RCTP : Region Correlated Temporal Prefetcher

Dennis Antony Varkey
Dept. of Computer Science & Engg.
Indian Institute of Technology Madras
Tamil Nadu, India
dennis@cse.iitm.ac.in

Abstract—Hardware prefetcher is an essential component of
modern processors that helps in boosting system performance
by fetching the data before processor demands for the same.
Hardware prefetching techniques have been proposed to exploit
various kinds of access patterns. However, there are applications
that are highly irregular in nature that evolved in the past
decade, and have massive memory footprint. Temporal prefetch-
ing techniques are effective in predicting the future addresses of
these irregular applications. Prior works on temporal prefetching
use large data structures to store temporal patterns and future
memory accesses are predicted using these patterns. However,
these techniques predict future accesses only when there is a
pattern that is already trained for a given cache line address.

To address this issue, we propose Region Correlated Temporal
Prefetcher (RCTP). Our technique correlates temporal patterns
of memory regions and predicts future accesses for the region
whose patterns are yet to be populated. Thus, RCTP helps in pre-
dicting cache line addresses whose first access is yet to happen un-
like the traditional temporal prefetchers. We evaluate RCTP on
SPEC CPU 2006, CRONO, and PBBS benchmark suites. RCTP
outperforms the state-of-the-art temporal prefetcher named ISB
by 26%, and a recent delta prefetcher called VLDP by 6%. This
improvement comes with a hardware overhead of 1KB over ISB;
however, RCTP does not require off-chip storage, unlike other
temporal prefetchers.

I. INTRODUCTION

Traditionally, prefetching techniques provide good perfor-
mance gain if the cache accesses are predictable and regular.
Prefetching techniques such as stride, stream, and best offset
are well known regular prefetchers. Stride prefetcher generally
prefetches the cache lines which are at a particular stride away
from the requested cache line. Next-line prefetcher [1] is a
specific stride prefetcher that prefetches the next cache line.
Best Offset Prefetcher (BOP) [2] is an enhancement of next-
line prefetcher that looks at the previous strides taken by the
program to find the best offset from the offset list. Once the
best offset is found, the offset is added to the current cache
line address and the new address is requested for prefetching.

Access Map Pattern Matching [3]] is a region based prefetch-
ing technique that uses bitmaps for each cache line in the
region and tracks whether the cache lines are accessed or not.
A matching logic is used to find patterns in the bitmap and
using this logic the predicted addresses are prefetched. Spatial
Memory Streaming (SMS) [4] also uses the concept of region.
For each cache block of a region, a bitmap is used to store
the spatial correlation of the cache blocks within a region.
When an access to a region recurs, using bitmap the spatially

Biswabandan Panda
Dept. of Computer Science & Engg.
Indian Institute of Technology Kanpur
Uttar Pradesh, India
biswap@cse.iitk.ac.in

Madhu Mutyam
Dept. of Computer Science & Engg.
Indian Institute of Technology Madras
Tamil Nadu, India
madhu@cse.iitm.ac.in

correlated accesses in the region are prefetched. Though, these
regular prefetchers are effective for regular access patterns,
these techniques provide limited effectiveness for irregular
applications.

Applications that contain pointer-chasing codes, indirect
references such as A[B[i]], where A and B are arrays are some
of the examples of irregular applications. These applications
consist of irregular strides that may span across multiple OS
pages. Irregular strides are the differences in consecutive cache
line accesses in the memory address space that lack any fixed
strides. Though there are prefetching techniques that target
irregular applications, such as irregular stream buffer (ISB)
[S]], temporal memory streaming (TMS) [6], sampled tempo-
ral memory streaming (STMS) [7], spatio-temporal memory
streaming (STEMS) [8]], and variable length delta prefetcher
(VLDP) to name a few, there is still a huge gap that can
achieved in terms of performance (Please refer to Section
for the details.

The primary reason for this huge gap is that the state-of-

the-art prefetchers rely on recurrence of accesses to trigger
prefetch requests, which restricts the effectiveness. We propose
a technique that does not reply on recurrence of accesses.
We use access patterns of a fixed size memory region to
predict the future memory accesses of other memory regions,
through a concept of region correlation. To the best of our
knowledge, this is the first work that exploits region correlation
for prefetching in irregular applications. Overall, we make the
following contributions:
(1) We motivate for the need of better prefetching techniques
for irregular applications (Section [[I). (ii) We propose, region
correlation based temporal prefetcher (RCTP) that exploits
the behavior of one memory region to prefetch addresses for
other memory regions (Sections and [V). (iii) We evaluate
RCTP across different irregular applications and show its
effectiveness in terms of performance. RCTP outperforms ISB
by 26% and VLDP by 6% (Section |VI).

II. RELATED WORK ON IRREGULAR PREFETCHING

Temporal streaming prefetchers are shown to be effective for
irregular applications [5]. Hence for irregular memory access
pattern we use a baseline temporal streaming prefetcher. A
temporal streaming prefetcher stores temporal streams (pat-
terns) of an application to predict its future accesses. A
temporal stream is a sequence of cache line aligned addresses

—-Ideal -a-Ideal Temporal —+ISB

2.4

1.6

o

£1.2
0.8
0.4

o om s

conn comp
omnetpp
sphinx
pagerank

community

Fig. 1: IPCs of different prefetchers.

that are arranged in a chronological order of accesses. These
streams recur temporally and hence can be used to predict the
addresses of irregular applications. Temporal correlation based
prefetchers such as Temporal Memory Streaming (TMS) [6]
and Sampled Temporal Memory Streaming (STMS) [7]] store
memory accesses in the chronological order. When a memory
access recurs, it finds the cache line accesses following itself
and prefetches the upcoming addresses.

