
memory for large-scale
systems

1

Prakhar Jawre

Outline

❑ Overview

❑ Current Technologies

❑ Challenges

❑ Conclusion

2

Timeline of IT and Computing

First generation 
computers PC Mobile

computing
Data Centres onset of IOT &

Big Data

Timeline of IT and Computing

Rapid growth in digital data!

First generation 
computers PC Mobile

computing
Data Centres onset of IOT &

Big Data

Timeline of IT and Computing

Rapid growth in digital data!

From Computing Centric to Data Centric

First generation 
computers PC Mobile

computing
Data Centres onset of IOT &

Big Data

Timeline of IT and Computing

Rapid growth in digital data!

From Computing Centric to Data Centric

Data growth in 10 year(by 2015) = 100X

First generation 
computers PC Mobile

computing
Data Centres onset of IOT &

Big Data

Today’s Data Centers
◆ Per-vendor Layer

◆ Product Based

◆ Near neighbor optimization

◆ Big vendors(Google, Amazon etc)

◆ Can do Cross Layer Optimization but,

◆ Limited to service of Interest

◆ Limited to Extend(Software)

◆ Closed Technologies

Outline

❑ Overview

❑ Current Technologies

❑ Challenges

❑ Conclusion

5

In-Memory Computing for high Performance

Data

In-Memory Computing for high Performance
Why: Tight Latency Constraints
How: Place data in main memory

Data

In-Memory Computing for high Performance
Why: Tight Latency Constraints
How: Place data in main memory

Need large memory pool to accommodate all data

Nodes Frequently Access Remote Memory

Graph Serving
• Fine-grained access

Graph Analytics
• Bulk access

Nodes Frequently Access Remote Memory

Need fast access to both small and large objects in remote memory

Nodes Frequently Access Remote Memory

Rack-Scale Systems: Fast Access to Big Memory

Rack-Scale Systems: Fast Access to Big Memory

Large memory capacity, low latency, high bandwidth

• Vast memory pool in small form factor

• On-chip integrated, cache-coherent NIs

• Examples: Scale-Out NUMA [Novakovic et al., ’14]

Rack-Scale Systems: Fast Access to Big Memory

Large memory capacity, low latency, high bandwidth

• Vast memory pool in small form factor

• On-chip integrated, cache-coherent NIs

• Examples: Scale-Out NUMA [Novakovic et al., ’14]

• High-performance inter-node interconnect

• NUMA environment

• Low latency for fine-grained transfers

• High bandwidth for bulk transfers

Remote Direct Memory Access (RDMA)

• Frequent remote memory accesses within datacenter

• Networking traditionally expensive

Remote Direct Memory Access (RDMA)

• Frequent remote memory accesses within datacenter

• Networking traditionally expensive

Remote Direct Memory Access (RDMA)

• Frequent remote memory accesses within datacenter

• Networking traditionally expensive

RDMA technology

• Fast one-sided operations

• Destination CPU not involved

Application

NICPU NICPU
zZz

MemoryMemory

Outline
❑ Overview

❑ Current Technologies

❑ Challenges

❑ Atomic Object Read

❑ Network Interface for Many-Core Chip

❑ Proposed Solutions

❑ Conclusion

10

Object Atomicity in RDMA

❑ Atomicity limited to single cache line in one sided ops  

❑ Software construct for object atomicity

Network

NI CPU

Memory
object

NICPU

Memory

❑ Embedded MetaData

Object Atomicity in RDMA

❑ Atomicity limited to single cache line in one sided ops  

❑ Software construct for object atomicity

Network

NI CPU

Memory
objectM

NICPU

Memory

❑ Embedded MetaData

Object Atomicity in RDMA

❑ Atomicity limited to single cache line in one sided ops  

❑ Software construct for object atomicity

Network

NI CPU

Memory
objectM

NICPU

Memory
objectM

zZz

❑ Embedded MetaData

Object Atomicity in RDMA

❑ Atomicity limited to single cache line in one sided ops  

❑ Software construct for object atomicity

Network

post-transfer
atomicity check 

by CPU

NI CPU

Memory
objectM

NICPU

Memory
objectM

zZz

❑ Embedded MetaData

Object Atomicity in RDMA

❑ Atomicity limited to single cache line in one sided ops  

❑ Software construct for object atomicity

Network

post-transfer
atomicity check 

by CPU

NI CPU

Memory
objectM

NICPU

Memory
objectM

zZz

❑ Embedded MetaData

❑ SW check expensive=>upto 50% of remote object read

SW atomicity: How is it done?

