
DFCM++: Augmenting DFCM with Early Update and Data
Dependence-driven Value Estimation

Nayan Deshmukh*, Snehil Verma*, Prakhar Agrawal*, Biswabandan Panda, Mainak Chaudhuri
Indian Institute of Technology Kanpur,

{ndesh, snehilv, pkhrag, biswap, mainakc}@iitk.ac.in

ABSTRACT
Value prediction is one of the promising micro-architectural
techniques to improve the processor performance. Through
this paper, we provide a series of four enhancements that we
apply on top of Differential Finite Context-Method (DFCM)
value predictor and call it DFCM++. Our design achieves a
geomean IPC of 4.11 whereas the baseline system, without
any value predictor, provides a geomean IPC of 3.21 (an im-
provement of 28.1%). In comparison to the baseline DFCM,
which provides a geomean IPC of 2.93, DFCM++ delivers
an improvement of 40.2%. Additionally, we show the effec-
tiveness of our enhancements on some of the state-of-the-art
value predictors such as VTAGE and DVTAGE.

1. INTRODUCTION
True data dependencies cause frequent stalls in the proces-

sor pipeline, resulting in significant performance degradation.
Value prediction is one of the techniques that minimizes the
impact of data dependencies and improve Instruction Level
Parallelism (ILP), hence the system performance. For exam-
ple, a perfect value predictor (as per the CVP framework)
provides a geomean IPC of 6.96 whereas a baseline with no
value prediction provides a geomean IPC of 3.21. This gap in
performance magnifies the importance of a value predictor.

In this paper, we propose a series of enhancements on an
existing value predictor named DFCM (Differential Finite
Context-Method) predictor [3] and call it as DFCM++. The
enhancements are as follows:

1. An early update policy where we update the value pre-
dictor before the instruction commits (Section 3.1).

2. A data-dependence driven value estimator that esti-
mates the value (does not predict) (Section 3.2).

3. A PC blacklister that selects a PC for which we should
not predict (Section 3.3).

4. We introduce the notion of dynamic context length for
the DFCM predictor (Section 3.4).

In a nutshell, compared to a system with no value prediction,
DFCM++ improves the performance (in terms of geomean
of normalized IPCs) by 28.1%, attaining a geomean IPC of
*The first three authors contributed equally to this paper

4.11. Compared to an unlimited baseline DFCM (that has a
geomean IPC of 2.93), DFCM++ improves the performance
(geomean of normalized IPCs) by 40.2%.

2. BACKGROUND
Lipasti et al. [4][5] and Gabbay et al. [2] independently

introduced value prediction in the year 1996. Sazeides and
Smith defined two different types of predictors [9] based on
the criteria that they use to predict values:

• Computational predictors: The predictors that predict
the next values based on the output of the operations
performed on the previous value(s). E.g: last value [4],
stride [2], and 2-delta stride [1] predictors.

• Context-based predictors: The predictors that predict
the next value by matching the recent value history of
the instruction Program Counter (PC) with the value
history based on the observed patterns. E.g: Finite
Context-Method (FCM) [8] and last n-values [4] pre-
dictor.

We design our predictor based on DFCM predictor as
DFCM is a simple and yet effective predictor. We compare
the performance of FCM (geomean IPC of 2.3) with DFCM
(geomean IPC of 2.93) for 135 traces and find that DFCM
outperforms FCM.

2.1 DFCM
The DFCM predictor is derived from the FCM predictor

and is more efficient than FCM in terms of performance gain.
Unlike FCM, that has two hardware tables, DFCM has three
hardware tables.

For the sake of simplicity, we name the three hardware
tables of the DFCM predictor as follows: (i) Stride History
Table (SHT, 1st level), (ii) Stride Prediction Table (SPT, 2nd
level), and (iii) Last Value Table (LVT). SHT is indexed
with the instruction PC and stores the local history of strides
corresponding to the instruction. Each entry is tagged with a
hashed PC. SPT contains the actual prediction, in the form
of stride, and its corresponding confidence. To index into
SPT, we hash the stride history stored in the SHT. This hash
effectively represents the stride pattern that the values follow.
LVT stores the last value corresponding to the instruction
PCs. Note that, in our implementation we use only two tables

1

(i) SHT (1st level, where the LVT is combined with the SHT)
and (ii) SPT (2nd level)

In contrast, the FCM uses two tables: Value History Table
(VHT) and Value Prediction Table (VPT). VHT and VPT of
the FCM correspond to SHT and SPT of the DFCM.

