
STEVES: Pushing the Limits of Value Predictors with Sliding FCM and
EVES

Arpit Gupta, Parv Mor, Hritvik Taneja, Biswabandan Panda
{arpitrag, parv, hritvikt, biswap}@cse.iitk.ac.in

Indian Institute of Technology Kanpur

ABSTRACT
Value prediction has immense potential in improving per-
formance of the modern day processors. Based on the CVP
leaderboard, the ideal value predictor provides 107% speedup
whereas the state-of-the-art EVES predictor provides 35.8%
with an unlimited storage. Through this manuscript, we at-
tempt to push the limits of EVES. We propose a finite context
method based value predictor named Sliding FCM. A sliding
window FCM stores the history of values for a particular in-
struction pointer and while predicting in the future, it matches
the recent history of values with a relatively older set of val-
ues. In case of a match, it predicts the next value from the
history of values as the value to predict. Sliding FCM cou-
pled with EVES (we call it STEVES) improves the average
performance to 37% with a maximum speedup of 1000%.

1. INTRODUCTION
Instruction Level Parallelism (ILP) is hindered by depen-

dencies in a program. False dependencies arising due to
reuse of registers or order of instructions can be eliminated
using register renaming, out-of-order processing; while true
dependencies arising due to control flow and data flow are
difficult to eliminate as the results are required to be predicted
reliably to justify their utility. State-of-the-art branch predic-
tors are able to eliminate control flow dependencies with a
high accuracy. Value prediction, however, is fundamentally
hard mainly due to large sample space and high penalty on
incorrect prediction (a load might visit main memory pro-
viding room for more instructions to be speculated). The
usefulness of value prediction was first shown by Lipasti et
al. [1] The idea was disposed off due to the complex archi-
tecture it seemed to demand. However, recent proposals such
as EOLE [2], an {Early | Out-of-Order | Late} Execution
architecture, has made value prediction to be practical. Value
predictors, as proposed by Smith et al. [3], are either a hybrid
of or belongs to the following categories:

1. Computational Predictors. The result of these predic-
tors is an application of some function of previously
seen values. Example of such predictors include, Last
Value Predictor and Stride Predictor.

2. Context based Predictors. These predictors observe
the context of the values seen from an instruction and
predict a previously seen value on repetition of the same
context in future. Example of such predictors include,

Finite Context Method (FCM) Predictor.

In this paper, we propose Sliding FCM — a value predictor
of the second kind. Sliding FCM is a context based predictor
that maintains sliding windows per predictable instruction.
We analyze the accuracy and performance of Sliding FCM
with state-of-the-art first championship value prediction win-
ner predictor — EVES [4]. We observe that Sliding FCM
differs from EVES (in terms of coverage) by a significant
amount with a maximum difference of over 25%. Further, we
integrate Sliding FCM with EVES to build a hybrid predictor,
STEVES — Sliding The EVES, and observe an improvement
in Instructions Per Cycle (IPC) by a maximum of over 1.69.

Context based predictor learns previously observed values
to predict values of subsequent occurrences of the instruction.
FCM predictors, defined by their order k, use the previous k
values of an instruction to index into a global or per instruc-
tion table. The table maintains count of values that imme-
diately follow the k values and depending upon confidence
the value with maximum count is chosen to be predicted. In
the following subsections we argue the disadvantages of such
designs of context based predictors and Sliding FCM which
tries to eliminate the mentioned disadvantages. Further, we
discuss appropriate parameters and optimizations that can
help maximize the performance.

Need of a new Context Predictor:

a. In general, FCM is biased towards old history of a
program and realizes the change in instruction’s behav-
ior after a considerable number of cycles. Since FCM
weighs equally to the least recently occurred value and
the most recent occurred value, FCM doesn’t provide
a bias to more recent patterns than earlier ones which
is provided by Sliding FCM by only accounting for
"m" most recent values for a particular PC. During
this period it might miss the chance to predict or in the
worst case even mispredict leading to poor performance.
Hence, there is a need to adapt to the recent changes of
program’s behavior in a swift manner.

b. Conventional FCM can lead to inconsistent behaviour
even with a small in-flight window. To resolve this
one might have to store I, expected number of in-flight
instructions, values immediately following an index
which results in a lot of redundant data. Hence, there is
a need for a space efficient model.

1

Figure 1: Value Prediction using Sliding FCM.

2. SLIDING FCM
Sliding FCM makes use of two value streams seen in recent

past. The first stream i.e. the verification stream is of length
n (the verification length) while second stream i.e. the history
stream is of length m (the history length). Since we need
to verify n values before the inflight pattern (of length I),
m needs to be greater than n+ I. We denote the streams in
form of an array (zero-indexed) where the verification and the
history stream corresponds to w1 and w2 respectively. Array
w1 is a sub-array of array w2 with respect to some i, if and
only if,

∀ 0≤ j < n =⇒ w1[j] = w2[i+ j]

Further, we call w1 to be a early-matched sub-array of w2
with respect to some i, if w1 is a sub-array of w2 and i is the
maximum possible.

