
Lecture-2 & 3 (Brushing up the Processor)
CS665-Fall 2018
Secure Memory Systems

Biswa@CSE-IITK

Your Assignment-0: Congrats, you have scored a 0 ☺

CS665: Fall 2018 Biswabandan Panda, CSE@IITK 2

Nuka: I promise then what ?
Supriya: I that promise I will try ? What does it mean
Newton: Do we have to call Biswa outside the class also?
Dixit: Submitted response twice ☺
@Few: Did not submit 

Riya: to understand better when I read about security exploits in the
news; to protect things I design as best as I can; to be able to read
research papers more efficiently; to gain a better understanding of
the intricacies of memory hierarchy.

CS665: Fall 2018 Biswabandan Panda, CSE@IITK 3

Logistics

Late submission: -10% for every 24 hours

Some of you are not in Piazza or not in Pingala or not in class

Group based discussions from 20th August

How to read a paper and caches: 9th /13th August

Basics on Cache Attacks and PA1: 16th August

Hands-on today: Visualizing the Processor

Vanilla Pipeline

CS665: Fall 2018 Biswabandan Panda, CSE@IITK 4

Memory
Access

Write
Back

Instruction
Fetch

Instr. Decode
Reg. Fetch

Execute
Addr. Calc

A
L
U

M
e
m

ory

R
e
g F

ile

M
U

X
M

U
X

D
ata

M
e
m

ory

M
U

X

Sign
Extend

Zero?

I
F

/I
D

I
D

/E
X

M
E

M
/W

B

E
X

/M
E

M

4

A
d
d
e
r

Next SEQ PC Next SEQ PC

RD RD RD W
B

 D
at

a

• Data stationary control
– local decode for each instruction phase
/ pipeline stage

Next PC

A
d
d
re

ss

RS1

RS2

Imm

M
U

X

IR <= mem[PC];

PC <= PC + 4

A <= Reg[IRrs];

B <= Reg[IRrt]

rslt <= A opIRop B

Reg[IRrd] <= WB

WB <= rslt

Branch Prediction and Speculative Execution

CS665: Fall 2018 Biswabandan Panda, CSE@IITK 5

I1:
I2:

I3:
I4:
I5:

t1 t2 t3 t4 t5 t6 t7 t8Time:
Inst

I6:

IR IR

IF (Fetch) ID (Decode) EX (ALU)

IR IR

MEM WB

IF ID

IF

EX

ID

IF

MEM WB
EX stage

computes
if branch is

taken
If we predicted incorrectly,

these instructions MUST NOT
complete!

We update the PC based on the outputs of the
branch predictor. If it is perfect, pipe stays full!
Dynamic Predictors: a cache of branch history

I-Cache

A control

instr?

Taken

or Not

Taken?

If taken,

where to?

What PC?

Branch

Predictor

Predictions

Branch Target Buffer

0b0110[...]01001000

2 state

bits

Branch

History Table

(BHT)target address

Branch Target Buffer (BTB)

PC + 4 + Loop

30-bit address tag

0b0110[...]0010

Address of branch instruction

Drawn
as fully associative

to focus
on the essentials.

In real designs, always
direct-mapped.

At EX stage,
update BTB/BHT,
kill instructions,

if necessary,

Branch instruction

BNEZ R1 Loop

CS665: Fall 2018 Biswabandan Panda, CSE@IITK 6

30 bits

Handling Exceptions

CS665: Fall 2018 Biswabandan Panda, CSE@IITK 7

PC Inst. Mem D Decode E M
Data
Mem W+

Illegal Opcode Overflow Data address
Exceptions

PC address
Exception

Asynchronous
Interrupts

Exc
D

PC
D

Exc
E

PC
E

Exc
M

PC
M

C
au

se
EP

C

Kill D
Stage

Kill F Stage Kill E
Stage

Select
Handler PC

Kill
Writeback

Commit Point

Some More: Out-of-order

CS665: Fall 2018 Biswabandan Panda, CSE@IITK 8

Memory
Access

Write
Back

Instruction
Fetch

Instr. Decode
Reg. Fetch

Execute
Addr. Calc

A
L
U

M
e
m

ory

R
e
g F

ile

M
U

X
M

U
X

D
ata

M
e
m

ory

M
U

X

Sign
Extend

Zero?

