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First generation PO I\/Iobilg Data Centres onset of I0T &
computers computing Big Data

Rapid growth in digital data!

From Computing Centric to Data Centric

Data growth in 10 year(by 2015) = 100X
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Today’'s Data Centers

Per-vendor Layer
Product Based
Near neighbor optimization

Big vendors(Google, Amazon etc)

Can do Cross Layer Optimization but,

+ Limited to service of Interest
+ Limited to Extend(Software)

¢ Closed Technologies
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IN-Memory Computing for high Performance




IN-Memory Computing for high Performance

Why: Tight Latency Constraints
How: Place data in main memory
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IN-Memory Computing for high Performance

Why: Tight Latency Constraints
How: Place data in main memory

eed large memory pool to accommodate all data
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Nodes Frequently Access Remote Memory

E

Graph Serving

* Fine-grained access m

BN Graph Analytics

. Bulk acd




Nodes Frequently Access Remote Memory
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Rack-Scale Systems: Fast Access to Big Memory
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Rack-Scale Systems: Fast Access to Big Memory

* Vast memory pool in small form factor

 On-chip integrated, cache-coherent Nls

Examples: Scale-Out NUMA [Novakovic et al., '14]

Large memory capacity, low latency, high bandwidth




Rack-Scale Systems: Fast Access to Big Memory

* Vast memory pool in small form factor

 On-chip integrated, cache-coherent Nls

Examples: Scale-Out NUMA [Novakovic et al., '14]

* High-performance inter-node interconnect

NUMA environment

Low latency for fine-grained transfers

High bandwidth for bulk transfers

Large memory capacity, low latency, high bandwidth



Remote Direct Memory Access (RDMA)

* Frequent remote memory accesses within dg

 Networking traditionally expensive
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Remote Direct Memory Access (RDMA)

* Frequent remote memory accesses within dg
 Networking traditionally expensive &7

RDMA technology

Application
 [ast one-sided operations \

?
4

i @V i

 Destination CPU not involved

Memory Memory
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0 Atomic Object Read
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Object Atomicity in RDMA

d Atomicity limited to single cache line in one sided ops

- Software construct for object atomicity
Jd Embedded MetaData

CPU|| NI NI [CPU

Memory Menl;ory
object [

Network
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Object Atomicity in RDMA
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Object Atomicity in RDMA

d Atomicity limited to single cache line in one sided ops

- Software construct for object atomicity
Jd Embedded MetaData

Wz
post-transfer CPU NI I}ll CPU
aton;méypﬂweck Memn G/r)' Memory
Y M| object |- M| object -

Network

d SW check expensive=>upto 50% of remote object read



SW atomicity: How is it done”

Per-cache-line versions (FaRM [pragojevic'14,15])

Source: Server A Destination: Server B
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SW atomicity: How is it done”

Per-cache-line versions (FaRM [pragojevic'14,15])

Source: Server A

Destination: Server B

Memory CPU

NI

N CPU Memory

Obiject layout in me%
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SW atomicity: How is it done”

Per-cache-line versions (FaRM [pragojevic'14,15])

Source: Server A
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Destination: Server B
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SW atomicity: How is it done”

Per-cache-line versions (FaRM [pragojevic'14,15])

Source: Server A

Memory

cru [+ NI

Destination: Server B

| |

,

DN

N CPU Memory

CPU checks versions & copies

Obiject layout in me%

3
writer 3
3
3
A

[ Applicatiom
/
[ Cache-line versions I




SW atomicity: How is it done”




SW atomicity: How is it done”

JCPU overhead for version embedding/stripping
dintermediate buffers for reads and writes




SW atomicity overheao
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End-to-end latency (Ms)

128

B transfer

256

SW atomicity overheao

framework+application version stripping

[y [ — ] s

512 1024 2048 4096 8192
Object size (B)

Up to 50%

Transfer is
small fraction



SW atomicity overheao

5 W transfer .~ framework+application | version stripping
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Can we do this using hardware”




SABRes: Single Site Atomic Bulk Read
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SABRes: Single Site Atomic Bulk Read
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SABRes: Single Site Atomic Bulk Read
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SABRes: Single Site Atomic Bulk Read
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SABRes: Single Site Atomic Bulk Read
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SABRes: Single Site Atomic Bulk Read
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Reply
(data or abort)
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SABRes: Single Site Atomic Bulk Read

CPU\
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(data or abort) :
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Network —~> ABORT! Memory

Speculatively read version and data =2 remove serial read latency



SABRes: Single Site Atomic Bulk Read

CPU\

(D read version
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Reply logic Re-read version
(data or abort) :
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/ VERSION MISMATCH
Network —~> ABORT! Memory

peculatively read version and data = remove serial read latency



SABRes: Single Site Atomic Bulk Read

< NI
Reply logic
(data or abort)

@ read version

e

(@ read datafV/

—

Re-read version
& compare

VERSION MISMAT(

CPU\

write

LLC

Network

peculatively read version and data =2

- ABORT!

