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Hazards

 Limits to pipelining: Hazards prevent next instruction from executing during its
designated clock cycle

—Structural hazards: HW cannot support this combination of instructions
(single person to fold and put clothes away)

—Data hazards: Instruction depends on result of prior instruction still in the
pipeline (missing sock)

—Control hazards: Caused by delay between the fetching of instructions and
decisions about changes in control flow (branches and jumps).
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One Memory Port/Structural Hazards
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Why Separate Data and Instruction Caches?
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Data Hazards

Time (clock cycles)
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RAW

* Read After Write (RAW)
Instr tries to read operand before Instr; writes it

<::I: add rl,r2,r3
J: sub r4,rl,r3

* Caused by a “Dependence” (in compiler nomenclature). This
hazard results from an actual need for communication.
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WAR

* Write After Read (WAR)
Instr; writes operand before Instrreads it

< ' [: subr4,rl,r3
J:add r1,r2,r3

K: mul r6,r1,r7

 Called an “anti-dependence” by compiler writers.
This results from reuse of the name “r1".

* Can’'t happen in MIPS 5 stage pipeline because:
— All instructions take 5 stages, and
— Reads are always in stage 2, and
— Writes are always in stage 5
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WAW

* Write After Write (WAW)
Instr; writes operand before Instr; writes it.

C [: subrl,r4,r3

J:add r1,r2,r3

K: mulr6,r1,r7

 Called an “output dependence” by compiler writers
This also results from the reuse of name “r1”.

* Can't happen in MIPS 5 stage pipeline because:
— All instructions take 5 stages, and
— Writes are always in stage 5
* Will see WAR and WAW in more complicated pipes
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Data Forwarding
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Hardware Change
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Forwarding to Avoid LW-SW 7
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Even With Forwarding ?
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Control Hazard on Branches with 3-stage Stall
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What do you do with the 3 instructions in between?
How do you do it?

Where is the “commit”?
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Branches

Conditional
* the target address is close to the current PC location

 branch distance from the incremented PC value fits into the
immediate field

* for example: loops, if statements

Unconditional (jumps)
* transfers of control
* the target address is far away from the current PC location

* for example: subroutine calls
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Branches

| op | r's | rt immediate

Syntax: BEQ $1, $2, 12

Action: If ($1!=$2),PC=PC + 4
Action: If ($1 ==$2),PC=PC+ 4 + 48

Immediate field codes # words, not # bytes.

1 branch
Why is this encoding a good idea? ncreases branc

range to 128 KB.

Zero-extend or sign-extend immediate field? Sign-extend.

Why is this extension method a good idea?
Supports forward and backward branches.
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