I
F

/I
D

I
D

/E
X

M
E

M
/W

B

E
X

/M
E

M

4

A
d
d
e
r

Next SEQ PC Next SEQ PC

RD RD RD W
B

 D
at

a

• Data stationary control
– local decode for each instruction phase
/ pipeline stage

Next PC

A
d
d
re

ss

RS1

RS2

Imm

M
U

X

I1: MUL

I2: ADD

I3: DIV

I5: LOAD

I4: ADD

Some More: Out-of-order + Multi-Issue (a.k.a superscalar)

CS665: Fall 2018 Biswabandan Panda, CSE@IITK 9

Memory
Access

Write
Back

Instruction
Fetch

Instr. Decode
Reg. Fetch

Execute
Addr. Calc

A
L
U

M
e
m

ory

R
e
g F

ile

M
U

X
M

U
X

D
ata

M
e
m

ory

M
U

X

Sign
Extend

Zero?

I
F

/I
D

I
D

/E
X

M
E

M
/W

B

E
X

/M
E

M

4

A
d
d
e
r

Next SEQ PC Next SEQ PC

RD RD RD W
B

 D
at

a

5-stage becomes n-stage in reality

Next PC

A
d
d
re

ss

RS1

RS2

Imm

M
U

X

I1: MUL

IX: MOV

I2: ADD

IZ: STORE

I3: DIV

IY: MUL

I5: LOAD
I4: ADD

ROB

TLP: Multithreading

CS665: Fall 2018 Biswabandan Panda, CSE@IITK 10

T
im

e
(p

ro
ce

ss
or

 c
yc

le
) Superscalar Fine-Grained Coarse-Grained Multiprocessing

Simultaneous

Multithreading

Thread 1

Thread 2

Thread 3

Thread 4

Thread 5

Idle slot

Execution slots

CACHES: WHERE ARE THEY

Interconnect

L3

Core 0 Core 1 Core 2 Core 3

L1
L2

L1
L2

L1
L2

L1
L2

CS665: Fall 2018 Biswabandan Panda, CSE@IITK 11

Memory Wall Problem

Time

µProc 60%/year

DRAM
7%/year

1

10

100

1000
1

9
8

0

1
9

8
1

1
9

8
3

1
9

8
4

1
9

8
5

1
9

8
6

1
9

8
7

1
9

8
8

1
9

8
9

1
9

9
0

1
9

9
1

1
9

9
2

1
9

9
3

1
9

9
4

1
9

9
5

1
9

9
6

1
9

9
7

1
9

9
8

1
9

9
9

2
0

0
0

DRAM

CPU

1
9

8
2

Processor-Memory
Performance Gap:
(growing 50%/yr)

Pe
rf

o
rm

an
ce

CS665: Fall 2018 Biswabandan Panda, CSE@IITK 12

WHY ARE THEY?

L3

L1 L2
4 Cycles

12 Cycles
30 Cycles D

R
A

M
 C

o
n

tr
.

C
o

re

Latency wall

Bandwidth wall

100s of Cycles

CS665: Fall 2018 Biswabandan Panda, CSE@IITK 13

Access Patterns

Donald J. Hatfield, Jeanette Gerald: Program Restructuring for Virtual

Memory. IBM Systems Journal 10(3): 168-192 (1971)

Time

M
e

m
o

ry
 A

d
d

re
ss

 (
o

n
e

 d
o

t
p

e
r

ac
ce

ss
)

CS665: Fall 2018 Biswabandan Panda, CSE@IITK 14

Examples

Address

Time

Instruction
fetches

Stack
accesses

Data
accesses

n loop iterations

subroutine
call

subroutine
return

argument access

scalar accesses

CS665: Fall 2018 Biswabandan Panda, CSE@IITK 15

Locality of Reference

• Temporal Locality: If a location is referenced it is likely to be referenced
again in the near future.

• Spatial Locality: If a location is referenced it is likely that locations near
it will be referenced in the near future.

