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ABSTRACT
Through this paper, we propose an instruction pointer classi-
fier based hardware prefetching technique for the DPC-3. We
use multiple instruction pointer based prefetchers that suit
different access patterns and overall cover a wide spectrum of
access patterns. Our classifier classifies instruction pointers
at the L1 cache level and communicate the same to the L2
prefetcher. Our prefetching framework named Instruction
Pointer Classifier based Prefetching (IPCP) provides 43.75%
improvement for single-core and 22% for 25 selectively cho-
sen multi-core mixes, respectively. IPCP demands a hardware
overhead of 16.7KB per core.

1. INTRODUCTION
Hardware prefetching plays an important role in breaking

the the fundamental "memory wall" problem. A hardware
prefetcher observes the memory accesses (sitting beside a par-
ticular cache level) and predicts the future accesses based on
a specific patterns that are driven by signatures like: instruc-
tion pointers (IPs), operating system (OS) page or a memory
region. There are prefetchers that do not use any form of
signatures, like next-line and offset based prefetchers.

Instruction pointer(IP) based prefetchers such as the IP-
stride prefetcher [1] offers huge performance benefits that
help in reducing the number of costly DRAM accesses. An IP-
stride prefetcher, learns a recurring stride for an IP, and once
it gets a minimum confidence on the learned stride, it starts
prefetching with the learned stride. One of the advantage of
using the IP based prefetchers is that it is less susceptible to
IP reordering and random accesses across different memory
regions, which may confuse a non IP prefetcher.

Our goal is to propose an IP based prefetcher that can
cover the majority of access patterns. We find that each IP,
can be classified into unique IP-classes, and the resulting
classification could be used for better prefetching according
to each class of IPs. For DPC3, we classify IPs into three
classes: constant stride (CS), complex stride (CPLX) and
stream (GS).

2. INSTRUCTION POINTER CLASSIFIER
BASED PREFETCHING (IPCP)

In this section, we define and explain the rationale behind
three different classes of IPs.
IP Constant Stride(CS): Consider the following access pat-
tern (cache line aligned addresses) for an IP named IPA:
0,2,4,6,8, with strides of 2,2,2,2. In this IP class, cache
lines X, X+2, X+4 and so on are accessed by the same IP
resulting in a constant stride pattern of 2. This is one of the
more common patterns seen by IPs and can be prefetched
using a simple IP-stride prefetcher. The prefetch coverage
and prefetch accuracy for this pattern would be 100% if we
classify this IP as IP for constant strides (IP-CS). We observe
that there are accesses where a stride pattern skips a memory
access in between. This could be because of a failed branch
condition before the access or the accesses are filtered at
the upper levels of cache. In that case, the constant stride
access pattern would become X, X+2, X+4, X+8. Note that
X+6 is missing. A simple 2-bit counter per IP entry (with
values from zero to three) can help to maintain hysteresis as
mentioned in the original IP-stride prefetcher [1] and we can
keep on prefetching until this confidence falls below a certain
threshold (less than two).
IP Complex Stride(CPLX): Consider this access pattern

by IPB: 0,3,6,10,13,16,20 with strides of 3,3,4,3,3,4.
Here we see a complex pattern by IPB. A simple constant
stride prefetcher would give 66% coverage assuming these
strides are cold start strides, since it would be unable to pre-
dict stride 4. Also if the stride pattern is 1,2,1,2,1,2, a simple
IP-stride prefetcher would lack the confidence to prefetch any
stride since the two strides compete for the same entry in the
stride table. Here, its coverage would be zero. These patterns
are classified as complex strides. Taking cue from the SPP
prefetcher proposed in DPC-2[2], we create a signature of
deltas seen by an IP and use it to index into a delta prediction
table (DPT). It may be argued that a constant stride pattern
is a subset of a complex stride pattern, hence removing the
need to classify an IP separately as CS. But we identify two
benefits to do so. Firstly, a CS prefetcher is more resilient
to random mismatches in the patterns due to the hysteresis
counters. A CPLX prefetcher would just start constructing
a new path every time such a random access occurs. Dur-
ing this time it would be unaware of what to prefetch next.
Secondly a CPLX prefetcher has to hash the signature (a
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IP_tag IP_valid Page_no Page_offset Last_stride
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(a) IP table_entry at L1

