Lecture-9 (Branch Prediction)
CS422-Spring 2018

Biswa@CSE-IITK

Remember This

IF (Fetch)

< 0x4

»LR >[R

<‘7"—u
- [-

Dath

Addxz

> _ 4D Q

Saﬁple Program
(ISA w/o branch
delay slot)

I1: BEQ R4,R3,25
I2: AND R6,R5,R4
I3: SUB R1,R9,RS8

CS422: Spring 2018

We avoiding stalling by (1) adding a branch delay slot, and (2)

adding comparator to ID stage
If we add more early stages, we must stall.

Time: tl t2 t3 t4 t5 t6 t7 t8

Inst - EX stage

Il: ¥ i? @ MEM ~ WB computes if

:@ IF branch is

Im . . taken
. If branch is taken, these

ig instructions MUST NOT
' complete!
Biswabandan Panda, CSE@IITK 2

Welcome to Branch Prediction

IF(Fetch) 7D (Decode) T EX ALY TTTTMEM T WB”
i~ 0x4

(IR »LR >R >IR|—

We update the PC based on the outputs of the

I e
& - branch predictor. If it is perfect, pipe stays full!

I NN el Dynamic Predictors: a cache of branch history
A — Time: t1 t2 t3 t4 t5 t6 t7 t8
Predictor Inst — — EX stage

MEM WB computes

Predlctlons
‘ if branch is
A J-cnosnttrr.ao l 9 . t 3 k en
If we predicted incorrectly,
Take If taken
or Not where to? these instructions MUST NOT

Taken? What PC-?
complete!
CS422: Spring 2018 Biswabandan Panda, CSE@IITK

If always PC+47?

Inst, [IF, D ALU || MEM
Inst. IF.... ||ID ALU
Instj IF.... ||!D
Inst, IF......
Inst,

When a branch resolves
- branch target (Inst,) is fetched

- all instructions fetched since inst, (so called “wrong-path”
instructions) must be flushed

CS422: Spring 2018 Biswabandan Panda, CSE@IITK 4

CS422: Spring 2018

Inst,
Inst,
Inst,
Inst,
Inst,

Flush on a Mispred.

tO tl t2 t3 t4 t5
IF. |[ID [|ALU [|MEM]|[WB
IF... [[ID & kille
IF,.. : killed
IF... |[ID [|ALU |[wB
IF ID ||ALU
IF ID
IF

Inst, is a branch

Biswabandan Panda, CSE@IITK

Branch Prediction

= |dea: Predict the next fetch address (to be used in the next cycle)

m Requires three things to be predicted at fetch stage:
Whether the fetched instruction is a branch
(Conditional) branch direction
Branch target address (if taken)

= Observation: Target address remains the same for a conditional
direct branch across dynamic instances

Idea: Store the target address from previous instance and access it
with the PC

Called Branch Target Buffer (BTB) or Branch Target Address Cache

CS422: Spring 2018 Biswabandan Panda, CSE@IITK

Fetch Stage with BTB and Direction Prediction

3

‘ Program
_ Counter

>

Address of the
current branch

taken?
——

Direction predictor (2-bit counters)

\ A 4

W, l
PC + inst size ——» Next Fetch
Address

A 4

\

target address

Cache of Target Addresses (BTB: Branch Target Buffer)

Always taken CP1=[1+ (0.20%0.3) * 2] =1.12 (70% of branches taken)

CS422: Spring 2018

Biswabandan Panda, CSE@IITK

Static Branch Prediction

= Always not-taken
Simple to implement: no need for BTB, no direction prediction
Low accuracy: ~30-40%

= Always taken
No direction prediction

Better accuracy: ~60-70%
m Backward branches (i.e. loop branches) are usually taken

= Backward taken, forward not taken (BTFN)

Predict backward (loop) branches as taken, others not-taken

CS422: Spring 2018 Biswabandan Panda, CSE@IITK

Static Branch Prediction

m Profile-based

Idea: Compiler determines likely direction for each branch using
profile run. Encodes that direction as a hint bit in the branch
instruction format.

+ Per branch prediction (more accurate than schemes in previous
slide) = accurate if profile is representative!

