Wenisch, M. Ferdman, A. Ailamaki, B. Falsafi, and A. Moshovos,
“Temporal streams in commercial server applications,” in 2008 IEEE
International Symposium on Workload Characterization, Sep. 2008, pp.
99–108.

[55] T. F. Wenisch, M. Ferdman, A. Ailamaki, B. Falsafi, and
A. Moshovos, “Practical off-chip meta-data for temporal memory
streaming,” in 15th International Conference on High-Performance
Computer Architecture (HPCA-15 2009), 14-18 February 2009,
Raleigh, North Carolina, USA, 2009, pp. 79–90. [Online]. Available:
https://doi.org/10.1109/HPCA.2009.4798239

[56] C. Wu, A. Jaleel, W. Hasenplaugh, M. Martonosi, S. C. S. Jr.,
and J. S. Emer, “Ship: signature-based hit predictor for high
performance caching,” in 44rd Annual IEEE/ACM International
Symposium on Microarchitecture, MICRO 2011, Porto Alegre, Brazil,
December 3-7, 2011, 2011, pp. 430–441. [Online]. Available:
https://doi.org/10.1145/2155620.2155671

[57] C. Wu, A. Jaleel, M. Martonosi, S. C. S. Jr., and J. S. Emer, “Pacman:
prefetch-aware cache management for high performance caching,” in
44rd Annual IEEE/ACM International Symposium on Microarchitecture,
MICRO 2011, Porto Alegre, Brazil, December 3-7, 2011, 2011, pp.
442–453. [Online]. Available: https://doi.org/10.1145/2155620.2155672

[58] H. Wu, K. Nathella, J. Pusdesris, D. Sunwoo, A. Jain, and
C. Lin, “Temporal prefetching without the off-chip metadata,”
in Proceedings of the 52Nd Annual IEEE/ACM International
Symposium on Microarchitecture, ser. MICRO ’52. New York,
NY, USA: ACM, 2019, pp. 996–1008. [Online]. Available: http:
//doi.acm.org/10.1145/3352460.3358300

[59] H. Wu, K. Nathella, D. Sunwoo, A. Jain, and C. Lin, “Efficient
metadata management for irregular data prefetching,” in Proceedings
of the 46th International Symposium on Computer Architecture, ser.
ISCA ’19. New York, NY, USA: ACM, 2019, pp. 449–461. [Online].
Available: http://doi.acm.org/10.1145/3307650.3322225

[60] V. Young, C.-C. Chou, A. Jaleel, and M. Qureshi, “Ship++ : Enhancing
signature-based hit predictor for improved cache performance,” in 2nd
Cache Replacement Championship, 2017.

131