Jain and Lin have proposed Irregular Stream Buffer (ISB)
[S] that uses program counter (PC) localization and address
correlation while storing the meta-data of memory accesses.
ISB introduced two address mapping caches (PS-AMC &
SP-AMC) to store the meta-data. These new data structures
arrange the meta-data of temporally correlated accesses in
spatial order. SP-AMC stores the meta-data of PC localized
temporal streams and the spatially aligned storage of meta-data
helps in efficient reconstruction of the address stream. PS-
AMC provides address mapping to SP-AMC. In ISB, when a
cache line is accessed, the PS-AMC is looked for the address.
On a successful match it points to a PC-localized stream in SP-
AMC and the upcoming addresses are predicted. STeMS [8]]
uses both the spatial correlation as well as temporal correlation
to predict the irregular access pattern.

VLDP [9] is a recent prefetcher that tracks complex address
patterns. It uses a multilevel delta history to find a more
accurate match for the future accesses. Another recent work
called Signature Path Prefetcher (SPP) [10] also maintains a
signature for each page. These signatures are made using the
delta history. Using these signatures the upcoming accesses
are predicted based on the path confidence.

III. THE PROBLEM

In this section we discuss the problem that we find in the
state-of-the-art prefetching techniques for irregular memory
accesses. Current temporal prefetching techniques do not pre-
dict the future memory accesses when a cache line is accessed
for the first time or when the cache line has been accessed but
the temporal pattern for the cache line is not available with
the prefetcher as the pattern got evicted. In order to analyze
and understand the implications of this design issue, we run
experiments across three system configurations: ideal, ideal
temporal and the state-of-the-art ISB.

e Ideal: This configuration mimics a system that shows
the characteristics of a perfect last-level cache (LLC).

100

80

60

40

Percentage of distinct accesses

Fig. 2: Percentage of distinct accesses.

A perfect LLC is a system configuration where all the
memory accesses get hit in the cache (LLC or higher
levels of cache) and the processor does not stall for
DRAM access. In this configuration, the LLC-DRAM
memory barrier is bridged. This helps us to gauge the
opportunity in terms of IPC improvement when a perfect
LLC prefetcher is implemented. A perfect prefetcher
brings all the cache line addresses to the LLC before
processor requests for the same. We implemented this
model by setting the LLC-DRAM round-trip latency as
zero cycles.

o Ideal temporal: This configuration mimics a system where
a perfect temporal prefetcher is implemented. A perfect
temporal prefetcher eliminates all the conflict and ca-
pacity misses. However, this prefetcher cannot eliminate
cold misses as temporal prefetcher prefetches cache lines
when they recur. This configuration helps us to know the
possible IPC the best temporal prefetcher can achieve. We
implement this by setting up a large LLC which would
incur only cold misses.

o ISB: This configuration is implemented with the state-of-
the-art temporal prefetcher [Sl].

Fig. |1] shows the difference in performance in terms of
raw instructions per cycle (IPC) for these three configura-
tions. We use irregular applications from benchmarks such
as SPEC CPU 2006 [11], CRONO [12], and PBBS [13].
The benchmarks are sorted as per their IPCs for the ideal
configuration and positioned from left to right. We see that
there is a huge difference in IPCs for different configurations.
For example, when the ideal temporal prefetcher is compared
to the ideal configuration, difference in IPCs goes up to 2 with
an average difference of 0.68. This shows that state-of-the-art
temporal prefetching techniques are not sufficient enough to
hide the memory latency of irregular applications. For SPEC
CPU 2006 benchmarks that have the repetitive and predictable
access patterns, using a perfect prefetching technique brings
down the average IPC difference to 0.17. However; in the case
of CRONO and PBBS benchmarks, even an ideal temporal
prefetcher does not contribute significantly to hide the memory
latency and when the ideal temporal is compared with ISB,
we find that ISB closely follows the ideal temporal. It learns
the temporal patterns and prefetches efficiently. The average
IPC difference between these two configurations is very low
(0.20). However, the IPC difference in the SPEC CPU 2006

benchmarks used here are higher showing there is still scope
of improvement over ISB while prefetching for SPEC CPU
2006 benchmarks.

In order to further understand the behavior of irregular
benchmarks that leads to such performance gap we further
analyze the behavior of the ISB prefetcher. As mentioned
earlier, a temporal prefetcher prefetches data for an address
when that address is referenced more than once. So whenever
a cache line is accessed by the processor for the first time, the
prefetcher stores memory access patterns in its meta-data and
the prefetcher does not have a pattern match in its meta-data
to prefetch. Hence the prefetcher does not prefetch. We track
the number of cache accesses referenced by the prefetcher for
the first time where the prefetcher does not prefetch.