In [8], an nth order FCM is defined as the one that keeps n
values for determining the context of a particular instruction
PC. Similarly, an nth order DFCM contains last n strides with
respect to an instruction PC. Figure 1 shows the basic DFCM
predictor that we use for our enhancements.

Base Value Hash of last N values

.

.

.

.

.

.

PC

Stride Confidence

ADD

Predicted Value

②

Saturated ?

Use the
predicted

value

SHT SPT

①

③ ③

.

.

.

.

.

.

Figure 1: Order N Differential FCM predictor with SHT
combined with LVT (1st level) and SPT (2nd level).

We find that the DFCM predictor learns the value/stride
pattern better than other predictors such as FCM and 2-delta
stride. 2-delta stride predictor provides a geomean IPC of
2.83, FCM predictor provides a geomean IPC of 2.30 and
DFCM predictor provides a geomean IPC of 2.93. All the
predictors use unlimited hardware structures. As DFCM out-
performs FCM and 2-delta stride, we choose DFCM predictor
for our enhancements. We elaborate on our enhancements in
the following section.

3. FROM DFCM TO DFCM++
We extend the DFCM predictor with four enhancements.

These enhancements can be augmented with any value pre-
dictor to further boost the performance. An obvious enhance-
ment comes with the unlimited storage track, which is to use
unlimited size SHT and SPT. This is a simple enhancement
mainly targeted for the unlimited track of this championship.
We start off with a basic DFCM predictor and make each
table (SHT and SPT) unbounded (based on the requirement
all the tables grow). This enhancement reduces the number
of conflicts in the SHT and SPT. This makes the tag and the
replacement policy within the tables unnecessary.

3.1 Enhancement 1: Early Update (EU)
The early update policy provides us an opportunity to up-

date the predictor even before the instruction gets committed,
which helps in back-to-back predictions. In this policy, we
add a predictive state for each PC that contains a base value
and a hash of last N strides. For a normal instruction, the
predictive state is same as its corresponding SHT entry. How-
ever, for the in-flight instructions, the predictive state contains
the speculative value per PC (per SHT entry).

Mapping

SN

No estimation

②

①

④

③

Calculate

②

⑤

PC Index

PCIT

src dst OP Valid?
Y

N

RFB

0 . . .1 2

val V PC piece

Valid?

Y

SN > CSN?

Y

N
No estimation

④
⑤

Estimate

⑥

Figure 2: Schematic of Value Estimator. SN: sequence num-
ber, CSN: sequence number of the last committed instruction,
val: value, V: valid bit, PC: program counter.

Implementation of early update: We simply update the
predictive state speculatively using the predicted value. For
each entry, if there are no in-flight instructions, we restore the
predictive state to the corresponding SHT entry at the commit
time. Since we update the SPT entries only at the commit
time, we do not pollute the SPT table in case of unknown
predictions. Note that, we use the first level table (SHT) just
to index into the second level table (SPT) and update the SPT
table only at the commit time, once we get the final value.

3.2 Enhancement 2: Value Estimator (VE)
One of the primary enhancements of DFCM++ is the value

estimator which is driven by data dependencies. Our value es-
timator contains four hardware structures: (i) PC information
table (PCIT), (ii) Register File Buffer (RFB), (iii) sequence-
no-to-PC mapper (here no is used as an alias for number),
and (iv) RFB-index-to-sequence-no mapper. PCIT (unlimited
in size) stores the relevant information, such as source and
destination registers involved with the PC, operation, values
of previous occurrences. This table is indexed by the PC and
the piece. RFB is a limited size buffer (500 entries), which
is indexed by the output of the sequence-no-to-PC mapper,
which itself is indexed by the sequence number of the dy-
namic instruction (say I1). RFB stores the state (value of each
register, and the valid/invalid state of each register; in case
of invalid, it stores the sequence number of the instruction
that has overwritten the value) of the register file before the
execution of the instruction I1. Sequence-no-to-PC mapper
maps a sequence number to a <PC,index> and the index field
is used for indexing into the RFB. RFB-index-to-sequence-no
mapper maps an RFB entry to a sequence number. We use
the mappers to maintain the RFB entries.