-- Requires hint bits in the branch instruction format
-- Accuracy depends on dynamic branch behavior:

ITTTTTTTTTNNNNNNNNNN - 50% accuracy
TNTNTNTNTNTNTNTNTNTN = 50% accuracy

-- Accuracy depends on the representativeness of profile input set

CS422: Spring 2018 Biswabandan Panda, CSE@IITK

Dynamic Branch Prediction

= |dea: Predict branches based on dynamic information (collected
at run-time)

= Advantages
+ Prediction based on history of the execution of branches
+ It can adapt to dynamic changes in branch behavior

+ No need for static profiling: input set representativeness problem
goes away

Disadvantages
-- More complex (requires additional hardware)

CS422: Spring 2018 Biswabandan Panda, CSE@IITK

10

Last-Time Predictor

m Last time predictor
Single bit per branch (stored in BTB)
Indicates which direction branch went last time it executed
TTTTTTTTTTNNNNNNNNNN = 90% accuracy

= Always mispredicts the last iteration and the first iteration of a
loop branch

Accuracy for a loop with N iterations = (N-2)/N

+ Loop branches for loops with large number of iterations
-- Loop branches for loops will small number of iterations
TNTNTNTNTNTNTNTNTNTN = 0% accuracy

Last-time predictor CPI=[1+ *2] =1.06 (Assuming 85% accuracy)

CS422: Spring 2018 Biswabandan Panda, CSE@IITK

11

Last-Time

actually
not taken

CS422: Spring 2018

actually
taken
predict predict
not taken
taken
actually
not taken

Biswabandan Panda, CSE@IITK

actually
taken

12

Last-time

Branch history
table of 2X entries,
1 bit per entry

K bits of branch
instruction address

Index |- _ Use this entry to
predict this branch:

0: predict not taken
1: predict taken

When branch direction resolved, go back into the table and
update entry: 0 if not taken, 1 if taken

CS422: Spring 2018 Biswabandan Panda, CSE@IITK

13

Example

0xDCO8:

0xDC44:

0xDC50:

CS422: Spring 2018

for(i=0; i< 100000; i++)
{
if((1% 100)==0)
ick();

if((i & 1) == 1)
odd();

Biswabandan Panda, CSE@IITK

14

Example

DCO8: P

HERER [TTTTTTTTTINTTTTTTTTT

P
<«

DC44.: TTTTT

100,000 iterations

How often is branch outcome != previous outcome?

2 /100,000
F

v

TINTTTTT ... TNTTTTT ...

P »d
<« L}

v

2 /100

DC50: TNTNTNTNTNTNTNTNTNTNTNTNTNTNT

CS422: Spring 2018

212

<

Biswabandan Panda, CSE@IITK

99.998%
Prediction
Rate

15

Change Predictor after 2 Mistakes

actually actually “weakly
taken ltaken taken”
“strongly ~ A\ £ pred pred \
taken” taken taken
actually
actually taken actually
taken ltaken
actually “strongly
ltaken Itaken”
“weakly actually
Itaken” actually Itaken

taken

CS422: Spring 2018 Biswabandan Panda, CSE@IITK

16

s This Enough

e Control flow instructions (branches) are frequent
* 15-25% of all instructions

* Problem: Next fetch address after a control-flow
instruction is not determined after N cycles in a
pipelined processor

* N cycles: (minimum) branch resolution latency

 Stalling on a branch wastes instruction processing bandwidth
(i.e. reduces IPC)

* How do we keep the pipeline full after a branch?

* Problem: Need to determine the next fetch address
when the branch is fetched (to avoid a pipeline bubble)

CS422: Spring 2018 Biswabandan Panda, CSE@IITK

17

s This Enough?