CS665: Fall 2018 Biswabandan Panda, CSE@IITK 16

Again

Time

M
e

m
o

ry
 A

d
d

re
ss

 (
o

n
e

 d
o

t
p

e
r

ac
ce

ss
)

Spatial
Locality

Temporal
Locality

CS665: Fall 2018 Biswabandan Panda, CSE@IITK 17

Placement Policy

0 1 2 3 4 5 6 70 1 2 3Set Number

Cache

Fully (2-way) Set Direct
Associative Associative Mapped
anywhere anywhere in only into

set 0 block 4
(12 mod 4) (12 mod 8)

0 1 2 3 4 5 6 7 8 9

1 1 1 1 1 1 1 1 1 1
0 1 2 3 4 5 6 7 8 9

2 2 2 2 2 2 2 2 2 2
0 1 2 3 4 5 6 7 8 9

3 3
0 1

Memory

Block Number

block 12
can be placed

CS665: Fall 2018 Biswabandan Panda, CSE@IITK 18

Direct Mapped

Tag Data BlockV

=

Block
Offset

Tag Index

t
k b

t

HIT Data Word or Byte

2k

lines

In reality, tag-store is placed
separately

CS665: Fall 2018 Biswabandan Panda, CSE@IITK 19

An Example

:

0x50

Valid Bit

:

Cache Tag

Byte 32

0

1

2

3

:

Cache Data

Byte 0Byte 1Byte 31 :

Byte 33Byte 63 :

Byte 992Byte 1023 : 31

Ex: 0x50 Ex: 0x00

Cache Index

0431

Cache Tag Byte Select

9

Ex: 0x01

CS665: Fall 2018 Biswabandan Panda, CSE@IITK 20

Set-Associative

Tag Data BlockV

=

Block
Offset

Tag Index

t
k

b

HIT

Tag Data BlockV

Data
Word
or Byte

=

t

CS665: Fall 2018 Biswabandan Panda, CSE@IITK 21

An Example

Cache Index

0431

Cache Tag Byte Select

8

Cache Data

Cache Block 0

Cache TagValid

:: :

Cache Data

Cache Block 0

Cache Tag Valid

: ::

Mux 01Sel1 Sel0

OR

Hit

Compare Compare

Cache Block

CS665: Fall 2018 Biswabandan Panda, CSE@IITK 22

Fully-associative

Tag Data BlockV

=

B
lo

ck
O

ff
se

t
Ta

g

t

b

HIT

Data
Word
or Byte

=

=

t

CS665: Fall 2018 Biswabandan Panda, CSE@IITK 23

An Example

:

Cache Data

Byte 0Byte 1Byte 31 :

Byte 32Byte 33Byte 63 :

Valid Bit

::

Cache Tag

04

Cache Tag (27 bits long) Byte Select

31

=

=

=

=

=

Ex: 0x01

CS665: Fall 2018 Biswabandan Panda, CSE@IITK 24

What’s in Tag Store?

• Valid bit

• Tag

• Replacement policy bits

• Dirty bit?
• Write back vs. write through caches

Valid/Dirty/LRU Bit

::

Cache Tag

:

Cache Data

Byte 0Byte 1Byte 31 :

Byte 32Byte 33Byte 63 :

CS665: Fall 2018 Biswabandan Panda, CSE@IITK 25

Design Issues: Unified vs Split
• Unified:

+ Dynamic sharing of cache space: no overprovisioning

-- Instructions and data can thrash each other

-- I and D are accessed in different places in the pipeline.

• First level caches are almost always split

• for the reasons above

• Second and higher levels are almost always unified

CS665: Fall 2018 Biswabandan Panda, CSE@IITK 26

Reads are not Writes

• If a write enters the cache, what happens if

• There is a cache miss

• Does the cache need to bring in the cache line?

• There is a cache hit

• Does the cache need to write back to memory?

CS665: Fall 2018 Biswabandan Panda, CSE@IITK 27

Write Policies

• Cache hit:

• write through: write both cache & memory

• Generally higher traffic but simpler pipeline & cache design

• write back: write cache only, memory is written only when the entry is evicted

• A dirty bit per line further reduces write-back traffic

• Must handle 0, 1, or 2 accesses to memory for each load/store

• Cache miss:

• no write allocate: only write to main memory

• write allocate (aka fetch on write): fetch into cache

• Common combinations:

• write through and no write allocate

• write back with write allocate

CS665: Fall 2018 Biswabandan Panda, CSE@IITK 28

Write Buffers

Processor is not stalled on writes, and read misses can go ahead of write to main memory

Problem: Write buffer may hold updated value of location needed by a read miss

Simple solution: on a read miss, wait for the write buffer to go empty

Faster solution: Check write buffer addresses against read miss addresses, if no match,
allow read miss to go ahead of writes, else, return value in write buffer

