memory for large-scale
Systems

Prakhar Jawre

Outline

a Overview

Timeline of IT and Computing

: oS . o |o o os - . ‘ .
: ' 4 . > i o~ z - - i *
% | s - Iy . ophcations,
¢ S %/ = o) = — I~ e ¥
it i % p ¢ R = oo P
Bit (v e ’ . i L g - Owices g ook | (/) e = pE
Ve oy N
-, Lt G § - | . §
- =S 7 - § 4 i
! =X — Ll / / 759 = S + 3
e ~— < 3 », 3
= - A - 4 N N
1 . _— Y o - o .
T e # \ .
T - |

First generation pC MOb”? Data Centres onsgt of IOT &
computers computing Big Data

Timeline of IT and Computing

SRR
NN,

o oo - - ‘
= i -~ - ' S|
r vy - & - hcations.
- g . e (Y s dl o :
gz |3 iz it . L - lg : v
Bitih T & il T ~y Open Source
S i § g g " i ’ ~a s Owicws goioash | /) 2 porisn
g - :
<) // ¢ [o~ | . §
s s = o L5759 . N
© " - Ay p . |
L] — = 4 o g v AP 3 N
. ~ v N
- J - 4 B N
Tttt g | N
—-— » T 4

First generation PO I\/Iobilg Data Centres onset of I0T &
computers computing Big Data

Rapid growth in digital data!

Timeline of IT and Computing

FEFF mzmmntvmm
(GuiEHERRERNER
3 F

:) i ; N - e - . ‘
o > = : g i e . : « :
e — O . = e : ot
T g ‘ e e 4 2 Y ok | M
§ g -7 / 5 T Source
HH e —_ -, Toosd | ¢,
i] i 4 ; - e ‘ g { " B . gl (s s
¢ 7oy / 2 P ' . :
’ v i i : i
= f: v Y42 —_— . " s
= LTS o . N
L] 2 ~ > % 0o - < Y P 3 -
BT . I

First generation PO I\/Iobilg Data Centres onset of I0T &
computers computing Big Data

Rapid growth in digital data!

From Computing Centric to Data Centric

Timeline of IT and Computing

?Fﬂmmﬂlm AR
(SEaEEnENEnNey

%
X
v\l

- 9) >~ o - e - . ‘
g G i i 1 - o i
o H . =
Y — - - -~) B
o4 / 5 . ~ o) ™
Yy i Al - — 4 »
i i s — B e - -, foT-
] i# + ripib? , - 4 » 1 § o
- ¢ 4 7 « . .
’ cr S f i d . i
= ey 782 o . N
— L ! ol %
- 2 > % vl | A | 3 -
. ey 3= » -
= - 5 2 > . " TN
el . -

First generation PO I\/Iobilg Data Centres onset of I0T &
computers computing Big Data

Rapid growth in digital data!

From Computing Centric to Data Centric

Data growth in 10 year(by 2015) = 100X

¢

¢

¢

Today’'s Data Centers

Per-vendor Layer
Product Based
Near neighbor optimization

Big vendors(Google, Amazon etc)

Can do Cross Layer Optimization but,

+ Limited to service of Interest
+ Limited to Extend(Software)

¢ Closed Technologies

@ Application SSasl

NUANCE
I Microsoft

@ Runtime System ((

(scripting, DSLs) E)

EScala

Microsoft ‘ Java
ORACLE

w Middleware

S K

." (data, web services) SpQ

¥ ..p

Operating System -
(resource management) ‘

atfean]e
CISCO

) w Server AMD!
/-j (processor, mem, storage, network)
inte 1
Infrastructure E;T‘N

= (cooling, power)

Outline

A Current Technologies

IN-Memory Computing for high Performance

IN-Memory Computing for high Performance

Why: Tight Latency Constraints
How: Place data in main memory

Data

R
P i
s
T

AN
)

—J

IN-Memory Computing for high Performance

Why: Tight Latency Constraints
How: Place data in main memory

eed large memory pool to accommodate all data

odes Frequently Access Remote Memory

|

|

Nodes Frequently Access Remote Memory

E

Graph Serving

* Fine-grained access m

BN Graph Analytics

. Bulk acd

Nodes Frequently Access Remote Memory

-
O
-
O
-
)
e
O
-
3
=
o)
o
O
2
O
O
)
=
©
O
e
@®
®©
-
0p)
0
2
O
O
O
e
0P
0P
O
@)
O
qu
1%
M®
(W
O
)
O
Z

Rack-Scale Systems: Fast Access to Big Memory

EaREE; manEw;

- R - 2

— 9 E— =

EEDEE |
—) N
— E
EEEEE |
[E— 2) %
— H

Rack-Scale Systems: Fast Access to Big Memory

* Vast memory pool in small form factor

 On-chip integrated, cache-coherent Nls

Examples: Scale-Out NUMA [Novakovic et al., '14]