* Assume a pipeline with 20-cycle branch resolution latency

* How long does it take to fetch 100 instructions?
e Assume 1 out of 5 instructions is a branch
100% accuracy

e 100 cycles (all instructions fetched on the correct path)

 No wasted work

99% accurac
Y
* 100 (correct path) + 20 (wrong path) = 120 cycles

e 20% extra instructions fetched

98% accuracy
e 100 (correct path) + 20 * 2 (wrong path) = 140 cycles
* 40% extra instructions fetched

95% accuracy

e 100 (correct path) + 20 * 5 (wrong path) = 200 cycles
* 100% extra instructions fetched

CS422: Spring 2018 Biswabandan Panda, CSE@IITK

18

Who Cares ?

e 98% =2 99%

- Who cares?

— Actually, it's 2% misprediction rate 2 1%

— That’s a halving of the number of mispredictions
e So what?

— Halving the miss rate doubles the number of useful instructions
that we can try to extract ILP from

— Piazaa + 2

CS422: Spring 2018 Biswabandan Panda, CSE@IITK 19

Local History & Global History

e Local Behavior

— What is the predicted direction of Branch A given the outcomes of
previous instances of Branch A?

e Global Behavior

— What is the predicted direction of Branch Z given the outcomes of all*
previous branches A, B, ..., Xand Y?

* number of previous branches tracked limited by the history length

CS422: Spring 2018 Biswabandan Panda, CSE@IITK

20

BTB (What about JALR ? Why 30-bit Tag?)

Address of branch instruction Branch instruction
Ob0110[...]01001000 BNEZ R1 Loop
30 bit
4096 Branch Target Buffer (BTB) History Table as fully associative
entries ... 30.pit address tag target address (BHT) t6 Focus
®<— on the essentials.
®_ In real designs, always
direct-mapped.
0b0110[...]0010 | PC + 4 + Loop 2 state
@ - bits At EX stage,
update BTB/BHT,
= - — kill instructions,
it Taken” Address ! “Taken”lor“Not Taken” if necessary,

CS422: Spring 2018 Biswabandan Panda, CSE@IITK 21

Two Level Global Branch Prediction [MICRO ‘91]

= First level: Global branch history register (N bits)
o The direction of last N branches
= Second level: Table of saturating counters for each history entry
o The direction the branch took the last time the same history was

seen
Pattern History Table (PHT)

00....00

11.... 00 ... 01
2 3

previous on 00....10

GHR |

(global history register) Index " a

11 ... 11

CS422: Spring 2018 Biswabandan Panda, CSE@IITK

22

PHT

* Table of saturating counters
k bit

A
v

0000
.. 01

11..... 1 00....10
GHR ! .

A
v
o
o

1M1 1

CS422: Spring 2018 Biswabandan Panda, CSE@IITK

23

What about — NO GHR?

k bit

A
v

\ 4

(PC>>2) & (2P-1)
2p

Bimodal predictor: Good for biased branches

CS422: Spring 2018 Biswabandan Panda, CSE@IITK 24

GHR per Branch (Gain/Loss?)

m bit

A

2P 11....

BHT

(PC >>2) & (2P-1)

How large: k ?

CS422: Spring 2018

00
— 00
00

11 ...

00
01
10

11

k bit

Zm

PHT

Mostly K=2, m =12, how large m?

Biswabandan Panda, CSE@IITK

25

Set of Branches — One Register

2p

m bit

(PC % 2P)

CS422: Spring 2018

BHT

Biswabandan Panda, CSE@IITK

26

What if One Branch -> One History -> One PHT ?

b kbit
' 00...00 | 14
—00...01 |
00...10 |
2 11 ... 1! -
1. 11
| " BHT PHT

(PC >>2) & (2P-1)

CS422: Spring 2018 Biswabandan Panda, CSE@IITK

A
v

PC >>2 & 2m-1

1M ...

CS422: Spring 2018

00
11... 1 00
— 00

00
01
10

11

k bit

A

v

2m

Biswabandan Panda, CSE@IITK

For a given history and
for a given branch (PC)
counters are trained

28

Y & P Classification [MICRO 91]

munill

GBHR

GPHT

GAg

* PAg: Per-Address History Register, Global History Table

PABHR

GPHT

PABHR

PAg (SAg?)

* GAg: Global History Register, Global History Table

* PAp: Per-Address History Register, Per-Address History Table

CS422: Spring 2018

Biswabandan Panda, CSE@IITK

N

PAp

PAPHT