DPT_entry

CS_conf Sig. Str_valid Str_direction Str_strength

.
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IP-GSIP-CS IP-CPLX

GHB
IP_tag IP_valid Pref_type Stride

(b) IP table_entry at L2

Size of an IP Table entry at L1: 77 bits 
IP_tag (6), IP_valid (1), Page_no (52), Page_offset (6), Last_stride (7), CS_conf (2), str_valid, direction, and strength (1 bit each)
Size of an IP Table entry at L2: 17 bits 
IP_tag (6), IP_valid (1), Last_stride (7), Pref_type(3)
An L1 GHB entry: 58 (64-6) bits for cache block aligned address  An L1 DPT entry: 9 bits (stride (7) + conf (2))

Figure 1: An entry in L1 and L2 IPCP tables. Pref-type has five different prefetch types (None, GS, CS, CPLX, and
NL) classified at the L1. Page offset is the cache line offset (ranging from 0 to 63) within an OS page.

signature created based on the deltas seen so far) and look up
the DPT for every consecutive access. This could be costly
in terms of latency whereas a CS prefetcher would simply
add the delta to the next access to be prefetched. Note that
delta is nothing a but a stride between two cache line aligned
addresses.
IP Global Stream (GS): A global stream is a set of consec-
utive cache line aligned accesses observed independent of an
IP, for example an access stream of 0,1,2,3,4,5,6,7,8,9. While
this stream can be prefetched using using the CS or the CPLX
class, looking at the global pattern we see that there is one IP
that triggers a global stream and many IPs follow the global
stream (makes the access stream independent of the IP). So,
it makes more sense to prefetch the global stream as opposed
to the IP-correlated stream since it preserves the global order
of accesses and results in much better timeliness. So if an IP
belongs to multiple classes, we prioritize the global stream
class over others.
Temporal and Irregular IP (TIP): There are irregular ac-
cesses, which do not follow any pattern, simple or complex,
but recur. ISB prefetcher [3] suits these access patterns,
where IP-correlated streams are stored and prefetched when
required. We do not explore this prefetching in this paper
due to the lack of access to off-chip memory and the transla-
tion look-aside buffer (TLB), as per the DPC3 rules, without
which the memory cost of storing these accesses on chip be-
comes prohibitively high. Integrating the ISB as a temporal
class IP would result in higher coverage as both irregular and
regular accesses would be covered.

3. DESIGN OF IPCP
We implement IPCP at two cache levels: L1 and L2. We

do not implement it at the LLC as we do not see any con-
siderable benefit. The prefetch requests issued into L2 and
L1 are also filled into last-level cache (LLC). On a demand
access (along with prefetch hits) at the L1, IPCP stores the
corresponding IP in an IP table indexed using the IP bits. The
consecutive accesses by the same IP are used to calculate the
strides and classify the IP into one of the three classes. The
access stream at the L2 is now jumbled since it consists of
prefetch requests and demand misses from the L1. Thus we
cannot simply train on the L1 misses like we used to in the
absence of an L1 prefetcher, since some of the misses are

converted to hits due to L1 prefetching. This corruption of the
stream makes pattern matching at the L2 under the present
circumstances very difficult. Hence we use the L1 prefetch
requests to communicate the IP classification information
to the L2 prefetcher (through the metadata feature available
in DPC-3). So, on a prefetch access to L2 (because of L1
prefetching), the L2 prefetcher issues prefetch requests ac-
cording to the IP classification done at the L1. On a demand
access at the L2, the L2 prefetcher issues prefetch requests
based on the metadata information only.