Large memory capacity, low latency, high bandwidth

Rack-Scale Systems: Fast Access to Big Memory

* Vast memory pool in small form factor

 On-chip integrated, cache-coherent Nls

Examples: Scale-Out NUMA [Novakovic et al., '14]

* High-performance inter-node interconnect

NUMA environment

Low latency for fine-grained transfers

High bandwidth for bulk transfers

Large memory capacity, low latency, high bandwidth

Remote Direct Memory Access (RDMA)

* Frequent remote memory accesses within dg

 Networking traditionally expensive

Remote Direct Memory Access (RDMA)

Remote Direct Memory Access (RDMA)

* Frequent remote memory accesses within dg
 Networking traditionally expensive &7

RDMA technology

Application
 [ast one-sided operations \

?
4

i @V i

 Destination CPU not involved

Memory Memory

Outline

d Challenges

0 Atomic Object Read

10

Object Atomicity in RDMA

d Atomicity limited to single cache line in one sided ops

- Software construct for object atomicity
Jd Embedded MetaData

CPU|| NI NI [CPU

Memory Menl;ory
object [

Network

Object Atomicity in RDMA

d Atomicity limited to single cache line in one sided ops

- Software construct for object atomicity
Jd Embedded MetaData

CPU|| NI NIf |CPU
Memory Memory
1M| object |

Network

Object Atomicity in RDMA

d Atomicity limited to single cache line in one sided ops

- Software construct for object atomicity
Jd Embedded MetaData

D
CPU/| NI NIl (cPU
Memc!ry Memory
M| object |- M| object -

Network

Object Atomicity in RDMA

d Atomicity limited to single cache line in one sided ops

- Software construct for object atomicity
Jd Embedded MetaData

Wz
post-transfer CPU NI I}ll CPU
aton;méypﬂmck Memn CJI')' Memory
Y M| object |- M| object -

Network

Object Atomicity in RDMA

d Atomicity limited to single cache line in one sided ops

- Software construct for object atomicity
Jd Embedded MetaData

Wz
post-transfer CPU NI I}ll CPU
aton;méypﬂweck Memn G/r)' Memory
Y M| object |- M| object -

Network

d SW check expensive=>upto 50% of remote object read

SW atomicity: How is it done”

Per-cache-line versions (FaRM [pragojevic'14,15])

Source: Server A Destination: Server B

Memory CPU NI NI CPU Memory

SW atomicity: How is it done”

Per-cache-line versions (FaRM [pragojevic'14,15])

Source: Server A

Destination: Server B

Memory CPU

NI

N CPU Memory

Obiject layout in me%

NN‘NN

A
[Application data

/
[Cache-line versions I

SW atomicity: How is it done”

Per-cache-line versions (FaRM [pragojevic'14,15])

Source: Server A

Memory CPU

NI

Destination: Server B

N CPU Memory

Obiject layout in me%

3
writer 3
3
3

A
[Applicatiom
/
[Cache-line versionh

SW atomicity: How is it done”

Per-cache-line versions (FaRM [pragojevic'14,15])

Source: Server A

Memory

cru [+ NI

Destination: Server B

| |

,

DN

N CPU Memory

CPU checks versions & copies

Obiject layout in me%

3
writer 3
3
3
A

[Applicatiom
/
[Cache-line versions I

SW atomicity: How is it done”

SW atomicity: How is it done”

JCPU overhead for version embedding/stripping
dintermediate buffers for reads and writes

SW atomicity overheao

End-to-end latency (Ms)

128

B transfer

256

SW atomicity overheao

~ framework+application version stripping

512 1024 2048 4096 8192
Object size (B)

End-to-end latency (Ms)

128

B transfer

256

SW atomicity overheao

framework+application version stripping

[y [—] s

512 1024 2048 4096 8192
Object size (B)

Up to 50%

Transfer is
small fraction

SW atomicity overheao

5 W transfer .~ framework+application | version stripping

0

3

= 4

& Up to 50%

&

5 3

[

v

o

A

=

s Transfer is
0 '—'—'—'—'—'—'—' small fraction

1024 2048 4096 8192

Object size (B)

Can we do this using hardware”

SABRes: Single Site Atomic Bulk Read

NI ||CPU

LLC

Network Memory

SABRes: Single Site Atomic Bulk Read

CPU

NI
logic

LLC

Network Memory

CPU

SABRes: Single Site Atomic Bulk Read
NI

logic

@ LLC

Network Memory

SABRes: Single Site Atomic Bulk Read

@

Network

NI
logic

@ read version

CPU

LLC

Memory

SABRes: Single Site Atomic Bulk Read

?