Through the PCIT, we try to infer the operation (exam-
ple an ADD operation) based on the past instances of of the
source and destination values corresponding to the instruc-
tion PC. Once we determine the operation, given the source
register values, we estimate the destination register value.

Figure 2 shows the working of our value estimator. In
(1), the sequence-no-to-PC mapper maps a sequence num-
ber to a <PC,index>, where the index field is used to index

2

into the RFB (2) and the PC is used to index into the PCIT.
In 3 , we extract the source registers from a PCIT entry and
get their corresponding values from RFB. (4) If the states
of the registers are valid, we get the operation field from the
PCIT and check for its validity. In case of a valid entry in the
operation field, we estimate the value for the destination reg-
ister (5); however, we do not estimate if the operation field
is invalid. If the state of the registers is invalid (6), we check
if the sequence number, corresponding to the instruction that
has overwritten the register, is greater than the last committed
sequence number. If so, then we repeat the steps from 1
to 5 till we get the source register value. This is recursive
process, and through this the value estimator exploits the data
dependence between a set of dynamic instructions. If at any
point, we fail to retrieve the value of the source register, we do
not estimate. In case the sequence number is less than the last
committed sequence number, we do not estimate the value as
every committed instruction updates its register values and
we need not go beyond this sequence number to estimate.

Allocation of new RFB entry: We implement a FIFO
policy to replace the old RFB entry and use the RFB-index-
to-sequence-no mapper to invalidate the entry in the sequence-
no-to-PC mapper. Also we update the RFB-index-to-sequence-
no mapper for the current index with the new sequence num-
ber.

Prioritization: While predicting the value, we prioritize
the estimator over the speculative predictor (base DFCM)
i.e., first we attempt to estimate the value using the estimator
and if we are unable to do so then we use the speculative
predictor, based on its confidence. There are cases where we
may have to use just the DFCM predictor, as we may not have
the behavior of the PC all the time or the value in the register
file may be stale (for example, if the previous instruction was
not the part of prediction or if the value prediction was wrong
then we do not use the estimator).

3.3 Enhancement 3: PC Blacklister (PCB)
We observe that even a little increase in mis-predictions

deteriorates the performance significantly. We also record
some instruction PCs on which we mis-predict quite often.
To overcome this issue, we use a simple but effective method
to improve performance. The idea is to blacklist an instruc-
tion PC if it is mis-predicted consecutively for more than a
threshold value. We tune this threshold to select the best one
(details in the Section 4.3).

3.4 Enhancement 4: Dynamic Context Length
(DCL)

Our last enhancement is to dynamically determine the
context length (number of instances of previous strides). In-
tuitively, longer context length should imply more chance
of correct prediction. But we find that some patterns repeat
in short periods for short interval of time. To predict these
patterns we must reduce the context length. But if we re-
duce our context length significantly to values like 16 and
8, we observe that mis-predictions increase drastically. This
is because longer patters are captured partially, which when
mis-predicted, decreases the IPC. So, we introduce the con-
cept of dynamic context length to exploit this behavior.

0.7

0.8

0.9

1

1.1

1.2

1.3

N
o

rm
al

iz
ed

 S
p

ee
d

u
p

DFCM DFCM + EU DFCM + EU + VE DFCM + EU + VE + PCB DFCM + EU + VE + PCB + DCL

Figure 3: Normalized speedup with the enhancements on
DFCM (early update, value estimator, PC blacklister, dy-
namic context length). Note that additional 4% gain is
achieved by fine tuning the enhancements and the associ-
ated policies.