Fig. 2] shows the percentage of distinct accesses to the LLC
compared to the total number of accesses. We can see that
40% of the total cache lines accesses are distinct (accessed
for first time). In case of SPEC CPU 2006 benchmarks such
as astar, mcf, omnetpp, soplex, and xalancbmk, the ratio of
first cache block reference to the total number of cache block
references is more than 40%. We also see in Fig. [I] that in
the above mentioned five benchmarks, there is a significant
gap between ideal temporal and ISB. In case of sphinx, gcc,
and libquantum, ISB tries to bridge some gap as there are lot
of repetitions. In the case of CRONO benchmark suite, seven
out of nine benchmarks have more than 80% distinct accesses
when compared to the total accesses. In all these cases the
prefetcher does not prefetch. In the case of bfs and apsp,
there is repetition of addresses and the gap between the ideal
temporal and ISB is less. We also observe similar trends for
PBBS benchmark suite in which five out of eight benchmarks
have repetitions of less than 40%. Hence these benchmarks
do not prefetch for a significant portion of their application
run. In conclusion, we find that in SPEC CPU 2006, CRONO,
and PBBS benchmark suites, irregular memory accesses have
very low repetitions, hence the number of prefetch requests that
are generated by standard temporal prefetching techniques are
less.

Digging Deep: To understand the intricacies of temporal
prefetcher that cause the gap when compared to the ideal
temporal prefetcher, we analyze some of the graph bench-
marks from CRONO, PBBS, and some irregular benchmarks
SPEC CPU 2006. As mentioned earlier, the cache lines being
accessed are highly distinct. To exemplify this behavior, if a
graph has a small number of vertices or edges or the data set
has less memory footprint it can fit in the meta-data (stored
address patterns) of prefetcher . In subsequent accesses, the
prefetcher can prefetch the memory accesses effectively using
the stored temporal patterns.

Temporal prefetchers need a lot of hardware to store the
meta-data. ISB needs 4 bytes to store each memory address.
ISB also uses 8MB of off-chip space to store the patterns.
ISB can store a graph, which has vertices or edges up to
2 million; or a data set that has a memory footprint of
less than 2 million accesses. If a benchmark has more than
2 million distinct cache line accesses, it will swap in and

out the meta-data from the off-chip storage, so the prefetcher
will not find a matching temporal pattern that can predict the
future accesses, even though the cache line accesses recur. The
dependence of a prefetcher on its off-chip meta-data storage
always remains a critical performance bottleneck. This also
consumes DRAM bandwidth to swap in and out the meta-
data. One of the possible solutions is to use a limited subset of
temporal patterns to prefetch all the memory accesses. Being a
subset, it requires less storage space. Also, DRAM bandwidth
consumption will be reduced as the subset can always be on-
chip. In this paper, we propose a technique where we store a
subset of meta-data and use it to predict future addresses.

IV. REGION CORRELATION

Temporal prefetchers use various correlation techniques like
address correlation, PC correlation, etc., to infer temporal
access patterns within memory streams. In this work, we pro-
pose a novel correlation technique called region correlation,
that correlates temporal patterns across memory regions. A
region is defined as a logical partition obtained by dividing the
physical memory address space, as previously used in various
prefetching techniques, such as SMS and AMPM, where a
memory access pattern is bounded within a region. For a given
memory access within a region, existing temporal patterns of a
prefetcher may not predict future memory accesses whenever
the number of accesses to that region is less, or when the
meta-data for that pattern has been replaced due to limited
hardware storage. For such cases, we propose to employ the
notion of extrapolation of existing patterns from one region
to other region. Among these patterns, we use the region
offset of the current access to select applicable patterns that
contain a memory access with the same offset, and the selected
pattern can be used by the prefetcher to predict future memory
accesses for this region. The region offset of a cache block is
defined as the distance between the cache block and the first
cache block of that region.

However, an offset match alone may select a temporal
pattern that does not predict the actual memory accesses
accurately. Though this method may improve the prefetch
coverage and IPC of an application, it may also hamper the
prefetch accuracy and DRAM bandwidth consumption. In fact,
this method may degrade the performance of applications
when accuracy falls below a certain threshold. Hence, it is
important to extrapolate and select a temporal pattern that
closely matches the actual memory access stream.

In order to prune the prefetch addresses generated by the
temporal stream, we use region-distance based speculation. A
region distance is the value obtained by dividing the difference
in the addresses of two regions by the region size. We observe
that correlations based on certain specific region distances
may improve the prefetch accuracy, as compared to offset-
based correlations alone. Hence, in our proposed technique,
we use region-distance based correlations on top of offset-
based correlations.