Data Cache
Unified
L2 Cache

RF

CPU

Write
buffer

Evicted dirty lines for writeback cache
OR
All writes in writethrough cache

CS665: Fall 2018 Biswabandan Panda, CSE@IITK 29

Performance: AMAT

Average memory access time (AMAT) = Hit time + Miss rate x Miss penalty

Average memory access time (AMAT) = Hit time + Miss rate1 x Miss penalty1

+ Miss rate2 x Miss penalty2

CS665: Fall 2018 Biswabandan Panda, CSE@IITK 30

Improving Cache Performance

Average memory access time (AMAT) =
Hit time + Miss rate x Miss penalty

To improve performance:
• reduce the hit time
• reduce the miss rate
• reduce the miss penalty

CS665: Fall 2018 Biswabandan Panda, CSE@IITK 31

Cache Optimizations: Refer H&P

CS665: Fall 2018 Biswabandan Panda, CSE@IITK 32

Non-blocking Cache

• Enable cache access when there is a pending miss

• Enable multiple misses in parallel
• Memory-level parallelism (MLP)

• generating and servicing multiple memory accesses in parallel

• Why generate multiple misses?

• Enables latency tolerance: overlaps latency of different misses

• How to generate multiple misses?
• Out-of-order execution, multithreading, prefetching

time

A
C

B

isolated miss parallel miss

CS665: Fall 2018 Biswabandan Panda, CSE@IITK 33

Miss-Status Holding Registers

• Also called “miss buffer”

• Keeps track of
• Outstanding cache misses
• Pending load/store accesses that refer to the missing cache

block

• Fields of a single MSHR
• Valid bit
• Cache block address (to match incoming accesses)
• Control/status bits (prefetch, issued to memory, which

subblocks have arrived, etc)
• Data for each subblock
• For each pending load/store

• Valid, type, data size, byte in block, destination register or store buffer
entry address

CS665: Fall 2018 Biswabandan Panda, CSE@IITK 34

MSHRs

CS665: Fall 2018 Biswabandan Panda, CSE@IITK 35

MSHR in Action

• On a cache miss:
• Search MSHR for a pending access to the same block

• Found: Allocate a load/store entry in the same MSHR entry

• Not found: Allocate a new MSHR

• No free entry: stall

• When a subblock returns from the next level in memory
• Check which loads/stores waiting for it

• Forward data to the load/store unit

• Deallocate load/store entry in the MSHR entry

• Write subblock in cache or MSHR

• If last subblock, dellaocate MSHR (after writing the block in
cache)

CS665: Fall 2018 Biswabandan Panda, CSE@IITK 36

The 3Cs

Compulsory:

first reference to a line (a.k.a. cold start misses)
• misses that would occur even with infinite cache

Capacity:

cache is too small to hold all data needed by the
program

• misses that would occur even under perfect
replacement policy

Conflict:

misses that occur because of collisions due to line-
placement strategy

• misses that would not occur with ideal full associativity

Cache Knobs and Performance

• Larger cache size
+ reduces capacity and conflict misses
- hit time will increase

• Higher associativity
+ reduces conflict misses
- may increase hit time

• Larger line size
+ reduces compulsory and capacity (reload) misses
- increases conflict misses and miss penalty

CS665: Fall 2018 Biswabandan Panda, CSE@IITK 38

Cache Hierarchy: Inclusive

B
ack

In
val

L1/L2

LLC

victim

fill

memory

fill

Core request

evict

CS665: Fall 2018 Biswabandan Panda, CSE@IITK 39

Non-inclusive

L1/L2

LLC

fill

fill

Core request

victim

memory

CS665: Fall 2018 Biswabandan Panda, CSE@IITK 40

Exclusive

L1/L2

LLC

victim

fill

fill

Core request

memory

victim

CS665: Fall 2018 Biswabandan Panda, CSE@IITK 41

LLC: Shared or Private?

…

Interconnect

Cache (Private/Shared)

Core 0 Core 1 Core 2 Core 3 Core N-1

CS665: Fall 2018 Biswabandan Panda, CSE@IITK 42

Application Behavior

Interconnect

Core 0 Core 1

L1/L2 L1/L2

LLC

Core-Cache Fitting

LLC Fitting/thrashing

CS665: Fall 2018 Biswabandan Panda, CSE@IITK 43

Shared LLC

Shared LLC provides a good tradeoff for all kinds of apps.