Implementation: In addition to an SHT with context
length of 64 (SHT-64) in DFCM predictor, we have a SHT
with context length of 32 (SHT-32) and a separate SPT for
each SHTs. We empirically validate that this implementation
works better than any other combination. To select the best
context length (between 32 and 64), we use two saturating
counters (one for SHT-64 and one for SHT-32) for each entry
in SHT-64 and SHT-32 and store them in a table called prefer-
ence counter table. We increment the preference counter for
a particular entry on a correct prediction and decrement it on
a mis-prediction. We simultaneously train for both context
lengths to select the best context length based on the prefer-
ence counter value (if > 0 then we choose the higher one).

Figure 4 shows the schematic of DFCM++, i.e. after
adding all the enhancements to DFCM.

4. PARAMETER TUNING

4.1 Indexing into SPT tables
We index into the SPT table with the help of "hash of last

N values". We define our hash function as follows: the values
stored in the SHT are of width 64 bits. For each value, we
extract the 64 bits, we fold it by 18 bits and then shift the
existing hash by 1 bit and then do the XOR with the folded
value and shifted hash. This is similar to the hash function
named select-fold-shift-xor used in [8].

4.2 Dynamic confidence threshold in SPT
Threshold confidence is the confidence above which we

start predicting values. It is a critical parameter to consider
while designing DFCM++ as SPT uses it to decide whether
to use the predicted value. This is very sensitive as it directly
impacts the number of correct and incorrect predictions. We
observed that certain instructions are “less predictable” and
work better with high confidence threshold, while others lose
precious opportunities to predict correctly with high confi-
dence threshold. Hence we add a per PC dynamic confidence
saturation that updates depending on the behavior of the
instruction. The confidence threshold is incremented for in-
structions that cause a mis-prediction.

3

Preference
Counters

.

.

.

PC

Correct/Incorrect

②

PC
Blacklisted ?

No - Use the
predicted

value

Selecto
r①

④

③

Order 64
DFCM

Order 32
DFCM

Value
Estimator

②

⑤

Yes – Don’t use
the predicted

value

Mux

Mux

Figure 4: Schematic of DFCM++ including preference
counter table and estimator.

2.2
2.4
2.6
2.8

3
3.2
3.4
3.6
3.8

4
4.2

G
e

o
m

ea
n

 o
f

IP
C

s

6.97

Figure 5: Comparison of geomean IPC for the existing pre-
dictors with and without our enhancements.

4.3 Blacklisting Threshold
As mentioned in the Section 3.3, we study the variation

of IPC with DFCM++ with respect to the blacklist threshold.
We tune this parameter and observe a performance peak at
10, meaning we blacklist a PC after 10 consecutive mis-
predictions.

5. PERFORMANCE EVALUATION
We use the CVP framework to quantify the effectiveness of

our enhancements on DFCM. With our final design (Figure
4), we achieve a normalized speedup of 28.1% over baseline
system that does not employ any value prediction, with a
maximum performance improvement of 11X (an IPC jump
from 0.1 to 1.1) for the trace compute_int_45.

We also apply our enhancements on other value predictors
such as FCM, 2-delta-stride, VTAGE [6], and DVTAGE [7]
and call it FCM++, 2-delta-stride++, VTAGE++, and DV-
TAGE++. Note that we implement an unlimited version of
all these predictors. Figure 5 shows that our enhancements
are effective across all the predictors and especially with
2-delta-stride, FCM , and DFCM based predictors.

Table 1 shows the hardware overhead of per entry for the
structures used in DFCM++. Details of the field of this entries
are available in the source file mypredcitor.h.

6. PRACTICAL IMPLEMENTATION
Questions regarding the complexity of the hardware design

of the value estimator are legitimate. Initially, the predic-
tor was designed keeping in mind the infinite track of the
competition, but the ideas proposed can be revised suitably
to get a practical implementation e.g. The complexity of
the value predictor can be dealt by limiting the number of
operations that could be executed by this unit. We limit this
to only ADD, SUBTRACT and SHIFT operations. Hence
introducing a basic ALU may solve the problem.

Since we weren’t allowed to change any other files except
the predictor’s .h and .cc files, we were restricted to imple-
ment the design in the aforementioned manner. There might
be other better and efficient ways of implementing the same.