Fig. [3| illustrates three different scenarios where region
correlation can be effective in predicting the future memory

Region A Region A
[mp o
omQ om0
Omo/o Omo/0o
omd om0
Id Id
omE0oo o
O om0
O O O
omd gooo
Region B Region B
(@) (b)
Region A
ood
| O
00O Region B
oowo|y, ood
1
O
omoo|® - - . g
oo
O\omo
OoEO0od
Region C
©

Fig. 3: Scenarios of region correlation. (a) single stream; (b)
multiple partial streams; and (c) mixed streams.

accesses. Each region is represented as a set of cache blocks,
which are aligned in a grid like structure. The cache blocks
follow row-major ordering. A and C are the regions whose
temporal patterns are used to generate prefetch requests for
region B. The black arrows indicate the sequence of cache
block accesses for a PC within a region. Each chain-like linked
cache block represents a PC localized stream within a region.
For each region, the shaded boxes indicate the cache blocks
that have been accessed. The region-distance is indicated by d.
Based on our analysis of benchmarks, we find that there
are three different scenarios in which stream(s) from different
regions may correlate.
Scenario 1: Single stream. In Fig. we show a scenario
where a partial access pattern of region A matches with the
partial access pattern of B. So when we get a region offset
match, we can prefetch using the temporal stream of A to
partially predict the access pattern of B. In Fig. [3a] the black
chain of accesses in region B is the common temporal pattern
that both the regions have.
Scenario 2: Multiple partial streams. In Fig. we show the
scenario where many partial access patterns of region B get a
match with the access pattern of region A. This is a super-set of
scenario 1. Fig. [3b|shows two partial access patterns of region
B that match with the access pattern of region A. The two
black chains in the region indicate the overlap between region
A and B and by using region correlation, we can prefetch the
cache block accesses of region B.
Scenario 3: Mixed streams. Fig. shows the scenario
where multiple streams of different regions can be used to
get a match in the region B. In this case, we show how the
temporal streams of two regions A and C are used to find

B B
— "

!
Region No. : Offset

| —

B

Subtractor

DAT
issues | hits

Sequence of Addresses

distance

B

Addr

SP-AMC
Sequence of prefetch requests
(Pi, Pis1, Pryo
|
Hit
(A Aiir, Aisz)
" ’ Push to address
generator
Step 1 Step 2 Step 3

Fig. 4: Steps involved in RCTP.

the access pattern of region B. Fig. [3c| shows a black colored
access chain and a green colored access chain in region B that
can be prefetched by region correlation. Black colored access
chain shows the overlap of temporal pattern between region A
and B, whereas the green colored chain indicates the overlap
of temporal pattern between region C and B. There can also
be a case where access patterns of two regions intersect on the
same offset. All these cases can be taken care of by region
correlation.

V. REGION CORRELATED TEMPORAL PREFETCHING

In this section, we discuss the proposed prefetching tech-
nique Region Correlated Temporal Prefetching (RCTP). Our
technique generates prefetch requests in three steps: (i) tem-
poral stream detection; (ii) region-distance based speculation;
and (iii) address generation. Fig. [illustrates the steps involved
in generating prefetch addresses using RCTP. It tries to predict
future memory accesses on every LLC access and sends
prefetch requests to DRAM.

In Fig. @] B denotes the current address. A;, A1, Ajta,...
are the addresses of temporal patterns stored in prefetcher.
Finally, P;, P;y1, Pjy2,... are the addresses predicted for
prefetching.

Step 1: Temporal stream detection Given a cache line
access, in this step, RCTP searches for a temporal stream
for prefetching an address whose region-offset matches with
that of the cache line access. Firstly, on a cache line access
the PS-AMC is looked into to find the stream. An entry in
PS-AMC contains a mapping to the structural address space,
called structural address. PS-AMC being a 8-way cache,
accommodates eight entries in a set. The region-offsets of
these entries are matched with that of the current access.
Among the matched entries, the least-recently-used entry is
selected assuming that it will map to the temporal pattern
closest to the current access pattern. The structural address
of the selected entry is used to index into the SP-AMC. The
index to SP-AMC is used to obtain the temporal stream (A;,
Ai+1, Ajto,...). This temporal stream is used next for region-
distance based speculation.

Step 2: Region-distance based speculation In this step,
RCTP prunes the addresses of the temporal streams based on

PS-AMC and SP-AMC 8K entries
prefetch;ssyes and prefetchy, s 13 bits
distance 5 bits
distance accuracy table 17 entries
threshold (region-distance accuracy) 0.7

TABLE I: RCTP parameters.

region distance. As all the region correlations that generate ad-
dresses may not be accessed in future, we stop prefetching, if
the region correlation between two regions is less accurate. We
introduce a structure distance accuracy table (DAT) that stores
the counters to calculate the accuracy of region-distances. The
accuracy of a region-distance is the ratio of useful to total
prefetched addresses that used the region distance. Useful
addresses are the addresses that get cache hit DAT has three
components: (i) region-distance, (ii) prefetch;ss,cs counter,
and (iii) prefetchy;;s counter.
As shown in step 2 of Fig.] the region number of A; is sub-
tracted from that of B to find the region-distance. The region-
distance is then looked up in the DAT. The region-distance is
a key value to perform the look-up. On a successful look-up
in the table, we obtain prefetch;ss,.s and prefetchy;:s for the
region-distance. The accuracy is thus obtained as Zm}%
If the accuracy of the region-distance is above a threshold
then the address of the temporal stream is passed to the
address generator. When an address is issued for prefetching,
the corresponding prefetch;ss,cs counter is incremented. On
a hit to the address, the prefetchy;;s counter is incremented,
thereby monitoring the accuracy of each region-distance.
Step 3: Address generation In this step, the address gener-
ator operates on the pruned temporal stream to generate the
addresses for prefetching (P;, P, 1, P;4o, ...). The stream is
mapped to the current region during the process. The address
generator takes addresses of the pruned temporal stream and
splits each of them into two parts. As shown in Fig.[4} the most
significant bits of an address indicate the region number and
least significant bits indicate the region-offset denoted by A/
and A/, respectively. In order to generate prefetch addresses,
the region number of the current address B” is appended to the
region-offset of the addresses in the pruned temporal stream
(A}, A, 1, Al ,....). The addresses (P;, Piy1, Piyo,...) are the
probable candidates for prefetching and are generated in the
following manner.
P, = (B” << region-sizeps) + Al

Pii1 = (B” << region-sizeps) + Aj

P10 = (B” << region-sizepiss) + Aj o
These addresses are then pushed to the prefetch queue.