Per-cache-line versions (FaRM [Dragojevic’14,’15])

CPU NI CPUNI

Source: Server A Destination: Server B

Memory Memory

SW atomicity: How is it done?

Cache-line versions

Object layout in memory

Application data

Per-cache-line versions (FaRM [Dragojevic’14,’15])

CPU NI CPUNI

Source: Server A Destination: Server B

Memory Memory

2

2
2

2

SW atomicity: How is it done?

Cache-line versions

Object layout in memory

Application data

Per-cache-line versions (FaRM [Dragojevic’14,’15])

CPU NI CPUNI

Source: Server A Destination: Server B

Memory Memory

writer
3
3

3
3

SW atomicity: How is it done?

CPU checks versions & copies
Cache-line versions

Object layout in memory

Application data

Per-cache-line versions (FaRM [Dragojevic’14,’15])

CPU NI CPUNI

Source: Server A Destination: Server B

Memory Memory

✓✓✓✓

writer3

3

3

3

3
3

3
3

SW atomicity: How is it done?

CPU checks versions & copies
Cache-line versions

Object layout in memory

Application data

Per-cache-line versions (FaRM [Dragojevic’14,’15])

CPU NI CPUNI

Source: Server A Destination: Server B

Memory Memory

✓✓✓✓

writer3

3

3

3

3
3

3
3

SW atomicity: How is it done?

CPU checks versions & copies
Cache-line versions

Object layout in memory

Application data

Per-cache-line versions (FaRM [Dragojevic’14,’15])

CPU NI CPUNI

Source: Server A Destination: Server B

Memory Memory

✓✓✓✓

writer3

3

3

3

3
3

3
3

❑CPU overhead for version embedding/stripping
❑Intermediate buffers for reads and writes

SW atomicity overhead

SW atomicity overhead
En

d-
to

-e
nd

 la
te

nc
y

(μ
s)

0

1

3

4

5

Object size (B)

128 256 512 1024 2048 4096 8192

transfer framework+application version stripping

SW atomicity overhead
En

d-
to

-e
nd

 la
te

nc
y

(μ
s)

0

1

3

4

5

Object size (B)

128 256 512 1024 2048 4096 8192

transfer framework+application version stripping

Up to 50%

Transfer is  
small fraction

SW atomicity overhead
En

d-
to

-e
nd

 la
te

nc
y

(μ
s)

0

1

3

4

5

Object size (B)

128 256 512 1024 2048 4096 8192

transfer framework+application version stripping

Up to 50%

Transfer is  
small fraction

Can we do this using hardware?

SABRes: Single Site Atomic Bulk Read

CPUNI

Network Memory

LLC

SABRes: Single Site Atomic Bulk Read

NI
logic

CPU

Network Memory

LLC

SABRes: Single Site Atomic Bulk Read

Remote read

NI
logic

CPU

Network Memory

LLC

SABRes: Single Site Atomic Bulk Read

Remote read

NI
logic

CPU

Network Memory

LLC

read version1

SABRes: Single Site Atomic Bulk Read

Remote read

NI
logic

CPU

Network Memory

LLC

read version1

2 read data

SABRes: Single Site Atomic Bulk Read

Remote read

NI
logic

CPU

Network Memory

LLC

read version1

2 read data

3 Re-read version
& compare

SABRes: Single Site Atomic Bulk Read

Remote read

NI
logic

CPU

Network Memory

LLC

read version1

2 read data

3 Re-read version
& compare

write

VERSION MISMATCH
à ABORT!

SABRes: Single Site Atomic Bulk Read

Remote read

NI
logic

CPU

Network Memory

LLC

read version1

2 read data

3 Re-read version
& compare

write

VERSION MISMATCH
à ABORT!

Reply 
(data or abort)

SABRes: Single Site Atomic Bulk Read

Speculatively read version and data à remove serial read latency

Remote read

NI
logic

CPU

Network Memory

LLC

read version1

2 read data

3 Re-read version
& compare

write

VERSION MISMATCH
à ABORT!

Reply 
(data or abort)

SABRes: Single Site Atomic Bulk Read

Speculatively read version and data à remove serial read latency

Remote read

NI
logic

CPU

Network Memory

LLC

read version1

2 read data

3 Re-read version
& compare

write

VERSION MISMATCH
à ABORT!

