
Lecture-9 (Branch Prediction)
CS422-Spring 2018

Biswa@CSE-IITK

CS422: Spring 2018 Biswabandan Panda, CSE@IITK 2

Remember This

I1:
I2:

I3:
I4:

I5:

t1 t2 t3 t4 t5 t6 t7 t8Time:
Inst

I6:

IR IR

IF (Fetch) ID (Decode) EX (ALU)

IR IR

MEM WB

BEQ R4,R3,25

SUB R1,R9,R8

AND R6,R5,R4

I1:
I2:

I3:

Sample Program

(ISA w/o branch

delay slot)
IF ID

IF

EX

ID

IF

MEM WB
EX stage

computes if
branch is

taken
If branch is taken, these
instructions MUST NOT

complete!

We avoiding stalling by (1) adding a branch delay slot, and (2)
adding comparator to ID stage

If we add more early stages, we must stall.

I-Cache

CS422: Spring 2018 Biswabandan Panda, CSE@IITK 3

Welcome to Branch Prediction

I1:
I2:

I3:
I4:
I5:

t1 t2 t3 t4 t5 t6 t7 t8Time:
Inst

I6:

IR IR

IF (Fetch) ID (Decode) EX (ALU)

IR IR

MEM WB

IF ID

IF

EX

ID

IF

MEM WB
EX stage

computes
if branch is

taken
If we predicted incorrectly,

these instructions MUST NOT
complete!

We update the PC based on the outputs of the
branch predictor. If it is perfect, pipe stays full!
Dynamic Predictors: a cache of branch history

I-Cache

A control

instr?

Taken

or Not

Taken?

If taken,

where to?

What PC?

Branch

Predictor

Predictions

CS422: Spring 2018 Biswabandan Panda, CSE@IITK 4

If always PC+4?

IFPC+4

IFPC

t0 t1 t2 t3 t4 t5

Insti

Instj

Instk

Instl

Insth ID ALU

ID

IFPC+8

ALU

ID

IFt\arget

MEM

When a branch resolves
- branch target (Instk) is fetched
- all instructions fetched since insth (so called “wrong-path”

instructions) must be flushed

CS422: Spring 2018 Biswabandan Panda, CSE@IITK 5

Flush on a Mispred.

IFPC+4

IFPC

t0 t1 t2 t3 t4 t5

Insti

Instj

Instk

Instl

Insth ID ALU

ID

IFPC+8

IFtarget

MEM

ID

IF

WB

killed

killed

ALU

ID

IF

ALU

ID

IF

WB

Insth is a branch

CS422: Spring 2018 Biswabandan Panda, CSE@IITK 6

Branch Prediction

 Idea: Predict the next fetch address (to be used in the next cycle)

 Requires three things to be predicted at fetch stage:

 Whether the fetched instruction is a branch

 (Conditional) branch direction

 Branch target address (if taken)

 Observation: Target address remains the same for a conditional
direct branch across dynamic instances

 Idea: Store the target address from previous instance and access it
with the PC

 Called Branch Target Buffer (BTB) or Branch Target Address Cache

CS422: Spring 2018 Biswabandan Panda, CSE@IITK 7

Fetch Stage with BTB and Direction Prediction

target address

Direction predictor (2-bit counters)

Cache of Target Addresses (BTB: Branch Target Buffer)

Program
Counter

PC + inst size

taken?

Next Fetch

Address

hit?

Address of the

current branch

Always taken CPI = [1 + (0.20*0.3) * 2] = 1.12 (70% of branches taken)

CS422: Spring 2018 Biswabandan Panda, CSE@IITK 8

Static Branch Prediction

 Always not-taken

 Simple to implement: no need for BTB, no direction prediction

 Low accuracy: ~30-40%

 Always taken

 No direction prediction

 Better accuracy: ~60-70%

 Backward branches (i.e. loop branches) are usually taken

 Backward taken, forward not taken (BTFN)

 Predict backward (loop) branches as taken, others not-taken

CS422: Spring 2018 Biswabandan Panda, CSE@IITK 9

Static Branch Prediction

 Profile-based

 Idea: Compiler determines likely direction for each branch using
profile run. Encodes that direction as a hint bit in the branch
instruction format.