Implementation details

Table [[] provides various parameters used in RCTP. The
storage requirements per core are as follows:

« Distance accuracy table (17 entries)
(5 + 13 + 13) bits x 17 = 65.86B
« PS-AMC (8K entries)
(2B x 8K) = 16KB

Processor 1/4 out-of-order cores
(4GHz, 8 Issue, 192 ROB size, x86 ISA)
L1 cache 32KB/per core, private, 8-way, 2 cycle
I & D) MSHR 4, 64B cache block
L2 cache 2MB/8MB, unified, 16-way
MSHR 20/64, 64B cache block
DRAM DDR3 1600 MHz
1/2 channels, 2 Ranks/channel, 8 Banks/Rank

TABLE II: Simulator configuration.

e SP-AMC (8K entries)
(2B x 8K) = 16KB

o Overall hardware (DAT + PS-AMC + SP-AMC)
(65.86B + 16KB + 16KB) ~ 33KB

Overall, RCTP has a hardware overhead of less than 33KB
per core. Compared to ISB, RCTP has an additional on-chip
hardware overhead of 1KB; there is no off-chip hardware
overhead in RCTP, unlike as required by ISB (§MB).

For some benchmarks, region-distance accuracies vary over
the period of execution. The region-distance accuracy may
be lower in the initial stages, however it can improve over
the period of execution. Hence for these benchmarks once a
region-distance accuracy falls below the threshold, prefetches
based on that region distance ceases for the entire run. To
overcome this issue we reset the counters. The counters are
reset after every fixed interval, called reset interval. We refresh
the DAT entries after every 10K access to the LLC. The size
of refresh interval is fixed based on the analysis explained in
Section We fix the size of DAT entries (prefetch;sgyes
& prefetchy;ys) as 13 bits as it is sufficient enough for 10K
cache accesses in a refresh interval. We consider region size
to be 4KB. Using empirical evaluations, we find that this size
performs the best.

VI. RESULTS

We use gem5 [14] simulator to evaluate RCTP on single-
core and 4-core systems. Table |lIf provides the configuration
of the simulated system. We use benchmarks with irregular
memory accesses. Table lists the benchmarks used from
SPEC CPU 2006, CRONO, and PBBS. We run the simulation
for a representative 250M instructions. In case of SPEC CPU
2006 benchmarks, the simulations are fast-forwarded by 15
billion instructions. The number of instructions fast-forwarded
for CRONO and PBBS depends on the loading of the graph
and its creation.

We compare RCTP with two other techniques, ISB and
VLDP. ISB is the state-of-the-art temporal prefetcher. VLDP is
a recent prefetching technique that uses multiple levels of delta
history pattern to predict future accesses. It achieves speedup
where the address sequences have multiple repeating deltas.
We choose VLDP over BOP [2] and SPP [10]] as both the
techniques work efficiently only for regular patterns. SPP does
not perform well for benchmarks like xalancbmk, mcf, astar,
gcc because of low spatial locality.

[Suite | Benchmarks [Data-set |
SPEC2006 astar, gcc, mcf, omnetpp, soplex, sphinx, xalancbmk ref
CRONO apsp, bc, bfs_crono, community, conn_comp, dfs, pagerank, sssp, triangle counting California road network / synthetic
PBBS bfs_pbbs, delaunay triangulation, hull, matching, mis, mst, neighbor, spanning forest | LiveJournal social network / synthetic

TABLE III: Benchmarks.

=ISB mVLDP mRCTP

Normalized IPC

omnetpp
bfs-crono
pagerank
matching
geomean

2ISB msVLDP aRCTP *
100 omnetpp

=

Percentage Redduction of MPKI
nstar
gee
mef
soplex
sphinx
alan
apsp
be
dfs
pagdrank

bfs-¢rono
"onn ¢omp
geomean

mat(

*

Fig. 5: Normalized IPC over no prefetching.

A. Single-core evaluations

We evaluate RCTP based on three metrics: (i) performance
in terms of IPC; (ii) prefetch coverage; and (iii) prefetch
accuracy. We use prefetch coverage as the reduction in MPKI
of LLC, which is (1 —), and prefetch accuracy
(prefetchpqt) [15]

prefetchissyed

Fig. E] shows the normalized IPC over no prefetching.
Overall, on average, RCTP performs better than ISB and
VLDP. The speedup of RCTP over no prefetching is 38%,
whereas the speedups of ISB and VLDP are 12% and 32%,
respectively. We observe a maximum speedup of 3.58x for
benchmark hull. Hull being memory intensive as indicated in
Fig. (1] achieves speedup as RCTP saves critical misses.

