

CS698Y: Modern Memory Systems Lecture-11 (Hardware Prefetching)

Biswabandan Panda

biswap@cse.iitk.ac.in

https://www.cse.iitk.ac.in/users/biswap/CS698Y.html

Flow of the Module

Data Prefetching Techniques

Metrics Related to Prefetching

Interaction with Cache Replacement

Instruction Prefetching

But, Why Prefetching? Remember Memory Wall: It is still hurting

Hardware Prefetching

What?

Latency-hiding technique - Fetches data before the core demands.

Why? Off-chip DRAM latency has grown up to 400 to 800 cycles.

How?

By observing/predicting the demand access (LOAD/STORE) patterns.

Hardware Prefetch Engine

Prefetchers in Multicore - 101

Prefetching Knobs

Prefetch Degree: Number of prefetch requests to issue at a given time.

Prefetching Knobs

Prefetch Distance: How far ahead of the demand access stream are the prefetch requests issued?

Aggressiveness [degree, distance]

Prefetch degree: #Prefetch requests issued on a miss

$$\begin{array}{c|c} \mathbf{PF} & \longrightarrow & X+1 & X+2 & X+3 & X+4 \end{array}$$

Prefetch distance: How far ahead (in terms of # blocks) of the demand miss ?

The Simplest Prefetcher

Next Line: Miss to cache block X, prefetch X+1. Degree=1, Distance=1

Works well for L1 Icache and L1 Dcache.

Next N Line: Miss to cache block X, prefetch X+1, X+2, X+N, Degree=N, Distance=1

What about this?

Stride Prefetching

An Example

```
float a[100][100], b[100][100], c[100][100];
```

```
for (i = 0; i < 100; i++)
for (j = 0; j < 100; j++)
for (k = 0; k < 100; k++)
a[i][j] += b[i][k] * c[k][j];
```

instruction tag	previous address	stride	state
ld b[i][k]	50008	4	steady
ld c[k][j]	90800	800	steady
ld a[i][j]	10000	0	steady

Pointer Chasers

Stream Prefetching [DPC1]

Training: Consecutive misses in the same direction.

Stream Prefetcher in Action

Start address and end address will be shifted by blkSize*prefetch-degree after prefetch.

Stream + Stride