3.1 IPCP at the L1
Figure 1 (a) shows the IP table entry at the L1 prefetcher

that is used by IPCP. IPCP uses a table of 1024 entries at L1.
Fields of interest for CS class: The IP table entry consists
of various fields for three different classes of IPs. The IP
table is indexed and tagged by an IP. Each entry has a last
stride entry corresponds to the constant stride (CS) class. A
confidence counter conf is incremented every time the same
stride is seen. It is used to determine whether to prefetch
using the constant stride. The entry stores the last OS page
(last page) seen by the IP and the page offset. The offset is
used to calculate the stride between two IP accesses. The
page information is used for page boundary learning and cal-
culating the stride when a new page is seen.
Fields of interest for CPLX class: The signature is part of
the CPLX class, points to the last delta(s) seen by the IP. The
new delta is then hashed with the signature to lookup to a
table called delta prediction table (DPT) to predict the next
delta. DPT consists of 4096 entries and is indexed using the
12-bit signature stored in the IP table. Each entry stores the
delta pointed to by the signature and a 2-bit saturating confi-
dence counter. Every time the same delta is pointed to by a
signature, the confidence counter is incremented by one and
decremented otherwise. This delta is hashed to the signature
and the DPT is looked up to issue prefetch requests.
Fields of interest for GS class: The fields related to the
global stream class are stream_valid, stream_strength and
stream_direction bits correspond to the global stream (GS)
class. We define a global stream as a sequence of contigu-
ous cache line aligned addresses. When the stream valid
bit is set, the IP is known as the trigger IP of the global
stream. The global stream IP class uses a small Global His-
tory Buffer(GHB)[4] that keeps track of the last 16 cache
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line aligned addresses seen in the global stream (independent
of any IP). We say an IP is a global stream IP, when more
than half of the entries correspond to the same stream (which
is measured in both directions from the current access). If
this number is greater than 3/4th of the entries then the IP is
strongly classified as a global stream. This means the IP is
permanently classified as GS class and no further checking
of the GHB is necessary to verify its class in the future. The
direction bit is used to decide the next n cache lines in the +ve
or the -ve direction. The strength bit indicates the number
of accesses in the global stream covered by the stream, and
refereed to as a strong stream if the stream covers 3/4th of
the GHB entries.
Indexing into the IP table: The IP tracking table at the L1
is indexed by the last 10 bits (lsbs) of the IP. It stores the next
six IP bits as the tag bits. As there can be collisions between
IPs matching to the same table entry, we use a valid bit to
maintain hysteresis. When an IP is encountered for the first
time, it is recorded in the table and the valid bit is set. When
another IP maps to the same entry, the valid bit is reset but the
previous entry remains. If the valid bit is zero (reset) when
a new IP is seen then the table entry is allocated to the new
IP and the valid bit is set again. This ensures that at least one
of the two competing IPs is tracked in the table. We do not
use any replacement policy and instead focus on indexing,
since it would induce too much latency into the critical path,
especially at the L1 level.
The case of no-IP (next-line prefetching): In case a de-
mand access does not fall into any of the three classes (CS,
CPLX, and GS), we use the next-line (NL) prefetcher. How-
ever, the usage of NL prefetcher can be detrimental to per-
formance especially in case of irregular access patterns. So,
we also use a few other structures to make adaptive decisions.
We calculate the L1 misses per kilo cycles (MPKC) per core.
A miss counter counts the number of L1 misses. After every
256 (determined empirically) demand misses, the number
of cycles elapsed is calculated and the MPKC is calculated.
Since we cannot afford useless prefetches when the MPKC
is too high, we turn off NL prefetching at the L1 and L2.
A speculative_NL bit is set for each cache level, when the
MPKC is below a certain threshold (15 for single core and
five for multi-core) and reset otherwise. NL prefetching is
ON only when this is set.
Page boundary learning: IPCP stores the page offset (cache
line offset within an OS page, for a 4KB page, a offset can
have values from 0 to 63) of the current access. It is used to
calculate the stride between the two accesses by the same IP.
The page of the current access is checked against the OS page
stored in the IP entry. If the pages match, the stride is from
the same page. If not, 64 (the number of cache lines within
the page) is added to a negative stride or subtracted from a
positive stride. This new stride is used to train the CS and
CPLX classes, incrementing or decrementing the confidence
of the respective classes.

3.2 IPCP at the L2
The IP table at the L2 is only used for book-keeping pur-

poses. The metadata obtained from the L1 prefetcher is used
to classify the IPs as belonging to one of the four classes:
CS, CPLX, GS, and NL (in case an IP does not belong to

CS, CPLX, and GS). IPCP at the L2 uses an IP table of 1024
entries and is indexed by the last 10 bits (lsbs) of the IP and
each entry contains a 6-bit IP tag, an IP-valid bit, a 2-bit
type field (based on the metadata information, there are four
possibilities) and a 7-bit stride. Figure 1(b) shows the IP table
entry at L2. On a demand access at the L2, the L2 prefetcher
consults the L2 table that is populated based on the metadata
information communicated by the L1 prefetcher.

There is also a speculative_NL bit at the L2 which is con-
stantly updated using the metadata from the L1. The NL
prefetcher at L2 issues prefetch requests when this bit is set.
Metadata Decoding at L2: When a prefetch is issued from
L1, some form of metadata is sent along with it in DPC-3.
This is used to communicate with the lower level prefetchers.
In our case, the metadata contains the stride for each class,
the type of IP class (pref-type in the L2 entry) and the MPKC
information to decide whether to issue next line prefetches
(in the form of speculative NL bit). The metadata does not
contain the IP because the IP of the request is anyway passed
to the L2 prefetcher. The L2 prefetcher decodes the stream
of L2 accesses and the metadata sent by the L1 prefetcher,
and stores it in the L2 IP table. When an IP is seen at the L2,
prefetch requests are issued according to the stored metadata,
regardless of whether it is a demand or prefetch request. IPCP
at the L2 does not issue prefetch requests for the CPLX class.
CPLX class at the L2 does not yield any benefits and even
caused performance degradation in some of the benchmarks.