To make a prediction, we find an early-matched sub-array
such that it can accommodate the in-flight instructions. If
the match occurs at index i, then we predict the value to be
w2[i+n+ I]. As the match occurs we first verify the n (veri-
fication length) values and now since we have I occurrences
of the same instruction in inflight, we cannot verify them and
assume them to be correct and predict the next value without
verifying the I values which is w2[i+n+ I] Figure 1 depicts
the prediction mechanism pictorially. The predictor table
is indexed using the Program Counter (PC). The content of
each entry in the predictor table consists of a value history of
length m, most recent m values, predicted values of inflight
instructions and, correct and incorrect predictions (for black-
listing the entry). Updates to each window stream is made
when the actual value of instruction is known, i.e., during
commit. To update a window stream the value at lowest in-
dex is dequeued and the newly found value is queued at the
highest index.

Since we only take last m values into account for the his-
tory, our predictor Sliding FCM has the capability to rapidly
re-adjust to the program behaviour. Sliding FCM is a clean
solution for handling in-flight occurrences without using too
much space. Moreover, we do not need any probabilistic
counters for our predictor since the verification length is a
measure of the confidence in itself.

2.1 Parameter Tuning
We describe the optimal parameters used in our experi-

ments and their effect on accuracy and coverage of the pre-
dictor. The different parameters are described as follows:

a. Length of History Window. We compare the most recent
n values of the instruction by the sliding across the his-
tory window (of length m) of that particular instruction.
The history length m relates to the program state. An
extreme case where m→ ∞ tends to rely too much on
early history of program. Experiments show that large
values of m significantly increase number of incorrect
predictions and small values of m leads to lower cover-
age. We found that m = 64 provides optimal coverage
and accuracy.

b. Verification Length. Verification length, n, is the length
of the previous values of current context that we slide
to match with history window. Small values of n in-
creases coverage at the cost of large number of incorrect
predictions, whereas large values of n decreases mispre-
dictions at the cost of low coverage. The optimal value
of n was found to be 32. We see that increasing the
value of n beyond 32 doesn’t increases accuracy whilst
maintaining high coverage levels.

c. Instruction Blacklisting. In this work we aim to explore
the limits of value prediction, hence we do not restrict
ourselves to any storage budget. Yet to have practical
realization of our approach we have included the fea-
ture for an instruction blacklisting in our model. With
this feature we stop predicting an instruction with a
threshold inaccuracy. Further, space optimizations such
as aging and skewed-associativity can be employed.

d. In-flight Length. We verified that most of the traces
provided by CVP do not require an in-flight window of
more than 32. Our optimal history length and verifica-
tion length luckily satifies the constraint mentioned in
Section 2.

3. HYBRID PREDICTOR
While program exhibits patterns in their value stream, not

all of them, can be predicted using a context-based predictor.
Computational-based predictors are indeed necessary for bet-
ter value prediction coverage and hence, better performance.
In the following subsections we discuss two state-of-the-art

2

Figure 2: Average number of incorrect (left) and correct (right) predictions of Sliding FCM compared to unlimited budget
predictors of CVP leaderboard.

Figure 3: Effect of history length on IPC in STEVES.

computational predictors and later on describe our hybrid
predictor, STEVES — Sliding The EVES.

3.1 E-Stride: A Stride Predictor
Stride predictors learn the difference between consecu-

tive occurrences of an instruction and predict value of an
upcoming instruction by adding the difference to its last oc-
currence [1]. Formally, consider an instruction whose value
stream known until now is a1,a2, . . . ,an such that ∀ i, j ai−
ai−1 = a j−a j−1 = s (say). Now suppose there are I occur-
rences of the same instruction in-flight. Then for the current
occurrence the predicted value would be

an +(I +1)× s

E-Stride or Enhanced Stride, proposed by Seznec [4], em-
ploys several enhancements over the basic stride predictor to
improve performance. The enhancements are described as
follows:

a. Space Optimization. Strides with null entries are avoided
(as a last value predictor can be used) and only small
strides are stored in a skewed associative cache. Further

Figure 4: Effect of verification length on IPC in STEVES.

an aging mechanism is used to evict least recently used
entries.

b. Critical Predictions. Values are predicted only when
the corresponding instruction has high confidence. Con-
fidence is maintained using probabilistic counters which
are increased with high probability for the instructions
that are speculated to be critical. This would priori-
tize instructions that tend to stall the pipeline for long
periods.

c. Reducing Mispredictions. Instructions that tend to pro-
duce incorrect predictions are blacklisted until they re-
gain confidence. Such an enhancement was also pro-
posed by Deshmukh et al. [5]

3.2 E-VTAGE: A Last Value Predictor
Last value predictors are used to predict instructions with

repeating patterns. VTAGE, based on ITTAGE [6] (an indi-
rect branch predictor), is a last value predictor that takes into
account the branch history path taken to reach the predictable
instruction. VTAGE is composed of several tables where

3

Figure 5: Speedup of STEVES compared to the baseline
predictor over traces provided by CVP.

each table is indexed by PC hashed with different branch
history length (that are in geometric progression). In case
multiple tables provide prediction, one with longest history
length is chosen.