+ Per branch prediction (more accurate than schemes in previous
slide)  accurate if profile is representative!

-- Requires hint bits in the branch instruction format

-- Accuracy depends on dynamic branch behavior:

TTTTTTTTTTNNNNNNNNNN  50% accuracy
TNTNTNTNTNTNTNTNTNTN  50% accuracy

-- Accuracy depends on the representativeness of profile input set

CS422: Spring 2018 Biswabandan Panda, CSE@IITK 10

Dynamic Branch Prediction

 Idea: Predict branches based on dynamic information (collected
at run-time)

 Advantages

+ Prediction based on history of the execution of branches

+ It can adapt to dynamic changes in branch behavior

+ No need for static profiling: input set representativeness problem
goes away

 Disadvantages

-- More complex (requires additional hardware)

CS422: Spring 2018 Biswabandan Panda, CSE@IITK 11

Last-Time Predictor
 Last time predictor

 Single bit per branch (stored in BTB)

 Indicates which direction branch went last time it executed

TTTTTTTTTTNNNNNNNNNN  90% accuracy

 Always mispredicts the last iteration and the first iteration of a
loop branch

 Accuracy for a loop with N iterations = (N-2)/N

+ Loop branches for loops with large number of iterations

-- Loop branches for loops will small number of iterations

TNTNTNTNTNTNTNTNTNTN  0% accuracy

Last-time predictor CPI = [1 + (0.20*0.15) * 2] = 1.06 (Assuming 85% accuracy)

CS422: Spring 2018 Biswabandan Panda, CSE@IITK 12

Last-Time

predict
taken

predict
not

taken

actually
not taken

actually
taken

actually
taken

actually
not taken

CS422: Spring 2018 Biswabandan Panda, CSE@IITK 13

Last-time

K bits of branch
instruction address

Index

Branch history
table of 2K entries,
1 bit per entry

Use this entry to
predict this branch:

0: predict not taken
1: predict taken

When branch direction resolved, go back into the table and
update entry: 0 if not taken, 1 if taken

CS422: Spring 2018 Biswabandan Panda, CSE@IITK 14

Example

0xDC08: for(i=0; i < 100000; i++)
{

0xDC44: if((i % 100) == 0)
tick();

0xDC50: if((i & 1) == 1)
odd();

}

T

N

CS422: Spring 2018 Biswabandan Panda, CSE@IITK 15

Example

DC08: TTTTTTTTTTT ... TTTTTTTTTTNTTTTTTTTT …

100,000 iterations

How often is branch outcome != previous outcome?

2 / 100,000

DC44: TTTTT ... TNTTTTT … TNTTTTT …

2 / 100

DC50: TNTNTNTNTNTNTNTNTNTNTNTNTNTNT …

2 / 2

99.998%

Prediction

Rate

98.0%

0.0%

CS422: Spring 2018 Biswabandan Panda, CSE@IITK 16

Change Predictor after 2 Mistakes

pred
taken

pred
taken

pred
!taken

pred
!taken

actually
taken

actually
taken actually

!taken

actually
!taken

actually
!taken

actually
!taken

actually
taken

actually
taken

“weakly
taken”

“strongly
taken”

“weakly
!taken”

“strongly
!taken”

CS422: Spring 2018 Biswabandan Panda, CSE@IITK 17

Is This Enough

• Control flow instructions (branches) are frequent
• 15-25% of all instructions

• Problem: Next fetch address after a control-flow
instruction is not determined after N cycles in a
pipelined processor

• N cycles: (minimum) branch resolution latency
• Stalling on a branch wastes instruction processing bandwidth

(i.e. reduces IPC)

• How do we keep the pipeline full after a branch?

• Problem: Need to determine the next fetch address
when the branch is fetched (to avoid a pipeline bubble)

CS422: Spring 2018 Biswabandan Panda, CSE@IITK 18

Is This Enough?