Reply 
(data or abort)

SABRes: Single Site Atomic Bulk Read

Simple hardware, atomicity w/ zero latency overhead

Speculatively read version and data à remove serial read latency

Remote read

NI
logic

CPU

Network Memory

LLC

read version1

2 read data

3 Re-read version
& compare

write

VERSION MISMATCH
à ABORT!

Reply 
(data or abort)

SABRes: Single Site Atomic Bulk Read

E2
E

la
te

nc
y

(μ
s)

0

1.25

2.5

3.75

5
transfer system + app version stripping
x-axis

SA
B

R
es

SW
 a

to
m

ic
it

y

✓ Up to 2x latency & throughput benefit
for distributed object stores

SABRes: Single Site Atomic Bulk Read

E2
E

la
te

nc
y

(μ
s)

0

1.25

2.5

3.75

5
transfer system + app version stripping
x-axis

SA
B

R
es

SW
 a

to
m

ic
it

y

✓ Up to 2x latency & throughput benefit
for distributed object stores

Outline
❑ Overview

❑ Current Technologies

❑ Challenges

❑ Atomic Object Read

❑ Network Interface for Many-Core Chip

❑ Conclusion

16

Interwork Interface Design for Manycore Chips

❑NI placement & design is key for remote access performance
❑Obvious NI designs suffer from poor latency or bandwidth

❑ Contributions
❑NI design space exploration for manycore chips
❑Seamless integration of NI into chip’s coherence domain
❑Novel Split NI design, optimizing for both latency and bandwidth

Goal: “Low-latency, high-bandwidth NI design for
manycore chips”

User-level Remote Memory Access

RDMA-like Queue-Pair (QP) model

Cores and NIs communicate through cacheable memory-
mapped queues
•Work Queue (WQ) and Completion Queue (CQ)

core

Local node Remote node

Inter-node
networkNI NI

User-level Remote Memory Access

RDMA-like Queue-Pair (QP) model

Cores and NIs communicate through cacheable memory-
mapped queues
•Work Queue (WQ) and Completion Queue (CQ)

core
CQ

WQ

Local node Remote node

Inter-node
networkNI NI

User-level Remote Memory Access

RDMA-like Queue-Pair (QP) model

Cores and NIs communicate through cacheable memory-
mapped queues
•Work Queue (WQ) and Completion Queue (CQ)

core
poll

CQ

write WQ

Local node Remote node

Inter-node
networkNI NI

User-level Remote Memory Access

RDMA-like Queue-Pair (QP) model

Cores and NIs communicate through cacheable memory-
mapped queues
•Work Queue (WQ) and Completion Queue (CQ)

core
poll

CQ

write WQ

Local node Remote node

Inter-node
network

Direct memory
access

NI NI

User-level Remote Memory Access

RDMA-like Queue-Pair (QP) model

Cores and NIs communicate through cacheable memory-
mapped queues
•Work Queue (WQ) and Completion Queue (CQ)

core
poll

CQ

write

write

WQ

poll

Local node Remote node

Inter-node
network

Direct memory
access

NI NI

Implications of Manycore Chips on Remote Access

More Cores à Higher request rate
NI capabilities have to match chip’s communication demands

Approaches à
❑ Scale NI across edge
❑ à Close to network pins
❑ à Access to NOC’s full bisection bandwidth
❑ à Large average core to NI distance ☹  

❑ Collocate NI logic per core, to localize all interactions
❑ à Transparent to coherence mechanism
❑ à No modifications to core’s IP block

