Lecture-9 (Branch Prediction) CS422-Spring 2018

Remember This

Welcome to Branch Prediction

If always PC+4?

When a branch resolves

- branch target (Inst_k) is fetched
- all instructions fetched since $inst_h$ (so called "wrong-path" instructions) must be flushed

Biswabandan Panda, CSE@IITK

Flush on a Mispred.

Inst_h is a branch

Biswabandan Panda, CSE@IITK

Branch Prediction

- Idea: Predict the next fetch address (to be used in the next cycle)
- Requires three things to be predicted at fetch stage:
 - Whether the fetched instruction is a branch
 - Conditional) branch direction
 - Branch target address (if taken)
- Observation: Target address remains the same for a conditional direct branch across dynamic instances
 - Idea: Store the target address from previous instance and access it with the PC
 - Called Branch Target Buffer (BTB) or Branch Target Address Cache

Fetch Stage with BTB and Direction Prediction

Direction predictor (2-bit counters)

Cache of Target Addresses (BTB: Branch Target Buffer)

Always taken CPI = [1 + (0.20*0.3) * 2] = 1.12 (70% of branches taken)

Biswabandan Panda, CSE@IITK

Static Branch Prediction

Always not-taken

- Simple to implement: no need for BTB, no direction prediction
- □ Low accuracy: ~30-40%

Always taken

- No direction prediction
- □ Better accuracy: ~60-70%
 - Backward branches (i.e. loop branches) are usually taken
- Backward taken, forward not taken (BTFN)
 - Predict backward (loop) branches as taken, others not-taken

Static Branch Prediction

Profile-based

Idea: Compiler determines likely direction for each branch using profile run. Encodes that direction as a hint bit in the branch instruction format.

- + Per branch prediction (more accurate than schemes in previous slide) \rightarrow accurate if profile is representative!
- -- Requires hint bits in the branch instruction format
- -- Accuracy depends on dynamic branch behavior:

TTTTTTTTTNNNNNNNN \rightarrow 50% accuracy TNTNTNTNTNTNTNTNTNTN \rightarrow 50% accuracy

-- Accuracy depends on the representativeness of profile input set

Dynamic Branch Prediction

 Idea: Predict branches based on dynamic information (collected at run-time)

- Advantages
 - + Prediction based on history of the execution of branches
 - + It can adapt to dynamic changes in branch behavior
 - + No need for static profiling: input set representativeness problem goes away
- Disadvantages
 - -- More complex (requires additional hardware)

Last-Time Predictor

Last time predictor

Single bit per branch (stored in BTB)

□ Indicates which direction branch went last time it executed TTTTTTTTTNNNNNNNN → 90% accuracy

- Always mispredicts the last iteration and the first iteration of a loop branch
 - Accuracy for a loop with N iterations = (N-2)/N

```
Last-time predictor CPI = [1 + (0.20*0.15) * 2] = 1.06 (Assuming 85% accuracy)
```

Last-Time

Last-time

When branch direction resolved, go back into the table and update entry: 0 if not taken, 1 if taken

Example

Example

Change Predictor after 2 Mistakes

Is This Enough

- Control flow instructions (branches) are frequent
 - 15-25% of all instructions
- Problem: Next fetch address after a control-flow instruction is not determined after N cycles in a pipelined processor
 - N cycles: (minimum) branch resolution latency
 - Stalling on a branch wastes instruction processing bandwidth (i.e. reduces IPC)
- How do we keep the pipeline full after a branch?
- Problem: Need to determine the **next fetch address** when the branch is fetched (to avoid a pipeline bubble)

Is This Enough?

• Assume a pipeline with 20-cycle branch resolution latency

- How long does it take to fetch 100 instructions?
 - Assume 1 out of 5 instructions is a branch
 - 100% accuracy
 - 100 cycles (all instructions fetched on the correct path)
 - No wasted work
 - 99% accuracy
 - 100 (correct path) + 20 (wrong path) = 120 cycles
 - 20% extra instructions fetched
 - 98% accuracy
 - 100 (correct path) + 20 * 2 (wrong path) = 140 cycles
 - 40% extra instructions fetched
 - 95% accuracy
 - 100 (correct path) + 20 * 5 (wrong path) = 200 cycles
 - 100% extra instructions fetched

Who Cares ?

- 98% → 99%
 - Who cares?
 - Actually, it's 2% misprediction rate \rightarrow 1%
 - That's a halving of the number of mispredictions
- So what?
 - Halving the miss rate doubles the number of useful instructions that we can try to extract ILP from
 - Piazaa + 2

Local History & Global History

- Local Behavior
 - What is the predicted direction of Branch A given the outcomes of previous instances of Branch A?

- Global Behavior
 - What is the predicted direction of Branch Z given the outcomes of all* previous branches A, B, ..., X and Y?

* number of previous branches tracked limited by the history length

Two Level Global Branch Prediction [MICRO '91]

- First level: Global branch history register (N bits)
 - The direction of last N branches
- Second level: Table of saturating counters for each history entry
 - The direction the branch took the last time the same history was seen

Pattern History Table (PHT)

PHT

• Table of saturating counters

What about – NO GHR?

Biswabandan Panda, CSE@IITK

GHR per Branch (Gain/Loss?)

 $(PC >> 2) \& (2^p - 1)$

How large: k? Mostly K=2, m =12, how large m?

Set of Branches – One Register

What if One Branch -> One History -> One PHT ?

 $(PC >> 2) \& (2^{p}-1)$

GShare

For a given history and for a given branch (PC) counters are trained

Y & P Classification [MICRO 91]

- GAg: Global History Register, Global History Table
- PAg: Per-Address History Register, Global History Table
- PAp: Per-Address History Register, Per-Address History Table