Network

CPU\

NI
logic

@ read version

e

(@ read data27/-

<& |

=

LLC

Memory

SABRes: Single Site Atomic Bulk Read

CPU

(D read version
e

NI | @read datag\\
logic -

8 ®Re-read version [
& compare
@ LLC

Network Memory

SABRes: Single Site Atomic Bulk Read

&

Network

NI
logic

@ read version

e

(@ read data27/-

<& |

Re-read version
& compare

VERSION MISMAT(

CPU

write

LLC

- ABORT!

Memory

SABRes: Single Site Atomic Bulk Read

<€

Reply
(data or abort)

&

Network

NI
logic

@ read version

e

(@ read data27/-

<& |

Re-read version
& compare

VERSION MISMAT(

CPU

write

LLC

- ABORT!

Memory

SABRes: Single Site Atomic Bulk Read

CPU\

(D read version

"

< NI | @read dataé;-

Reply logic Re-read version
(data or abort) :
& compare LLC
/ VERSION MISMATCH
Network —~> ABORT! Memory

Speculatively read version and data =2 remove serial read latency

SABRes: Single Site Atomic Bulk Read

CPU\

(D read version

"

< NI | @read dataé;-

Reply logic Re-read version
(data or abort) :
& compare LLC
/ VERSION MISMATCH
Network —~> ABORT! Memory

peculatively read version and data = remove serial read latency

SABRes: Single Site Atomic Bulk Read

< NI
Reply logic
(data or abort)

@ read version

e

(@ read datafV/

—

Re-read version
& compare

VERSION MISMAT(

CPU\

write

LLC

Network

peculatively read version and data =2

- ABORT!

Memory

remove serial read latency

Simple hardware, atomicity w/ zero latency overnead

SABRes: Single Site Atomic Bulk Read

3.75

E2E latency (Us)
N

.25

v Up to 2x latency & throughput benefit
for distributed object stores

SABRes: Single Site Atomic Bulk Read

B transfer system + app version stripping [l
B x-axis

3.75

SW atomicity
SABRes

E2E latency (Us)
N

.25

, . e e Ew Em B EE |

v Up to 2x latency & throughput benefit
for distributed object stores

Outline

A Challenges

A Network Interface for Many-Core Chip

16

Interwork Interface Design for Manycore Chips

NI placement & design is key for remote access performance
JdObvious NI designs suffer from poor latency or bandwidth

d Contributions

NI design space exploration for manycore chips

JdSeamless integration of NI into chip’'s coherence domain
JdNovel Split NI design, optimizing for both latency and bandwidth

Goal: “Low-latency, high-bandwidth NI design for

manycore chips”

User-level Remote Memory Access

RDMA-like Queue-Pair (QP) model

Cores and NIs communicate through cacheable memory-
mapped queues

* Work Queue (WQ) and Completion Queue (CQ)

Local node Remote node

Inter-node
| Al
core A\Q network |
MmN Ullﬁ N IUW

User-level Remote Memory Access

RDMA-like Queue-Pair (QP) model

Cores and NIs communicate through cacheable memory-
mapped queues

* Work Queue (WQ) and Completion Queue (CQ)

Local node Remote node

WQ \
| Inter-node

‘ c Q A network 4\@
T} LY

core

User-level Remote Memory Access

RDMA-like Queue-Pair (QP) model

Cores and NIs communicate through cacheable memory-
mapped queues

* Work Queue (WQ) and Completion Queue (CQ)

Local node Remote node

write » \

/ W @ Inter-node
‘CQ A\@ network 4\@
e

_".“W. nuney,

core

User-level Remote Memory Access

RDMA-like Queue-Pair (QP) model

Cores and NIs communicate through cacheable memory-
mapped queues

* Work Queue (WQ) and Completion Queue (CQ)

Local node Remote node

— A A N
COre ‘C 3 AN network 4@

"""ﬁ I LIT7

User-level Remote Memory Access

RDMA-like Queue-Pair (QP) model

Cores and NIs communicate through cacheable memory-
mapped queues

* Work Queue (WQ) and Completion Queue (CQ)

Local node Remote node

% WO \ prm Direct memory
] \J, Inter-node access
core /—\ CQ & N e-tWO r‘|< |

poll
"""ﬁ I LIT7

Implications of Manycore Chips on Remote Access

More Cores - Higher request rate
NI capabilities have to match chip’s communication demands

Approaohes -

Scale NI across edge
- Close to network pins
- Access to NOC's full bisection bandwidth

—_—] =~ =~ =~ =~ || =~

Db D D,

iy Y .