c c c c c c
c c c c c c
c c c c c c
c c c c c c
c c c c c c
c c c c c c

 N
e

tw
o

rk R
o

u
te

r

LLC

NOC
routercore

di
r

Edge NI 4-Cache-Block Remote Read

 N
e

tw
o

rk R
o

u
te

r

QP
dir

$

$

LLC

NOC
routercore

di
r

Edge NI 4-Cache-Block Remote Read

 N
e

tw
o

rk R
o

u
te

r

QP
dir

Edge NI 4-Cache-Block Remote Read

 N
e

tw
o

rk R
o

u
te

r

QP
dir

Core writes WQ

QP interactions

Edge NI 4-Cache-Block Remote Read

 N
e

tw
o

rk R
o

u
te

r

QP
dir

NI reads WQ

QP interactions

Edge NI 4-Cache-Block Remote Read

 N
e

tw
o

rk R
o

u
te

r

Data handling
NI unrolls to cache-block-sized requests

Outgoing
requests

Edge NI 4-Cache-Block Remote Read

 N
e

tw
o

rk R
o

u
te

r

Data handling
NI unrolls to cache-block-sized requests

Incoming
replies

Edge NI 4-Cache-Block Remote Read

 N
e

tw
o

rk R
o

u
te

r

Data transfer completed. Repeat QP interactions to write CQ

NI writes CQ
Core reads CQ

Edge NI 4-Cache-Block Remote Read

QP interactions account for up to 50% of end-to-end latency

 N
e

tw
o

rk R
o

u
te

r

NI writes CQ
Core reads CQ

Bandwidth ✓
Latency ✗

Edge NI 4-Cache-Block Remote Read

 N
e

tw
o

rk R
o

u
te

r

Per-Core NI 4-Cache-Block Remote Read

 N
e

tw
o

rk R
o

u
te

r

Per-Core NI 4-Cache-Block Remote Read

All QP interactions
local!

 N
e

tw
o

rk R
o

u
te

r

Per-Core NI 4-Cache-Block Remote Read

Data handling

Outgoing
requests

 N
e

tw
o

rk R
o

u
te

r

Data handling

Per-Core NI 4-Cache-Block Remote Read

 N
e

tw
o

rk R
o

u
te

r

Data handling

Incoming
replies

Write payload  
in LLC

Per-Core NI 4-Cache-Block Remote Read

 N
e

tw
o

rk R
o

u
te

r
All reply packets

received!
Write CQ locally

Data handling

Incoming
replies

Write payload  
in LLC

Per-Core NI 4-Cache-Block Remote Read

 N
e

tw
o

rk R
o

u
te

r

Minimized latency but bandwidth misuse for large requests

All reply packets
received!

Write CQ locally

Data handling

Incoming
replies

Write payload  
in LLC

Bandwidth ✗
Latency ✓

Per-Core NI 4-Cache-Block Remote Read

NI Design Space

Ba
nd

w
id

th

Latency

Target

Edge NI

NI Design Space

Ba
nd

w
id

th

Latency

Target

Per-core NI

Edge NI

 N
e

tw
o

rk R
o

u
te

r

Split NI 4-Cache-Block Remote Read

 N
e

tw
o

rk R
o

u
te

r

All QP interactions
local!

Split NI 4-Cache-Block Remote Read

 N
e

tw
o

rk R
o

u
te

r

Data handling

Split NI 4-Cache-Block Remote Read

 N
e

tw
o

rk R
o

u
te

r

Data handling

Outgoing
requests

Split NI 4-Cache-Block Remote Read

 N
e

tw
o

rk R
o

u
te

r

Data handling

Incoming
replies

Split NI 4-Cache-Block Remote Read

 N
e

tw
o

rk R
o

u
te

r
All reply packets

received!
Write CQ locally

Incoming
replies

Split NI 4-Cache-Block Remote Read

 N
e

tw
o

rk R
o

u
te

r
All reply packets

received!
Write CQ locally

Incoming
replies

Both low-latency small transfers and high-bandwidth large transfers

Split NI 4-Cache-Block Remote Read

Bandwidth ✓
Latency ✓

NI Design Space

Ba
nd

w
id

th

Latency

Target

Edge NI

NI Design Space

Ba
nd

w
id

th

Latency

Target

Per-core NI

Edge NISplit NI

Outline

❑ Overview

❑ Current Technologies

❑ Challenges

❑ Conclusion

26

Conclusion

❑ Software construct for object atomicity incur heavy overheads.

❑ Need for hardware solutions to atomic object reads.

❑ NI design for manycore chips is crucial to remote memory access.

❑ Fast core-NI interaction critical to achieve low latency

❑ Large transfers best handled at the edge

❑ Split NI: low-latency, high-bandwidth remote memory access

Reference
❑ Alexandros Daglis, Stanko Novaković, Edouard Bugnion, Babak Falsafi, and

Boris Grot. 2015. Manycore network interfaces for in-memory rack-scale
computing. SIGARCH Comput. Archit. News 43, 3 (June 2015)

❑ Daglis, A, Ustiugov, D, Novakovic, S, Bugnion, E, Falsafi, B & Grot,
B 2016, SABRes: Atomic Object Reads for In-Memory Rack-Scale
Computing. in In Proceedings of the 49th Annual IEEE/ACM International
Symposium on Microarchitecture (MICRO 2016)

❑ https://parsa.epfl.ch/~falsafi/talks/specialized-server.pdf

https://parsa.epfl.ch/~falsafi/talks/specialized-server.pdf
https://parsa.epfl.ch/~falsafi/talks/specialized-server.pdf