Memory

remove serial read latency

Simple hardware, atomicity w/ zero latency overnead



SABRes: Single Site Atomic Bulk Read
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for distributed object stores




SABRes: Single Site Atomic Bulk Read

B transfer system + app version stripping [l
B x-axis
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SW atomicity
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v Up to 2x latency & throughput benefit
for distributed object stores
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A Challenges

A Network Interface for Many-Core Chip
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Interwork Interface Design for Manycore Chips

NI placement & design is key for remote access performance
JdObvious NI designs suffer from poor latency or bandwidth

d Contributions

NI design space exploration for manycore chips

JdSeamless integration of NI into chip’'s coherence domain
JdNovel Split NI design, optimizing for both latency and bandwidth

Goal: “Low-latency, high-bandwidth NI design for

manycore chips”




User-level Remote Memory Access

RDMA-like Queue-Pair (QP) model

Cores and NIs communicate through cacheable memory-
mapped queues

* Work Queue (WQ) and Completion Queue (CQ)

Local node Remote node
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User-level Remote Memory Access

RDMA-like Queue-Pair (QP) model

Cores and NIs communicate through cacheable memory-
mapped queues

* Work Queue (WQ) and Completion Queue (CQ)
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User-level Remote Memory Access

RDMA-like Queue-Pair (QP) model

Cores and NIs communicate through cacheable memory-
mapped queues

* Work Queue (WQ) and Completion Queue (CQ)
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User-level Remote Memory Access

RDMA-like Queue-Pair (QP) model

Cores and NIs communicate through cacheable memory-
mapped queues

* Work Queue (WQ) and Completion Queue (CQ)
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User-level Remote Memory Access

RDMA-like Queue-Pair (QP) model

Cores and NIs communicate through cacheable memory-
mapped queues

* Work Queue (WQ) and Completion Queue (CQ)

Local node Remote node

% WO \ prm Direct memory
] \J, Inter-node access
core /—\ CQ & N e-tWO r‘|< |

poll
"""ﬁ I LIT7




Implications of Manycore Chips on Remote Access

More Cores - Higher request rate
NI capabilities have to match chip’s communication demands

Approaohes -

Scale NI across edge
- Close to network pins
- Access to NOC's full bisection bandwidth

—_— ] =~ =~ =~ =~ || =~

Db D D,

iy Y .

- Large average core to NI distance @

Collocate NI logic per core, to localize all interactions

A
X

- Transparent to coherence mechanism AN

U O U

-  No modifications to core’s |P block

A

X
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X

X
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dge NI 4-Cache-Block Remote Read










—dge NI 4-Cache-Block Remote Read

_____________________________________________________________________________________

QP interactions

/
Core writes WQ . . \u .




dge NI 4-Cache-Block Remote Read




—dge NI 4-Cache-Block Remote Read

________________________________________________________ Outgoing
i i | | requests 7z
| | | | | |
| | | | | |
| | | | | |
[ [ [ [ [ [
Data Handling

NI unrolls to cache-block-sized requests



—dge NI 4-Cache-Block Remote Read

Incoming

________________________________________________________________

| | ] replies
| | | | |

] |
| | I'l ¥ 4 {—'
| | |

V-V LY

|
| | | | |
Data Handling




—dge NI 4-Cache-Block Remote Read

_____________________________________________________________________________________

NI writes CQ I '47 l n [ .
Core reads CQ | -0 H

Data transfer completed Repeat QP interactions to write CQ



—dge NI 4-Cache-Block Remote Read

NI writes CQ
Core reads CQ

Bandwidth v |
Latency X

QP interactions account for up to 50% of end-to-end latency



Per-Core NI 4-Cache-Block Remote Read
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Per-Core NI 4-Cache-Block Remote Read

__________________________________________________________________________

A<:i> All QP interactions

| local!
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Per-Core NI 4-Cache-Block Remote Read

__________________________________________________________________________

5 Outgoing
= @ requests

Data handling




Per-Core NI 4-Cache-Block Remote Read

__________________________________________________________________________

Data handling
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Per-Core NI 4-Cache-Block Remote Read
""""" T ada s > s a %Incoming

replies

Write payload | ] 1
in LLC N 2
| 1 1 |
Ivalvaln 7 IR

___________________________________________________________________________



Per-Core NI 4-Cache-Block Remote Read
___________________ S — - ‘zzz?lncoming

replies
5 - ] [
Write payload | ] 1 5
Y LLIC N | = <:> Data handling
IR 4D 4D /4 / |
A\ All reply packets

| received!
i _ - - - /< - N Write CQ locally

___________________________________________________________________________




Per-Core NI 4-Cache-Block Remote Read

S S — Incoming
' | | i replies
Write payload 1 | 1 i
|4 in LLC N = i Data handling
| | ] | 1 Vv :
o\ All reply packets
I I I I I I O | :
' received!
B N N B N /< : : Write CQ locally
I I I I I I :
, L CH AKH KH K F Bandwidth X
Latency ¥

Minimized latency but bandwidth misuse for large requests
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Split NI 4-Cache-Block Remote Read

_____________________________________________________________________________________




Split NI 4-Cache-Block Remote Read

_____________________________________________________________________________________

All QP interactions
local!




Split NI 4-Cache-Block Remote Read

_____________________________________________________________________________________

Data handling




Split NI 4-Cache-Block Remote Read
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Split NI 4-Cache-Block Remote Read

_____________________________________________________________________________________
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Split NI 4-Cache-Block Remote

Read
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Write CQ locally



Split NI 4-Cache-Block Remote Read

Incoming
' | replies

received!
Write CQ locally

Both low-latency small transfers and high-bandwidth large transfers
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NI Design Space
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Conclusion

A Software construct for object atomicity incur heavy overheads.

2 Need for hardware solutions to atomic object reads.

Q NI design for manycore chips is crucial to remote memory access.
4 Fast core-Nl interaction critical to achieve low latency

Q Large transfers best handled at the edge

2 Split NI: low-latency, high-bandwidth remote memory access
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