3.3 Working of IPCP and priority of IP Classes
Priority of classes: IPCP uses the following priority: GS,

CS, CPLX, and then NL. At a particular instant, if an access
belongs to multiple IP classes then this priority order is used.
Note that, IPCP does not access the table multiple times to
find out the class a particular demand access, because all the
information is stored as part of a single entry. All the classes
can be checked concurrently and finally the highest priority
class is used, in case of a tie.

Overall, on a demand access, the stream_valid bit is checked
first. If the IP belongs to the GS class, the next six addresses
are issued according to the stream_direction bit. In case the
IP is a not "strong-stream" IP, the GHB is checked to see if the
IP still belongs to a global stream. Only the valid and direc-
tion bits are required to check for global stream prefetching.
Each access is added to the GHB if it is not already found in
it, i.e., each GHB entry is unique. If the IP does not belong to
the GS class, the CS entries are checked, concurrently. If the
confidence is high enough (greater than one in our case), the
stride is added recursively to the current cache line address
until the number of prefetch requests specified in the preferch
degree (three in our case) are issued. If not, the pattern is
complex and the DPT has to be queried to get the next delta.

The stride obtained previously is added to the signature
according to the equation: signature = (signature « 1) ˆ stride
Note that we shift the signature by a single bit so that we
can accommodate highly complex stride pattern. Thus a pat-
tern can produce many signatures, but we do not observe
too many collisions in the DPT because there are not many
CPLX IPs at the same point of time. The signature points to
the next delta, and if the confidence is high enough(> one in
our case), the delta is added to the cache line to produce the
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Figure 2: (a)Normalized single-core IPCs. (b) Distribution of prefetch requests based on the IP class.

entry-size × entries
IP table 77×1024 (L1) + 17×1024 (L2) 12.03KB
DPT table 9×4096 4.6KB
GHB table 16×58 928 bits
Prefetch degrees 6 bits (L1) and 8 bits (L2) 14 bits
Others MPKC (8),cyle-counter(64), miss-counter(8), MPKC-threshold(4), speculative-NL bit at L1 and L2 (2) 86 bits
Total 16.7KB

Table 1: Hardware Overhead with IPCP at L1 and L2.

prefetch address. If the confidence is greater than zero, the
delta is added to the signature using the above equation and
the next prediction is made. This look-ahead continues until
the prefetch degree (three in our case) is reached.

If critical path is an issue then CPLX class can be moved
to the L2 prefetcher.Note that this is applicable only to the
CPLX class.Prefetching with the other classes simply involves
adding the delta to the current access to predict the next ac-
cess. If all the previous classes are not satisfied, IPCP turns
into a NL prefetcher depending on the speculative_nl bit.
Prefetcher Aggressiveness for each class: IPCP issues prefetch
requests with a prefetch degree of three for CS and CPLX
classes at L1 and six for the GS class. For L2, IPCP uses a
prefetch degree of four for GS class. For the CS class, IPCP
uses a degree four if the MSHR occupancy is less than one
half of the MSHR entries, else it uses a degree three. With
IPCP, the prefetch degree for multi-core is less than that of
single core, since there is a lot of contention at the DRAM
controller. We throttle the degrees of GS from six to four,
three to two for CPLX and CS, at the L1. At the L2, we use
the degree two for both CS and GS, respectively.
Hardware Budget: A self-contained Table 1 shows the hard-
ware overhead, which is 16.7KB per core.

4. RESULTS

The speedup obtained by IPCP for single core is 43.75%
with maximum improvements of more than 3X coming from
gcc and bwaves. Out of all the traces only one trace mcf-
994 shows a non-negligible performance degradation of more
than 2%. For a representative mix of multi-core workloads,
we observe a speedup of 22%. Figure 2 (a) shows the nor-
malized IPC improvements and Figure 2 (b) shows the distri-
bution of prefetch requests based on their respective classes.
On average, IPCP has used all the classes equally.

5. CONCLUSION
This paper proposed a bouquet of instruction pointers

(IPCP) that is used to prefetch various kinds of access pat-
terns at the L1 and L2 caches. IPCP provides an average
improvement of 43.75% for single-threaded traces.
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