
Lecture-7 (Branches)
CS422-Spring 2018

Biswa@CSE-IITK

CS422: Spring 2018 Biswabandan Panda, CSE@IITK 2

Revisiting Hazard Detection

Conditional

• the target address is close to the current PC location

• branch distance from the incremented PC value fits into the
immediate field

• for example: loops, if statements

Unconditional (jumps)

• transfers of control

• the target address is far away from the current PC location

• for example: subroutine calls

CS422: Spring 2018 Biswabandan Panda, CSE@IITK 3

Branches

CS422: Spring 2018 Biswabandan Panda, CSE@IITK 4

Branches

Syntax: BEQ $1, $2, 12

Action: If ($1 != $2), PC = PC + 4

Zero-extend or sign-extend immediate field?

Action: If ($1 == $2), PC = PC + 4 + 48

Immediate field codes # words, not # bytes.
Why is this encoding a good idea?

Why is this extension method a good idea?

Increases branch
range to 128 KB.

Supports forward and backward branches.

Sign-extend.

CS422: Spring 2018 Biswabandan Panda, CSE@IITK 5

Datapath

Clk

32
Addr Data

Instr

Mem

32
D

PC

Q

32

32

+

32

32

0x4

Syntax: BEQ $1, $2, 12
Action: If ($1 != $2), PC = PC + 4
Action: If ($1 == $2), PC = PC + 4 + 48

PCSrc

32

+

32

Ex

te

nd

CS422: Spring 2018 Biswabandan Panda, CSE@IITK 6

Control Hazard Alternatives

#1: Stall until branch direction is clear (in MIPS: sll 0 0)

#2: Predict Branch Not Taken

–Execute successor instructions in sequence

–“Squash” instructions in pipeline if branch actually taken

–47% MIPS branches not taken on average

–PC+4 already calculated, so use it to get next instruction

#3: Predict Branch Taken

–53% MIPS branches taken on average

•MIPS still incurs 1 cycle branch penalty

CS422: Spring 2018 Biswabandan Panda, CSE@IITK 7

Delayed Branch

#4: Delayed Branch

–Define branch to take place AFTER a following instruction

branch instruction
sequential successor1

sequential successor2

........
sequential successorn

branch target if taken

–1 slot delay allows proper decision and branch target address in 5 stage
pipeline

–MIPS uses this

Branch delay of length n

CS422: Spring 2018 Biswabandan Panda, CSE@IITK 8

Scheduling Branch Delay Slots

• A is the best choice, fills delay slot & reduces instruction count (IC)

• In B, the sub instruction may need to be copied, increasing IC

• In B and C, must be okay to execute sub when branch fails

add $1,$2,$3

if $2=0 then

delay slot

A. From before branch B. From branch target C. From fall through

add $1,$2,$3

if $1=0 then

delay slot

add $1,$2,$3

if $1=0 then

delay slot

sub $4,$5,$6

sub $4,$5,$6

becomes becomes becomes

if $2=0 then

add $1,$2,$3
add $1,$2,$3

if $1=0 then

sub $4,$5,$6

add $1,$2,$3

if $1=0 then

sub $4,$5,$6

CS422: Spring 2018 Biswabandan Panda, CSE@IITK 9

Confused?

CS422: Spring 2018 Biswabandan Panda, CSE@IITK 10

How to Handle Control Dependences?

 Critical to keep the pipeline full with correct sequence of dynamic
instructions.

 Potential solutions if the instruction is a control-flow instruction:

 Stall the pipeline until we know the next fetch address

 Guess the next fetch address (branch prediction)

 Employ delayed branching (branch delay slot)

 Do something else (fine-grained multithreading)

 Eliminate control-flow instructions (predicated execution)

 Fetch from both possible paths (if you know the addresses of both possible
paths) (multipath execution)

CS422: Spring 2018 Biswabandan Panda, CSE@IITK 11

Guessing Next PC = PC+4

 Always predict the next sequential instruction is the next instruction to be
executed

 This is a form of next fetch address prediction and branch prediction

 How can you make this more effective?

 Idea: Maximize the chances that the next sequential instruction is the next
instruction to be executed

 Software: Lay out the control flow graph such that the “likely next
instruction” is on the not-taken path of a branch

 Hardware: ??? (how can you do this in hardware…)

CS422: Spring 2018 Biswabandan Panda, CSE@IITK 12

Impact of Stall on Performance

 Each stall cycle corresponds to one lost cycle in which no instruction can be
completed

 For a program with N instructions and S stall cycles,

 Average CPI=(N+S)/N

 S depends on

 frequency of RAW dependences

 exact distance between the dependent instructions

 distance between dependences

suppose i1,i2 and i3 all depend on i0, once i1’s dependence is resolved,
i2 and i3 must be okay too

CS422: Spring 2018 Biswabandan Panda, CSE@IITK 13

“Iron Law” of Processor Performance

▪ Instructions per program depends on source code, compiler technology, and
ISA

▪ Cycles per instructions (CPI) depends on ISA and µarchitecture

▪ Time per cycle depends upon the µarchitecture and base technology

Time = Instructions * Cycles * Time

Program Program Instruction Cycle

CS422: Spring 2018 Biswabandan Panda, CSE@IITK 14

Problems with Pipelining
• Exception: An unusual event happens to an instruction during its execution

–Examples: divide by zero, undefined opcode

• Interrupt: Hardware signal to switch the processor to a new instruction stream
–Example: a sound card interrupts when it needs more audio output samples

(an audio “click” happens if it is left waiting)

• Problem: It must appear that the exception or interrupt must appear between 2
instructions (Ii and Ii+1)
–The effect of all instructions up to and including Ii is totaling complete
– No effect of any instruction after Ii can take place

• The interrupt (exception) handler either aborts program or restarts at
instruction Ii+1

CS422: Spring 2018 Biswabandan Panda, CSE@IITK 15

World of Faults, Traps, interrupts, aborts (Piazza +1)