RCTP performs better than ISB for all the benchmarks of
CRONO except apsp. For CRONO, most of the benchmarks
have very low reuse of cache line addresses. However, for
benchmarks, like apsp and bfs, the cache line reuse is high.
Hence ISB improves the speedup. In case of apsp, ISB
outperforms all other techniques. In case of apsp the difference
in speedup between ISB and RCTP is 6%. RCTP matches or
performs better than VLDP in all the benchmarks of CRONO
except pagerank. For pagerank, RCTP performs better when
region-based speculation is not used but in that case the
prefetch accuracy is very low. If we use off-chip memory (as
in the case of ISB to store temporal patterns at the DRAM)
with RCTP, for benchmarks like apsp and bfs, it outperforms
VLDP and ISB by 10% to 15%, respectively.

RCTP performs better than ISB and VLDP, with aver-
age (geomean) improvements of 55% and 23% in speedup,
respectively, for the benchmarks of PBBS. Note that when
compared to ISB, RCTP consistently performs better for all
these benchmarks. This is due to low cache line reuse. For the
benchmarks bfs, delaunay, and mis, VLDP performs slightly
better with improvement of less than 5%.

For SPEC CPU 2006, ISB clearly outperforms both RCTP
and VLDP. For omnetpp, there is a long gap between stream
accesses. Hence the off-chip memory usage enables ISB to
predict the pattern. Whereas in RCTP, inaccurate correlation

technique

MPKInoPF

Fig. 6: MPKI reduction over no prefetching.

leads to cache pollution thereby degrading performance. Fig. [6]
shows that in the case of omnetpp, MPKI increases due to
cache pollution. Similarly, for xalancbmk and soplex, there
is low region-distance based correlation and hence the im-
provement in performance is also low. However, in the case of
sphinx and mcf, region correlation helps to achieve marginal
speedup. In case of sphinx and mcf, there are some region-
distances that lie outside of what RCTP monitors. Using them
would further increase the performance improvement. How-
ever, when off-chip memory is used with RCTP, it matches
the performance achieved by ISB.

Fig.[6]shows the reduction of MPKI for different techniques.
For the benchmarks hull, mst, matching, and nearest neighbor,
RCTP improves performance and also has high coverage. This
shows there is a direct correlation between performance im-
provement and coverage. For benchmarks like bfs, community,
sssp, tc and sf, the coverage is slightly better as compared to
ISB and VLDP, giving small performance improvement. We
also see that in the benchmarks mis and dfs, VLDP has a better
coverage giving a better IPC improvement. In pagerank we
see that the coverage in the case of RCTP is more but VLDP
prefetches more critical memory accesses, hence VLDP has
slightly better IPC improvement when compared to RCTP.

In case of SPEC CPU 2006 benchmarks, the coverage of
RCTP is lower than that of ISB. In benchmarks like astar, mcf,
gcc, and sphinx, RCTP almost matches the coverage when
compared to ISB, and hence it provides IPC improvement
in these benchmarks. Whereas in omnetpp and soplex, RCTP
issues useless prefetches that cause cache pollution, and hence
we see that in these cases there is degradation of speedup with
RCTP. If we use RCTP with off-chip memory then we see
that most of the benchmarks give better coverage than ISB.
In case of omnetpp, inaccurate region correlation causes cache
pollution, thereby degrading the performance.

In Fig. [/ we plot the prefetch accuracy (in %) for different
prefetching techniques. RCTP matches the prefetch accuracy
of ISB and provides a better prefetch accuracy when compared
to VLDP. In CRONO and PBBS, ISB has a high accuracy as

gISB aVLDP oRCTP

Percentage

dfs
sSSp

conn-comp
pagerank
geomean

El
E
E
g
e

Fig. 7: Prefetch accuracy.

gISB mVLDP aRCTP

geomean =

A @M TQI RO N M D o 9 B 2,
WM MR = M e T e 2 2 B 17}

EEEEEEEEEEEBEE & @
- h . " 8§ H HE E E H

community

multi-programmed multi-threaded

Fig. 8: Normalized weighted speedup for 4-core system.

the number of prefetches issued is very less and ISB does not
improve the performance even though the accuracy is high. In
benchmarks like apsp, bfs, pagerank, hull and mst, RCTP has
high prefetch accuracy. As stated, xalancbmk, omnetpp and
soplex have low region-distance based correlation, thus the
accuracy reduces significantly. Prefetch coverage reflects the
misses reduced by the prefetcher as well as any cache pollution
induced by the prefetcher. If there is cache pollution, MPKI
for that cache also increases. We see that RCTP reduces MPKI
by 37.5%, whereas ISB and VLDP reduces MPKI by 16% and
32%, respectively.

B. Multi-core evaluations

We evaluate the multicore results using the weighted
speedup metric [16], which is Zij\:}l % IPCfog cther
is the IPC of an application when simulated on an N-core
system with other N-1 applications and IPC®°"¢ is the
IPC of that application run alone on the N-core system. The
weighted speedup is normalized to no prefetching technique
and has been plotted in Fig. [8]

The mixes of multiprogrammmed workloads are randomly
generated using SPEC CPU 2006 benchmarks. These include
both regular and irregular benchmarks. For multithreaded
evaluations we use benchmarks from CRONO, where each
benchmark spawns one thread for each core.