• Assume a pipeline with 20-cycle branch resolution latency

• How long does it take to fetch 100 instructions?
• Assume 1 out of 5 instructions is a branch

• 100% accuracy
• 100 cycles (all instructions fetched on the correct path)

• No wasted work

• 99% accuracy
• 100 (correct path) + 20 (wrong path) = 120 cycles

• 20% extra instructions fetched

• 98% accuracy
• 100 (correct path) + 20 * 2 (wrong path) = 140 cycles

• 40% extra instructions fetched

• 95% accuracy
• 100 (correct path) + 20 * 5 (wrong path) = 200 cycles

• 100% extra instructions fetched

CS422: Spring 2018 Biswabandan Panda, CSE@IITK 19

Who Cares ?

• 98%  99%

– Who cares?

– Actually, it’s 2% misprediction rate  1%

– That’s a halving of the number of mispredictions

• So what?

– Halving the miss rate doubles the number of useful instructions
that we can try to extract ILP from

– Piazaa + 2

CS422: Spring 2018 Biswabandan Panda, CSE@IITK 20

Local History & Global History

• Local Behavior

– What is the predicted direction of Branch A given the outcomes of
previous instances of Branch A?

• Global Behavior

– What is the predicted direction of Branch Z given the outcomes of all*
previous branches A, B, …, X and Y?

* number of previous branches tracked limited by the history length

CS422: Spring 2018 Biswabandan Panda, CSE@IITK 21

BTB (What about JALR ? Why 30-bit Tag?)

0b0110[...]01001000

2 state

bits

Branch

History Table

(BHT)target address

Branch Target Buffer (BTB)

PC + 4 + Loop

30-bit address tag

0b0110[...]0010

Address of branch instruction

Drawn
as fully associative

to focus
on the essentials.

In real designs, always
direct-mapped.

At EX stage,
update BTB/BHT,
kill instructions,

if necessary,

Branch instruction

BNEZ R1 Loop

“Taken” or“Not Taken”“Taken” Address

30 bits

=

=

=

=

“Hit”

4096
entries ...

CS422: Spring 2018 Biswabandan Panda, CSE@IITK 22

Two Level Global Branch Prediction [MICRO ‘91]

 First level: Global branch history register (N bits)

 The direction of last N branches

 Second level: Table of saturating counters for each history entry

 The direction the branch took the last time the same history was
seen

1 1 ….. 1 0

GHR

(global history register)

00 …. 00

00 …. 01

00 …. 10

11 …. 11

0 1

2 3

index

Pattern History Table (PHT)

previous one

• Table of saturating counters

GHR

CS422: Spring 2018 Biswabandan Panda, CSE@IITK 23

PHT

1 1 ….. 1 0

00 …. 00

00 …. 01

00 …. 10

11 …. 11

m bit

k bit

2m

CS422: Spring 2018 Biswabandan Panda, CSE@IITK 24

What about – NO GHR?

k bit

2p

(PC >> 2) & (2p -1)

Bimodal predictor: Good for biased branches

CS422: Spring 2018 Biswabandan Panda, CSE@IITK 25

GHR per Branch (Gain/Loss?)

1 1 ….. 1 0

00 …. 00

00 …. 01

00 …. 10

11 …. 11

m bit k bit

2m2p

(PC >> 2) & (2p -1)

How large: k ?

BHT PHT

Mostly K=2, m =12, how large m?

CS422: Spring 2018 Biswabandan Panda, CSE@IITK 26

Set of Branches – One Register

1 1 ….. 1 0

m bit

2p

(PC % 2p)

BHT

CS422: Spring 2018 Biswabandan Panda, CSE@IITK 27

What if One Branch -> One History -> One PHT ?

1 1 ….. 1 0

00 …. 00

00 …. 01

00 …. 10

11 …. 11

m bit k bit

2p

(PC >> 2) & (2p -1)

BHT PHT

2m

CS422: Spring 2018 Biswabandan Panda, CSE@IITK 28

GShare

1 1 ….. 1 0

00 …. 00

00 …. 01

00 …. 10

11 …. 11

m bit

k bit

2m

PC >>2 & 2m -1

For a given history and
for a given branch (PC)
counters are trained

CS422: Spring 2018 Biswabandan Panda, CSE@IITK 29

Y & P Classification [MICRO 91]

GBHR

GPHT

GAg
GPHT

PABHR

PAg (SAg?)

PAPHT
PABHR

PAp

• GAg: Global History Register, Global History Table
• PAg: Per-Address History Register, Global History Table
• PAp: Per-Address History Register, Per-Address History Table