Space unutilized by one app. can be utilized by other apps.

However bandwidth is an issue

1000 monkeys: one banana

CS665: Fall 2018 Biswabandan Panda, CSE@IITK 44

Banked/Sliced NUCA

Core 0

L1

L2

Core 1

L1

L2

Core 2

L1

L2

Core 3

L1

L2

Ring(s)

S0 S1 S2 S3

CS665: Fall 2018 Biswabandan Panda, CSE@IITK 45

Intel’s Sandybridge

CS665: Fall 2018 Biswabandan Panda, CSE@IITK 46

Cache Replacement-101

◼ Think of each block in a set having a “priority”

❑ Indicating how important it is to keep the block in the cache

◼ Key issue: How do you determine/adjust block priorities?

◼ There are three key decisions in a set:

❑ Insertion, promotion, eviction (replacement)

◼ Insertion: What happens to priorities on a cache fill?
❑ Where to insert the incoming block, whether or not to insert the block

◼ Promotion: What happens to priorities on a cache hit?
❑ Whether and how to change block priority

◼ Eviction/replacement: What happens to priorities on a cache miss?
❑ Which block to evict and how to adjust priorities

CS665: Fall 2018 Biswabandan Panda, CSE@IITK 47

Eviction (Replacement) Policy?

◼ Which block in the set to replace on a cache miss?

❑ Any invalid block first

❑ If all are valid, consult the replacement policy

◼ Random

◼ FIFO

◼ Least recently used (how to implement?)

◼ Not most recently used

◼ Least frequently used?

◼ Least costly to re-fetch?

❑ Why would memory accesses have different cost?

◼ Hybrid replacement policies

◼ Optimal replacement policy?

CS665: Fall 2018 Biswabandan Panda, CSE@IITK 48

Belady

• Belady’s OPT
• Replace the block that is going to be referenced furthest in the

future by the program
• Belady, “A study of replacement algorithms for a virtual-

storage computer,” IBM Systems Journal, 1966.
• How do we implement this? Simulate?

• Is this optimal for minimizing miss rate?

• Is this optimal for minimizing execution time?
• No. Cache miss latency/cost varies from block to block!
• Two reasons: Remote vs. local caches and miss overlapping
• Qureshi et al. “A Case for MLP-Aware Cache

Replacement,“ ISCA 2006.

CS665: Fall 2018 Biswabandan Panda, CSE@IITK 49

LRU - 101

Cache Eviction Policy: On a miss (block i), which block to evict
(replace) ?

Cache Insertion Policy: New block i inserted into MRU.

Cache Promotion Policy: On a future hit (block i), promote to MRU

a b c d e f g h

MRU LRU
SET A

i a b c d e f g

MRU LRU
SET A

LRU causes thrashing when working set > cache size

CS665: Fall 2018 Biswabandan Panda, CSE@IITK 50

Prefetch Engine

L2

Prefetcher

X+2

X+3

C
o

re X+3

❶

❷

❸

❹

❺
HIT

X+1

X

CS665: Fall 2018 Biswabandan Panda, CSE@IITK 51

Prefetch Degree

Prefetch Degree: Number of prefetch requests to issue at a given time.

L2

L3/DRAM

Prefetcher

X

Demand
Access

X+1

X+2

X+1 X+2

X+1 X+3 X+4

CS665: Fall 2018 Biswabandan Panda, CSE@IITK 52

Prefetch Distance

Prefetch Distance: How far ahead of the demand access stream are the
prefetch requests issued?

demand
access

Prefetch-distance

X Y

prefetch

Y = X + 4
Y = X + 8
Y = X + 16

CS665: Fall 2018 Biswabandan Panda, CSE@IITK 53

Next-line Prefetcher

Next Line: Miss to cache block X , prefetch X+1. Degree=1, Distance=1

Works well for L1 Icache and L1 Dcache.

CS665: Fall 2018 Biswabandan Panda, CSE@IITK 54

What About This?

CS665: Fall 2018 Biswabandan Panda, CSE@IITK 55

Stride Prefetching

PC effective address

instruction tag previous address stride state

-

+

prefetch address

CS665: Fall 2018 Biswabandan Panda, CSE@IITK 56

