Lecture-6 (Pipeline Hazards)
CS422-Spring 2018

Biswa@CSE-IITK

Hazards

 Limits to pipelining: Hazards prevent next instruction from executing during its
designated clock cycle

—Structural hazards: HW cannot support this combination of instructions
(single person to fold and put clothes away)

—Data hazards: Instruction depends on result of prior instruction still in the
pipeline (missing sock)

—Control hazards: Caused by delay between the fetching of instructions and
decisions about changes in control flow (branches and jumps).

CS422: Spring 2018 Biswabandan Panda, CSE@IITK 2

One Memory Port/Structural Hazards

Jd W0 S N

S 0 Q30

Time (clock cycles)

Load

Instr 1

Cycle 1

Ifetch

Cycle 2

Instr 2

Instr 3

CS422: Spring 2018

Instr 4

Ifetch

Cycle 3

& s

Cycle 4

Ifetch

Cycle 5

_.g

ALV

:,__
=
‘%

DMem ﬂ

i

Cycle 6

DMem

Ifetch

e

2

Biswabandan Panda, CSE@IITK

Cycle 7

DMem

Why Separate Data and Instruction Caches?

CS422: Spring 2018 Biswabandan Panda, CSE@IITK

Bubble

Time (clock cycles)

L oa d Ifetch

I +0 S N

Cycle 1 Cycle 2 Cycle 3

Cycle 4

DMem

11

InStr 1 Ifetch EI:[

Instr 2 | sreren

Stall

S 030

Instr 3

Bubble [

Cycle 5
L3

DMem

rrrrrrl.

Cycle 6 Cycle 7

-
)
:B

="

| Bubbley |
: \'\/U)’

]

DMem |— g
—
| Bubble Bubble

Ifetch

K

CS422: Spring 2018 Biswabandan Panda, CSE@IITK

|

Bubble

==

DMem ﬂ |—[9

Data Hazards

Time (clock cycles)

IF ID/RF EX MEM WB

I
add rl,r2,r3 e [B * el
4 {] || s
s - :/
: sub r4,rl,r3 tfetch["t
Cr? and ro,rl,r7 tercn| Jf] ® ‘IZ
d] _
e Ifetch| | DMem |—
8, rl,r9 | -[
. or r8,rl,r
xor rl1l0,rl,rll

CS422: Spring 2018 Biswabandan Panda, CSE@IITK 6

RAW

* Read After Write (RAW)
Instr tries to read operand before Instr; writes it

<::I: add rl,r2,r3
J: sub r4,rl,r3

* Caused by a “Dependence” (in compiler nomenclature). This
hazard results from an actual need for communication.

CS422: Spring 2018 Biswabandan Panda, CSE@IITK

WAR

* Write After Read (WAR)
Instr; writes operand before Instrreads it

< ' [: subr4,rl,r3
J:add r1,r2,r3

K: mul r6,r1,r7

 Called an “anti-dependence” by compiler writers.
This results from reuse of the name “r1".

* Can’'t happen in MIPS 5 stage pipeline because:
— All instructions take 5 stages, and
— Reads are always in stage 2, and
— Writes are always in stage 5

CS422: Spring 2018 Biswabandan Panda, CSE@IITK

WAW

* Write After Write (WAW)
Instr; writes operand before Instr; writes it.

C [: subrl,r4,r3

J:add r1,r2,r3

K: mulr6,r1,r7

 Called an “output dependence” by compiler writers
This also results from the reuse of name “r1”.

* Can't happen in MIPS 5 stage pipeline because:
— All instructions take 5 stages, and
— Writes are always in stage 5
* Will see WAR and WAW in more complicated pipes

CS422: Spring 2018 Biswabandan Panda, CSE@IITK

Data Forwarding

S 4+ S H

s o a0

CS422: Spring 2018

Time (clock cycles)

add rl,r2,r3 Ife'rch:[]

sub r4,rl,r3

and ro,rl,r7

or r8,rl, r9

Ifetch

DMem |—

xor rl0, ,rll

Biswabandan Panda, CSE@IITK

Ifetch

ar
a_

E |

Ifetch

DMem

W G

Hardware Change

NextPC

SJU24S162y

Immediate

\ 4

\ 4

Data
Memory

xXnw

CS422: Spring 2018

Biswabandan Panda, CSE@IITK

11

Forwarding to Avoid LW-SW 7

Time (clock cycles)

3 4+0 SN

s 0o as 0

CS422: Spring 2018

add rl,r2,r3

lw r4, O (rl)

sw rd4,12(rl)

Ifetch

{

or r8,r6,r9

xor rl1l0,r9,rll

£

Ifetch

Ifetch

Ifetch

Biswabandan Panda, CSE@IITK

W [

Even With Forwarding ?

Time (clock cycles)

I lw rl, 0(xr2)
n
S
t
r sub r4,rl, ro
0,
r
d and ro, , T/
e
r
or rg, , r9

CS422: Spring 2018

Ifetch

Ifetch

Ifetch

Biswabandan Panda, CSE@IITK

Ifetch

DMem

13

Control Hazard on Branches with 3-stage Stall

10: beq rl,r3|,36 I]rfenh:-] _IZ

14: and r2,r3,r5 Ifetch| | R.: DMem

-

-2

DMem

18: or r6,rl,r7 Ifetch

DMem

[FRA

[Fi

22: add r8,rl,r9 '[_I'
1 -
36: xor rl1l0,rl,rll |] Tfetch] |

What do you do with the 3 instructions in between?
How do you do it?

Where is the “commit”?
CS422: Spring 2018 Biswabandan Panda, CSE@IITK

Branches

Conditional
* the target address is close to the current PC location

 branch distance from the incremented PC value fits into the
immediate field

* for example: loops, if statements

Unconditional (jumps)
* transfers of control
* the target address is far away from the current PC location

* for example: subroutine calls

CS422: Spring 2018 Biswabandan Panda, CSE@IITK

15

Branches

| op | r's | rt immediate

Syntax: BEQ $1, $2, 12

Action: If ($1!=$2),PC=PC + 4
Action: If ($1 ==$2),PC=PC+ 4 + 48

Immediate field codes # words, not # bytes.

1 branch
Why is this encoding a good idea? ncreases branc

range to 128 KB.

Zero-extend or sign-extend immediate field? Sign-extend.

Why is this extension method a good idea?
Supports forward and backward branches.

CS422: Spring 2018 Biswabandan Panda, CSE@IITK

16

