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Timeline of IT and Computing

Rapid growth in digital data!

From Computing Centric to Data Centric

Data growth in 10 year(by 2015) = 100X

First generation 
computers PC Mobile 

computing
Data Centres onset of IOT & 

Big Data



Today’s Data Centers
◆ Per-vendor Layer 

◆ Product Based 

◆ Near neighbor optimization 

◆ Big vendors(Google, Amazon etc) 

◆ Can do Cross Layer Optimization but, 

◆  Limited to service of Interest 

◆ Limited to Extend(Software) 

◆ Closed Technologies
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In-Memory Computing for high Performance
Why: Tight Latency Constraints 
How: Place data in main memory

Need large memory pool to accommodate all data
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Graph Serving
• Fine-grained access

Graph Analytics
• Bulk access

Nodes Frequently Access Remote Memory



Need fast access to both small and large objects in remote memory

Nodes Frequently Access Remote Memory
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Rack-Scale Systems: Fast Access to Big Memory

Large memory capacity, low latency, high bandwidth

• Vast memory pool in small form factor

• On-chip integrated, cache-coherent NIs

• Examples: Scale-Out NUMA [Novakovic et al., ’14]

• High-performance inter-node interconnect

• NUMA environment

• Low latency for fine-grained transfers

• High bandwidth for bulk transfers
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Remote Direct Memory Access (RDMA)

• Frequent remote memory accesses within datacenter

• Networking traditionally expensive

RDMA technology

• Fast one-sided operations

• Destination CPU not involved

Application

NICPU NICPU
zZz

MemoryMemory
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Object Atomicity in RDMA

❑ Atomicity limited to single cache line in one sided ops  

❑ Software construct for object atomicity

Network

post-transfer 
atomicity check 

by CPU

NI CPU

Memory
objectM

NICPU

Memory
objectM

zZz

❑ Embedded MetaData

❑ SW check expensive=>upto 50% of remote object read
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SW atomicity: How is it done?

CPU checks versions & copies
Cache-line versions

Object layout in memory

Application data

Per-cache-line versions (FaRM [Dragojevic’14,’15])

CPU NI CPUNI

Source: Server A Destination: Server B

Memory Memory

✓✓✓✓

writer3

3

3

3

3
3

3
3

❑CPU overhead for version embedding/stripping 
❑Intermediate buffers for reads and writes
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128 256 512 1024 2048 4096 8192

transfer framework+application version stripping

Up to 50%

Transfer is  
small fraction

Can we do this using hardware?
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SABRes: Single Site Atomic Bulk Read

Simple hardware, atomicity w/ zero latency overhead

Speculatively read version and data à remove serial read latency

Remote read

NI 
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Interwork Interface Design for Manycore Chips

❑NI placement & design is key for remote access performance
❑Obvious NI designs suffer from poor latency or bandwidth

❑ Contributions
❑NI design space exploration for manycore chips
❑Seamless integration of NI into chip’s coherence domain
❑Novel Split NI design, optimizing for both latency and bandwidth

Goal: “Low-latency, high-bandwidth NI design for 
manycore chips”
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User-level Remote Memory Access

RDMA-like Queue-Pair (QP) model

Cores and NIs communicate through cacheable memory-
mapped queues
•Work Queue (WQ) and Completion Queue (CQ)

core
poll

CQ

write

write

WQ

poll

Local node Remote node

Inter-node
network

Direct memory
access

NI NI



Implications of Manycore Chips on Remote Access

More Cores à Higher request rate
NI capabilities have to match chip’s communication demands

Approaches à  
❑ Scale NI across edge 
❑ à Close to network pins 
❑ à Access to NOC’s full bisection bandwidth 
❑ à Large average core to NI distance ☹  

❑ Collocate NI logic per core, to localize all interactions 
❑ à Transparent to coherence mechanism 
❑ à No modifications to core’s IP block  

c c c c c c
c c c c c c
c c c c c c
c c c c c c
c c c c c c
c c c c c c



  N
e

tw
o

rk R
o

u
te

r

LLC

NOC 
routercore

di
r

Edge NI 4-Cache-Block Remote Read



  N
e

tw
o

rk R
o

u
te

r

QP
dir

$

$

LLC

NOC 
routercore

di
r

Edge NI 4-Cache-Block Remote Read



  N
e

tw
o

rk R
o

u
te

r

QP
dir

Edge NI 4-Cache-Block Remote Read



  N
e

tw
o

rk R
o

u
te

r

QP
dir

Core writes WQ

QP interactions

Edge NI 4-Cache-Block Remote Read



  N
e

tw
o

rk R
o

u
te

r

QP
dir

NI reads WQ 

QP interactions

Edge NI 4-Cache-Block Remote Read



  N
e

tw
o

rk R
o

u
te

r

Data handling
NI unrolls to cache-block-sized requests

Outgoing 
requests

Edge NI 4-Cache-Block Remote Read



  N
e

tw
o

rk R
o

u
te

r

Data handling
NI unrolls to cache-block-sized requests

Incoming 
replies

Edge NI 4-Cache-Block Remote Read



  N
e

tw
o

rk R
o

u
te

r

Data transfer completed. Repeat QP interactions to write CQ

NI writes CQ
Core reads CQ

Edge NI 4-Cache-Block Remote Read



QP interactions account for up to 50% of end-to-end latency
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Minimized latency but bandwidth misuse for large requests

All reply packets 
received!

Write CQ locally

Data handling

Incoming 
replies

Write payload  
in LLC

Bandwidth  ✗
Latency    ✓

Per-Core NI 4-Cache-Block Remote Read
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received!
Write CQ locally

Incoming 
replies

Both low-latency small transfers and high-bandwidth large transfers

Split NI 4-Cache-Block Remote Read
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Conclusion

❑ Software construct for object atomicity incur heavy overheads.

❑ Need for hardware solutions to atomic object reads.

❑ NI design for manycore chips is crucial to remote memory access.

❑ Fast core-NI interaction critical to achieve low latency

❑ Large transfers best handled at the edge

❑ Split NI: low-latency, high-bandwidth remote memory access
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