
Lecture-7 (Branches)
CS422-Spring 2018

Biswa@CSE-IITK

CS422: Spring 2018 Biswabandan Panda, CSE@IITK 2

Revisiting Hazard Detection

Conditional

• the target address is close to the current PC location

• branch distance from the incremented PC value fits into the
immediate field

• for example: loops, if statements

Unconditional (jumps)

• transfers of control

• the target address is far away from the current PC location

• for example: subroutine calls

CS422: Spring 2018 Biswabandan Panda, CSE@IITK 3

Branches

CS422: Spring 2018 Biswabandan Panda, CSE@IITK 4

Branches

Syntax: BEQ $1, $2, 12

Action: If ($1 != $2), PC = PC + 4

Zero-extend or sign-extend immediate field?

Action: If ($1 == $2), PC = PC + 4 + 48

Immediate field codes # words, not # bytes.
Why is this encoding a good idea?

Why is this extension method a good idea?

Increases branch
range to 128 KB.

Supports forward and backward branches.

Sign-extend.

CS422: Spring 2018 Biswabandan Panda, CSE@IITK 5

Datapath

Clk

32
Addr Data

Instr

Mem

32
D

PC

Q

32

32

+

32

32

0x4

Syntax: BEQ $1, $2, 12
Action: If ($1 != $2), PC = PC + 4
Action: If ($1 == $2), PC = PC + 4 + 48

PCSrc

32

+

32

Ex

te

nd

CS422: Spring 2018 Biswabandan Panda, CSE@IITK 6

Control Hazard Alternatives

#1: Stall until branch direction is clear (in MIPS: sll 0 0)

#2: Predict Branch Not Taken

–Execute successor instructions in sequence

–“Squash” instructions in pipeline if branch actually taken

–47% MIPS branches not taken on average

–PC+4 already calculated, so use it to get next instruction

#3: Predict Branch Taken

–53% MIPS branches taken on average

•MIPS still incurs 1 cycle branch penalty

CS422: Spring 2018 Biswabandan Panda, CSE@IITK 7

Delayed Branch

#4: Delayed Branch

–Define branch to take place AFTER a following instruction

branch instruction
sequential successor1

sequential successor2

........
sequential successorn

branch target if taken

–1 slot delay allows proper decision and branch target address in 5 stage
pipeline

–MIPS uses this

Branch delay of length n

CS422: Spring 2018 Biswabandan Panda, CSE@IITK 8

Scheduling Branch Delay Slots

• A is the best choice, fills delay slot & reduces instruction count (IC)

• In B, the sub instruction may need to be copied, increasing IC

• In B and C, must be okay to execute sub when branch fails

add $1,$2,$3

if $2=0 then

delay slot

A. From before branch B. From branch target C. From fall through

add $1,$2,$3

if $1=0 then

delay slot

add $1,$2,$3

if $1=0 then

delay slot

sub $4,$5,$6

sub $4,$5,$6

becomes becomes becomes

if $2=0 then

add $1,$2,$3
add $1,$2,$3

if $1=0 then

sub $4,$5,$6

add $1,$2,$3

if $1=0 then

sub $4,$5,$6

CS422: Spring 2018 Biswabandan Panda, CSE@IITK 9

Confused?

CS422: Spring 2018 Biswabandan Panda, CSE@IITK 10

How to Handle Control Dependences?

 Critical to keep the pipeline full with correct sequence of dynamic
instructions.

 Potential solutions if the instruction is a control-flow instruction:

 Stall the pipeline until we know the next fetch address

 Guess the next fetch address (branch prediction)

 Employ delayed branching (branch delay slot)

 Do something else (fine-grained multithreading)

 Eliminate control-flow instructions (predicated execution)

 Fetch from both possible paths (if you know the addresses of both possible
paths) (multipath execution)

CS422: Spring 2018 Biswabandan Panda, CSE@IITK 11

Guessing Next PC = PC+4

 Always predict the next sequential instruction is the next instruction to be
executed

 This is a form of next fetch address prediction and branch prediction

 How can you make this more effective?

 Idea: Maximize the chances that the next sequential instruction is the next
instruction to be executed

 Software: Lay out the control flow graph such that the “likely next
instruction” is on the not-taken path of a branch

 Hardware: ??? (how can you do this in hardware…)

CS422: Spring 2018 Biswabandan Panda, CSE@IITK 12

Impact of Stall on Performance

 Each stall cycle corresponds to one lost cycle in which no instruction can be
completed

 For a program with N instructions and S stall cycles,

 Average CPI=(N+S)/N

 S depends on

 frequency of RAW dependences

 exact distance between the dependent instructions

 distance between dependences

suppose i1,i2 and i3 all depend on i0, once i1’s dependence is resolved,
i2 and i3 must be okay too

CS422: Spring 2018 Biswabandan Panda, CSE@IITK 13

“Iron Law” of Processor Performance

▪ Instructions per program depends on source code, compiler technology, and
ISA

▪ Cycles per instructions (CPI) depends on ISA and µarchitecture

▪ Time per cycle depends upon the µarchitecture and base technology

Time = Instructions * Cycles * Time

Program Program Instruction Cycle

CS422: Spring 2018 Biswabandan Panda, CSE@IITK 14

Problems with Pipelining
• Exception: An unusual event happens to an instruction during its execution

–Examples: divide by zero, undefined opcode

• Interrupt: Hardware signal to switch the processor to a new instruction stream
–Example: a sound card interrupts when it needs more audio output samples

(an audio “click” happens if it is left waiting)

• Problem: It must appear that the exception or interrupt must appear between 2
instructions (Ii and Ii+1)
–The effect of all instructions up to and including Ii is totaling complete
– No effect of any instruction after Ii can take place

• The interrupt (exception) handler either aborts program or restarts at
instruction Ii+1

CS422: Spring 2018 Biswabandan Panda, CSE@IITK 15

World of Faults, Traps, interrupts, aborts (Piazza +1)