Similar to E-Stride, E-VTAGE or Enhanced VTAGE was
proposed by Seznec [4] with clever enhancements. These in-
volve efficient space management by two level indexing and
moving redundant values to a common skewed associative
structure; improving performance by prioritizing critical in-
structions; and reducing incorrect predictions by blacklisting.

3.3 STEVES: A Composite Predictor
We analyzed the coverage, performance and accuracy of

E-Stride, E-VTAGE and Sliding FCM and observed that dif-
ferent predictors have significantly different characteristics.
As a result, we integrated the three to build a hybrid predic-
tor STEVES — Sliding The EVES. Experiments show that
STEVES has a better coverage than any of its component
predictors without compromising the accuracy. This results
in an overall performance improvement in terms of IPC. We
observe that since all the component predictors have minimal
mispredictions, prioritizing any predictor over other has neg-
ligible impact over performance. This obliviates the need for
a dynamic scheduler and hence, we have the following static
priority order: E-VTAGE, E-Stride, Sliding FCM.

4. EVALUATION
We evaluate the utility of our proposed predictors (Sliding

FCM and STEVES) using a trace-based simulator provided
by Championship Value Prediction (CVP). The predictors
were simulated over the 135 traces provided by the CVP.
First we depict the behavior of history and verification length
on performance of Sliding FCM. Then we proceed to com-
pare our predictors with state-of-the-art predictors mentioned
on the leaderboard of CVP.
Length of Windows: From Figure 3 and Figure 4 we can
conclude that optimal history length and verification length
are 64 and 32 respectively. Increasing or decreasing either
results in decrease in performance due to loss in coverage or
increase in number of incorrect predictions.
Accuracy of Predictions: Figure 2 shows the average num-
ber of correct and incorrect predictions over given traces. We
observe that Sliding FCM results in very low number of in-

Figure 6: Speedup of STEVES compared to the unlimited
budget versions of state-of-the-art predictors as per CVP-1.

correct predictions owing to the window lengths. While the
number of correct predictions is low they differ significantly
from rest of the shown predictors. This justifies the construc-
tion of the hybrid predictor STEVES.
Performance Improvement: Maximum improvement ob-
served in IPC was over 1.69. Figure 5 presents the speed-up
provided by STEVES over the baseline. We observe an aver-
age speedup of 37% and a maximum speedup of over 1000%.
Finally, Figure 6 shows the improvement of STEVES over
unlimited budget versions of different state-of-the-art predic-
tors [5] [7] [4].

5. CONCLUSIONS
In our work, we aim to realize the potential of value pre-

diction for modern day workloads. Hence, we test different
predictors without any constraints on the storage budget. Al-
though the size of our predictor is dynamically growing, but
to limit the size we can resort on techniques such as Black-
listing and Ageing to limit the size of our predictor. The
experiments show that STEVES outperforms most of the
state-of-the-art predictors in terms of performance and cover-
age. On an average, STEVES provides an IPC of 3.812 over
135 traces compared to 3.773, provided by the championship
value prediction winner EVES.

We foresee future work on several different fronts. Firstly,

4

a predictor for load instructions can be made via speculatively
capturing the dependencies between value generating instruc-
tions, store instructions and load instructions and, maintain-
ing a small data cache. We tried this approach but were not
able to work it through because of the restrictions posed by
the championship simulation framework. We believe that
this approach can be easily realized in hardware. Secondly,
because of the constraints posed by the current simulator, a
more exposed and realistic simulator can be proposed which
can expose hardware structures like load-store queue, that
can help in developing better predictors.

6. REFERENCES
[1] M. H. Lipasti, C. B. Wilkerson, and J. P. Shen, “Value locality and load

value prediction,” vol. 30, (New York, NY, USA), pp. 138–147, ACM,
Sept. 1996.

[2] A. Perais and A. Seznec, “Eole: Paving the way for an effective
implementation of value prediction,” in 2014 ACM/IEEE 41st
International Symposium on Computer Architecture (ISCA),
pp. 481–492, IEEE, 2014.

[3] Y. Sazeides and J. E. Smith, “The predictability of data values,” in
Proceedings of the 30th Annual ACM/IEEE International Symposium
on Microarchitecture, MICRO 30, (Washington, DC, USA),
pp. 248–258, IEEE Computer Society, 1997.

[4] A. Seznec, “Exploring value prediction with the eves predictor,” in 1st
Championship Value Prediction (CVP-1), 2018.

[5] N. Deshmukh, S. Verma, P. Agrawal, B. Panda, and M. Chaudhuri,
“Dfcm++: Augmenting dfcm with early update and data
dependence-driven value estimation,”

[6] A. Seznec, “A 64-kbytes ittage indirect branch predictor,” in JWAC-2:
Championship Branch Prediction, 2011.

[7] K. Koizumi, K. Hiraki, and M. Inaba, “H3vp: History based highly
reliable hybrid value predictor,”

5

	Introduction
	Sliding FCM
	Parameter Tuning

	Hybrid Predictor
	E-Stride: A Stride Predictor
	E-VTAGE: A Last Value Predictor
	STEVES: A Composite Predictor

	Evaluation
	Conclusions
	References