- Large average core to NI distance @

Collocate NI logic per core, to localize all interactions

A
X

- Transparent to coherence mechanism AN

U O U

- No modifications to core’s |P block

A

X
AR

X

X
NWVNVIN

dge NI 4-Cache-Block Remote Read

—dge NI 4-Cache-Block Remote Read

QP interactions

/
Core writes WQ . . \u .

dge NI 4-Cache-Block Remote Read

—dge NI 4-Cache-Block Remote Read

__ Outgoing
i i | | requests 7z
[[[[[[
Data Handling

NI unrolls to cache-block-sized requests

—dge NI 4-Cache-Block Remote Read

Incoming

__

| |] replies
| | | | |

] |
| | I'l ¥ 4 {—'
| | |

V-V LY

|
| | | | |
Data Handling

—dge NI 4-Cache-Block Remote Read

NI writes CQ I '47 l n [.
Core reads CQ | -0 H

Data transfer completed Repeat QP interactions to write CQ

—dge NI 4-Cache-Block Remote Read

NI writes CQ
Core reads CQ

Bandwidth v |
Latency X

QP interactions account for up to 50% of end-to-end latency

Per-Core NI 4-Cache-Block Remote Read

491N0Y JJOMI1O

Per-Core NI 4-Cache-Block Remote Read

__

A<:i> All QP interactions

| local!

491N0Y JJOMI1O

>
<
&
i

£

Per-Core NI 4-Cache-Block Remote Read

__

5 Outgoing
= @ requests

Data handling

Per-Core NI 4-Cache-Block Remote Read

__

Data handling

J21Nn0oY >JOMIdN

=
>
G
S
=

Per-Core NI 4-Cache-Block Remote Read
""""" T ada s > s a %Incoming

replies

Write payload |] 1
in LLC N 2
| 1 1 |
Ivalvaln 7 IR

Per-Core NI 4-Cache-Block Remote Read
___________________ S — - ‘zzz?lncoming

replies
5 -] [
Write payload |] 1 5
Y LLIC N | = <:> Data handling
IR 4D 4D /4 / |
A\ All reply packets

| received!
i _ - - - /< - N Write CQ locally

Per-Core NI 4-Cache-Block Remote Read

S S — Incoming
' | | i replies
Write payload 1 | 1 i
|4 in LLC N = i Data handling
| |] | 1 Vv :
o\ All reply packets
I I I I I I O | :
' received!
B N N B N /< : : Write CQ locally
I I I I I I :
, L CH AKH KH K F Bandwidth X
Latency ¥

Minimized latency but bandwidth misuse for large requests

Bandwidth

NI Design Space

Edge NI

&

Latency

Bandwidth

NI Design Space

Edge NI

&

Per-core N|

Latency

Split NI 4-Cache-Block Remote Read

Split NI 4-Cache-Block Remote Read

All QP interactions
local!

Split NI 4-Cache-Block Remote Read

Data handling

Split NI 4-Cache-Block Remote Read

Ty JL®10](e]la]
’ - = = - - F requests
|
ZNZ NN Data handling

Split NI 4-Cache-Block Remote Read

[\ 7 :

| . ,< '-
sty i bl %
Sy

L

/

Split NI 4-Cache-Block Remote

Read

Incoming
' | replies

received!
Write CQ locally

Split NI 4-Cache-Block Remote Read

Incoming
' | replies

received!
Write CQ locally

Both low-latency small transfers and high-bandwidth large transfers

Bandwidth

NI Design Space

Edge NI

&

Latency

Bandwidth

NI Design Space

Spiit NI Edge NI
Per-core NI

Latency

Outline

A Conclusion

20

Conclusion

A Software construct for object atomicity incur heavy overheads.

2 Need for hardware solutions to atomic object reads.

Q NI design for manycore chips is crucial to remote memory access.
4 Fast core-Nl interaction critical to achieve low latency

Q Large transfers best handled at the edge

2 Split NI: low-latency, high-bandwidth remote memory access

Reference

Q Alexandros Daglis, Stanko Novakovi¢, Edouard Bugnion, Babak Falsafi, and
Boris Grot. 201 5. Manycore network interfaces for in-memory rack-scale
computing. SIGARCH Comput. Archit. News 43, 3 (June 2015)

d Daglis, A, Ustiugov, D, Novakovic, S, Bugnion, E, Falsafi, B & Grot,
B 2016, SABRes: Atomic Object Reads for In-Memory Rack-5Scale
Computing. in In Proceedings of the 49th Annual IEEE/ACM International
Symposium on Microarchitecture (MICRO 2016)

Q https://parsa.epfl.ch/~falsafi/talks/specialized-server.pdf

https://parsa.epfl.ch/~falsafi/talks/specialized-server.pdf
https://parsa.epfl.ch/~falsafi/talks/specialized-server.pdf