For multiprogrammed workloads, RCTP achieves 25.9%
speedup over no prefetching. It outperforms ISB and VLDP
by 14.17% and 5.99%, respectively. For multithreaded bench-
marks, RCTP achieves 45.34% over no prefetching and per-
forms better than ISB and VLDP by 26.51% and 8.07%
respectively. Except for mix5 and mix10 of multiprogrammed

STIILL

224 208 -192 -176 -160 -144 -128 -112 -96 -80 -64 -48 -32 -16 16 32 48
Region Distance

Fig. 9: Normalized score distribution of various region-
distances.

workloads, for all other mixes RCTP performs better than ISB
and VLDP. For mix5 and mix10, both VLDP and ISB perform
better than RCTP. The reduction in accuracy in RCTP for mix5
and mix10 causes performance degradation. For other mixes
RCTP has better accuracy.

The multithreaded workloads having low repetitions of
accesses leads to low coverage in ISB. This causes reduced
performance for ISB. In the case of VLDP, the inaccuracy
in prefetching causes reduced performance. Overall we see
that for multithreaded and multiprogrammed workloads, RCTP
achieves better speedup when compared to ISB and VLDP.

C. Sensitivity analysis

In this section, we discuss the impact of different tuning
parameters on RCTP. The parameters are (i) DAT entries; (ii)
threshold of region-distance accuracy; and (iii) reset interval.
DAT entries: We run the RCTP simulation without region-
distance speculation and store the prefetch accuracy of each
region-distance. Once the simulations are over, we analyze
the accuracy of each region-distance. Each region-distance is
assigned a score of 1, 0, or -1 based on the accuracy. If the
accuracy of a region-distance is greater than 0.7 (threshold
of region distance accuracy) for at least 10,000 references
during correlation, a score of 1 is given. Similarly, if the
accuracy is less than 0.7 for more than 10000 references, a
score of —1 is given. In any other case, a score of 0 is given.
A score of 1 indicates a useful region-distance, 0 indicates
neutral, and —1 indicates a useless region-distance for our
technique. For each region distance, its score across all the
benchmarks is summed up to obtain its cumulative score.
All the region-distances that have a cumulative score of less
than zero are omitted. The cumulative scores of the remaining
region-distances are normalized and plotted in Fig. 0] The
plot shows the normalized score distribution of region-distance
across all benchmarks. The distribution shows the effectiveness
of each region-distance. In the plot, we see the region-distance
-16 is useful in most benchmarks. We see from the plot that
all the 17 region-distances are effective irrespective of the
benchmarks. Hence we choose to monitor these 17 region
distances.

Threshold of region-distance accuracy: We analyze different
thresholds of region-distance accuracy to find the optimal
threshold. For this purpose, simulations are run on different
threshold values keeping all other tuning parameters constant.
Fig. shows the sensitivity of RCTP to different threshold

zaNormalized IPC -&Accuracy

1.39 46

1.38 A 45.5
© 137 / 45
£1.36 — 445 5,
LB a4 E
St -
2133 | 435 €
S13 % 7 I |43 =
Z131 — A R4 SR/ ¢ R4 -]

13— R 5§ S 5 S— {42

1.29 41.5

0.65 0.70 0.75 0.80 0.85 0.90 0.95
Threshold

Fig. 10: Normalized IPC and prefetch accuracy over different
thresholds.

values; a bar is the geomean of the normalized IPC for a
threshold value across all benchmarks. Similarly a point in the
line graph is the geomean of accuracy across all benchmarks.
The values in the figure show the desirable trend. As we
increase the threshold value the normalized IPC decreases.
This is due to reduced prefetching opportunities as prefetching
stops at higher threshold; whereas the accuracy increases with
the threshold value. We see that the normalized IPC values
tend to get stagnant after 0.7. Similarly the accuracy decreases
very gradually as we lower the threshold. Hence in RCTP, we
use 0.7 as the threshold of region-distance accuracy.
Reset interval: We analyze and show the sensitivity analysis
of reset intervals. In this regard, we plot the geomean of
normalized IPC and prefetch accuracy for different reset
intervals (1K, 5K, 10K, 15K & 20K access to LLC) along
with a special case where we do not reset the DAT counters
(Fig. @ As the reset interval size increases, the normalized
IPC decreases, whereas the prefetch accuracy increases. We
restrict the prefetching once the region-distance accuracy falls
below the threshold. As the size of the reset interval increases
the restriction is induced for a longer interval, hence reducing
the normalized IPC. The region-distance that has lower accu-
racy will get the opportunity to prefetch again after resetting
the counters. As the size of reset interval increases the resetting
of DAT counters decreases, hence the accuracy increases. In
cases where we do not reset the DAT counters, we see that
the accuracy is higher compared to cases where we reset the
DAT counters. For some benchmarks such as nearest neighbor
and mst, the region-distance accuracy is initially low. Hence,
without reset intervals they stop prefetching in the early stages.
This results in lower normalized IPC and higher accuracy.
We see that the change of accuracy is less than 1% between
20K interval and 10K interval. The normalized IPC also
reduces when we increase the reset interval size from 10K
to 15K. Normalized IPC at 5K and 10K are similar but 10K
has better accuracy. Hence we choose 10K as we do not
compromise on accuracy yet have speedup.