7. CONCLUSION
This paper proposed DFCM++, a series of four enhance-

ments on top of DFCM predictor that improves the effec-
tiveness of DFCM. We show the effectiveness of each en-
hancement and the final combination that contains all the
enhancements. We also show the effectiveness of our en-
hancements on other value predictors, such as FCM, 2-delta
stride, VTAGE, and DVTAGE. On average, DFCM++ pro-
vides a geomean IPC (geomean over 135 traces) of 4.11
whereas a base DFCM provides 2.93 and the baseline system
(without any value predictor) provides 3.21.

8. REFERENCES
[1] R. J. Eickemeyer and S. Vassiliadis. A load-instruction unit for

pipelined processors. IBM J. Res. Dev., 37(4):547–564, July 1993.

[2] Freddy Gabbay and Freddy Gabbay. Speculative execution based on
value prediction. Technical report, EE Department TR 1080, Technion -
Israel Institue of Technology, 1996.

[3] Bart Goeman, Hans Vandierendonck, and Koenraad De Bosschere.
Differential fcm: Increasing value prediction accuracy by improving
table usage efficiency. In HPCA, pages 207–216. IEEE Computer
Society, 2001.

[4] Mikko H. Lipasti and John Paul Shen. Exceeding the dataflow limit via
value prediction. In Proceedings of the 29th Annual ACM/IEEE
International Symposium on Microarchitecture, MICRO 29, pages
226–237, Washington, DC, USA, 1996. IEEE Computer Society.

[5] Mikko H. Lipasti, Christopher B. Wilkerson, and John Paul Shen. Value
locality and load value prediction. In Proceedings of the Seventh
International Conference on Architectural Support for Programming
Languages and Operating Systems, ASPLOS VII, pages 138–147, New
York, NY, USA, 1996. ACM.

[6] Arthur Perais and André Seznec. Practical Data Value Speculation for
Future High-end Processors. Research Report RR-8395, INRIA,
November 2013. A fait l’objet d’une publication à ”High Performance
Computer Architecture (HPCA) 2014” Lien :
http://people.irisa.fr/Arthur.Perais/data/HPCA

[7] Arthur Perais and André Seznec. Bebop: A cost effective predictor
infrastructure for superscalar value prediction. In 21st IEEE
International Symposium on High Performance Computer Architecture,
HPCA 2015, Burlingame, CA, USA, February 7-11, 2015, pages 13–25,
2015.

[8] Y. Sazeides and J. E. Smith. Implementations of context based value
predictors. Technical report, University of Wisconsin at Madison, 1998.

[9] Yiannakis Sazeides and James E. Smith. The predictability of data
values. In Proceedings of the 30th Annual ACM/IEEE International

4

Symposium on Microarchitecture, MICRO 30, pages 248–258,
Washington, DC, USA, 1997. IEEE Computer Society.

Acknowledgement
We would like extend our gratitude and thankfulness to Mi-
crosoft Research Labs, India and Research-I foundation for
providing us with the financial support to attend and present
the paper at the workshop, 1st Championship Value Predic-
tion, held in conjunction with ISCA’18 at Los Angeles, USA.

Appendix

Component Hardware
Tables

Hardware over-
head per entry

DFCM SHT 460 bits
SPT 68 bits

Value Estimator PCIT 1112 bits
Register entry
(for each register)

193 bits

Register file entry
(for each inflight
inst)

1586 bytes

seq-no-to-pc-
mapper

73 bits

RFB-index-to-
seq-no mapper

64 bits

PC Blacklister Blacklisted PC ta-
ble

64 bit

Table 1: Hardware overhead with DFCM++. Details of these
hardware structures are available in the source file mypre-
dictor.h

5

	Introduction
	Background
	DFCM

	From DFCM to DFCM++
	Enhancement 1: Early Update (EU)
	Enhancement 2: Value Estimator (VE)
	Enhancement 3: PC Blacklister (PCB)
	Enhancement 4: Dynamic Context Length (DCL)

	Parameter Tuning
	Indexing into SPT tables
	Dynamic confidence threshold in SPT
	Blacklisting Threshold

	Performance Evaluation
	Practical Implementation
	Conclusion
	References

