Lecture-7 (Branches)
CS422-Spring 2018

Biswa@CSE-IITK

Revisiting Hazard Detection

addr3, rl, r2
sub r5, r3, r5
orré, r3, rd
add r6,r3, r8 -l:n
°l .S
r 3
I
—
PC ¥
3
L
l—
P
—

CS422: Spring 2018

\ A /

rRd A
D

B
Ra Rb

Rd

oP\ ||Rd
OP

EX/MEM MEM/WB

Biswabandan Panda, CSE@IITK

How to detect? Logic in ID stage:

stall = (IF/ID.rA != 0 && (IF/ID.rA == ID/EX.rD ||
IF/ID.rA == EX/M.rD | |
IF/ID.rA == M/WB.rD))

|| (same for rB)

Branches

Conditional
* the target address is close to the current PC location

 branch distance from the incremented PC value fits into the
immediate field

* for example: loops, if statements

Unconditional (jumps)
* transfers of control
* the target address is far away from the current PC location

* for example: subroutine calls

CS422: Spring 2018 Biswabandan Panda, CSE@IITK

Branches

| op | r's | rt immediate

Syntax: BEQ $1, $2, 12

Action: If ($1!=$2),PC=PC + 4
Action: If ($1 ==$2),PC=PC+ 4 + 48

Immediate field codes # words, not # bytes.

1 branch
Why is this encoding a good idea? ncreases branc

range to 128 KB.

Zero-extend or sign-extend immediate field? Sign-extend.

Why is this extension method a good idea?
Supports forward and backward branches.

CS422: Spring 2018 Biswabandan Panda, CSE@IITK

Datapath

Syntax: BEQ $1, $2, 12

Action: If ($1 != $2), PC = PC + 4
Action: If ($1 == S2), PC = PC + 4 + 48
Instr
\ e 32\\ Mem
_— D 0 N ddr Dataf——
32
7 L&
PCSrc CJ]{
I's rt immediate

CS422: Spring 2018 Biswabandan Panda, CSE@IITK

Control Hazard Alternatives
#1: Stall until branch direction is clear (in MIPS: sl1 0 0)

#2: Predict Branch Not Taken
—EXxecute successor instructions in sequence
—“Squash” instructions in pipeline if branch actually taken
—47% MIPS branches not taken on average
—PC+4 already calculated, so use it to get next instruction

#3: Predict Branch Taken
—53% MIPS branches taken on average
* MIPS still incurs 1 cycle branch penalty

CS422: Spring 2018 Biswabandan Panda, CSE@IITK

Delayed Branch

#4: Delayed Branch
—Define branch to take place AFTER a following instruction

branch instruction
sequential successor,

sequential successor, \B - delay of leneth
________ ~___— Branch delay of length n

sequential successor,
branch target if taken

—1 slot delay allows proper decision and branch target address in 5 stage
pipeline
—MIPS uses this

CS422: Spring 2018 Biswabandan Panda, CSE@IITK

Scheduling Branch Delay Slots

A. From before branch B. From branch target C. From fall through
add $l,$2,$3 sub $4,$5,$64_ add $1,$2,$3
if $2=0 then — if $1=0 then —
delay slot delay slot

add $1,$2,8$3
if $1=0 then —

D delay slot sub $4,55,56%—
becomes becomes | becomes
add $1,$2,83
if $2=0 then — — if $1=0 then —
add $1,%$2,%$3 sub $4,$5,%6

add S$1,$2,S3
if $1=0 then

D sub $4,$5,$6 *

* Aisthe best choice, fills delay slot & reduces instruction count (IC)
* In B, the sub instruction may need to be copied, increasing IC

* In B and C, must be okay to execute sub when branch fails
CS422: Spring 2018 Biswabandan Panda, CSE@IITK

Confused?

s
olse
oLt

CS422: Spring 2018

Lo

Biswabandan Panda, CSE@IITK

How to Handle Control Dependences?

m Critical to keep the pipeline full with correct sequence of dynamic
instructions.

= Potential solutions if the instruction is a control-flow instruction:

m Stall the pipeline until we know the next fetch address

= Guess the next fetch address (branch prediction)

= Employ delayed branching (branch delay slot)

= Do something else (fine-grained multithreading)

= Eliminate control-flow instructions (predicated execution)

= Fetch from both possible paths (if you know the addresses of both possible
paths) (multipath execution)

CS422: Spring 2018 Biswabandan Panda, CSE@IITK 10

Guessing Next PC = PC+4

m Always predict the next sequential instruction is the next instruction to be
executed

m This is a form of next fetch address prediction and branch prediction
= How can you make this more effective?

= Idea: Maximize the chances that the next sequential instruction is the next
instruction to be executed

Software: Lay out the control flow graph such that the “likely next
instruction” is on the not-taken path of a branch

Hardware: 7?? (how can you do this in hardware...)

CS422: Spring 2018 Biswabandan Panda, CSE@IITK 11

Impact of Stall on Performance

= Each stall cycle corresponds to one lost cycle in which no instruction can be
completed

= For a program with N instructions and S stall cycles,
m Average CPI=(N+S)/N
= S depends on
frequency of RAW dependences
exact distance between the dependent instructions
distance between dependences

suppose i,i, andi, all depend on iy, once i, s dependence is resolved,
i, and i; must be okay too

CS422: Spring 2018 Biswabandan Panda, CSE@IITK 12

“Iron Law” of Processor Performance

Time Instructions * Cycles * Time

Program Program Instruction Cycle

* [nstructions per program depends on source code, compiler technology, and
ISA

» Cycles per instructions (CPI) depends on ISA and parchitecture
" Time per cycle depends upon the parchitecture and base technology

Microarchitecture CPI cycle time
Microcoded >1 short
Single-cycle unpipelined 1 long
Pipelined 1 short

CS422: Spring 2018 Biswabandan Panda, CSE@IITK

Problems with Pipelining

* Exception: An unusual event happens to an instruction during its execution
—Examples: divide by zero, undefined opcode

* Interrupt: Hardware signal to switch the processor to a new instruction stream

—Example: a sound card interrupts when it needs more audio output samples
(an audio “click” happens if it is left waiting)

* Problem: It must appear that the exception or interrupt must appear between 2
instructions (I, and [,)

—The effect of all instructions up to and including I. is totaling complete
— No effect of any instruction after I. can take place

* The interrupt (exception) handler either aborts program or restarts at
instruction I,

CS422: Spring 2018 Biswabandan Panda, CSE@IITK 14

World of Faults, Traps, interrupts, aborts (Piazza +1)

CS422: Spring 2018 Biswabandan Panda, CSE@IITK

15