VII. CONCLUSIONS

In this paper, we introduced RCTP, a temporal prefetcher that
uses temporal patterns of a memory region to prefetch for
another memory region. Existing temporal prefetchers do not
prefetch for the accesses whose temporal pattern is unknown
to prefetcher. However, RCTP performed region correlation
to predict the temporal pattern for accesses unknown to

ezmNormalized IPC - -&Accuracy

1.4 47

1.38 46
© 1.36 t 45
Ay

Z 134 F4d
g g
N 1.32 r43 s
e 3
g 13 124

S 1.28
1.26
1.24

41
40

- 39
20000 No Reset

5000 10000 15000
Reset Interval

1000

Fig. 11: Normalized IPC and prefetch accuracy over different
reset intervals.

prefetcher. Thus LLC misses were avoided, improving the
performance. RCTP outperformed the state-of-the-art temporal
prefetcher, ISB by 26% and a recent delta prefetcher, VLDP by
6% for a single core system configuration. RCTP improves the
performance for applications with irregular memory accesses,
by using region correlation.

REFERENCES

[1] A.J. Smith, “Cache memories,” ACM Comput. Surv., vol. 14, pp. 473—
530, Sept. 1982.

[2] P. Michaud, “Best-offset hardware prefetching,” in /IEEE International
Symposium on High Performance Computer Architecture (HPCA), 2016.

[3]1 Y. Ishii, M. Inaba, and K. Hiraki, “Access map pattern matching for
high performance data cache prefetch,” Journal of Instruction-Level
Parallelism, vol. 13, pp. 1-24, 2011.

[4] S. Somogyi, T. Wenisch, A. Ailamaki, B. Falsafi, and A. Moshovos,
“Spatial memory streaming,” in Computer Architecture, 2006. ISCA’06.
33rd International Symposium on, pp. 252-263.

[5] A.Jain and C. Lin, “Linearizing irregular memory accesses for improved
correlated prefetching,” in Proceedings of the 46th Annual IEEE/ACM
International Symposium on Microarchitecture, pp. 247-259, 2013.

[6] T.F. Wenisch, Temporal Memory Streaming. PhD thesis, Pittsburgh, PA,
USA, 2007. AAI3289945.

[71 S. Somogyi, T. F. Wenisch, A. Ailamaki, and B. Falsafi, “Spatio-
temporal memory streaming,” ACM SIGARCH Computer Architecture
News, vol. 37, no. 3, pp. 69-80, 2009.

[8] T.F. Wenisch, M. Ferdman, A. Ailamaki, B. Falsafi, and A. Moshovos,
“Practical off-chip meta-data for temporal memory streaming,” in High
Performance Computer Architecture, 2009.

[9] M. Shevgoor, S. Koladiya, R. Balasubramonian, C. Wilkerson, S. H.

Pugsley, and Z. Chishti, “Efficiently prefetching complex address pat-

terns,” in Proceedings of the 48th International Symposium on Microar-

chitecture, pp. 141-152, ACM, 2015.

J. Kim, S. H. Pugsley, P. V. Gratz, A. N. Reddy, C. Wilkerson, and

Z. Chishti, “Path confidence based lookahead prefetching,” in Microar-

chitecture (MICRO), 2016.

J. L. Henning, “SPEC CPU2006 benchmark descriptions,” ACM

SIGARCH Computer Architecture News, vol. 34, no. 4, pp. 1-17, 2006.

M. Ahmad, F. Hijaz, Q. Shi, and O. Khan, “Crono: A benchmark suite

for multithreaded graph algorithms executing on futuristic multicores,”

in Workload Characterization (IISWC), 2015 IEEE International Sym-

posium on, pp. 44-55, IEEE, 2015.

J. Shun, G. E. Blelloch, J. T. Fineman, P. B. Gibbons, A. Kyrola,

H. V. Simhadri, and K. Tangwongsan, “Brief announcement: the problem

based benchmark suite,” in Proceedings of the ACM symposium on

Parallelism in algorithms and architectures, pp. 68-70, ACM, 2012.

N. Binkert, B. Beckmann, G. Black, S. K. Reinhardt, A. Saidi, A. Basu,

J. Hestness, D. R. Hower, T. Krishna, et al., “The gem5 simulator,” ACM

SIGARCH Computer Architecture News, vol. 39, no. 2, pp. 1-7, 2011.

S. Srinath, O. Mutlu, H. Kim, and Y. N. Patt, “Feedback directed

prefetching: Improving the performance and bandwidth-efficiency of

hardware prefetchers,” in High Performance Computer Architecture,

2007. HPCA 2007.

A. Snavely, D. M. Tullsen, and G. Voelker, “Symbiotic jobscheduling

with priorities for a simultaneous multithreading processor,” in ACM

SIGMETRICS Performance Evaluation Review, vol. 30, pp. 6676, 2002.

[10]

[11]

[12]

[13]

[14]

[15]

[16]

