Lecture-5 (Pipelining)
CS422-Spring 2018

Biswa@CSE-IITK

Before That: Single Cycle Design

CS422: Spring 2018 Biswabandan Panda, CSE@IITK

An R-format single Cycle CPU

Syntax: ADD $8 $9 $10 Semantics: $8 = $9 + $10

| opcode IS rt rd shamt funct |

Sample program:

ADD $8 $9 $10 No branches or jumps: machine only runs
SUB $4 $8 $3 straight line code.
AND $9 $8 $4

How registers get their

initial values are not of No loads or stores: machine has no use for
concern to us right now. data memory, only instruction memory.

CS422: Spring 2018 Biswabandan Panda, CSE@IITK

Instruction Memory

[nstr Reads are combinational: Put a stable
Mem 37 address on input, a short time later data
N appears on output.
Data
Addr*gz
Not concerned about how programs Related to separate instruction

are loaded into this memory. and data caches in “real” designs.

CS422: Spring 2018 Biswabandan Panda, CSE@IITK 4

Let’s Fetch It

Fetching straight-line MIPS instructions requires a
machine that generates this timing diagram:

Instr
Mem
32
Data <
Addr Why increment every cycle?
32

Why +4 and not +1?

CLK] |

J

Straight-line code.
32-bit instructions.

o

Addr X PC

X PC+4

X PC+8

Data

X IMem[P(C] X IMem[PC + 4] X IMem|[PC + 8]

PC == Program Counter, points to next instruction.

CS422: Spring 2018

Biswabandan Panda, CSE@IITK

Decode & Execute

Decode fields to get : ADD $8 $9 $10

‘ opcode rs rt rd shamt funct ‘

»
/
=
>
=)
o,
N
/]
g
c

)
DD

l ¥

CS422: Spring 2018 Biswabandan Panda, CSE@IITK

Let’s Put It Together

32 Instr
PC Mem

\\ I\ 32\\ To rsi,

32 32 rs2, WwWs,

AN D \ JAddr Data N

n — Q = < Op cliecode
392 logic
Ox4 AN

< /\ op /

RegFile 32
\5 Jrsl 32 \\ ’\\L
:: \: Jrs2 rdl \\ / A 32
::\ 'VV\;Z rd?2 ‘%\2 32 [LJ ;ﬁ
T 32\ \ /ﬂ\ e ~\\\\\’ \\ L”,,,/”

T ' |

CS422: Spring 2018 Biswabandan Panda, CSE@IITK 7

RTO | Format

|ﬂ:>code rs rt rd shamt | funct
T =]
Logic
OP/
RegFile 32
—\-5T>rsl M
5év’rsz rdl > A 32
5 L
\ W: rdzM U
32 W/\ WE
I |
op rs rt immediate

* Logic

‘*Pp

32

5 RegFile /+>
?ﬁrsl y A 32
———>{rs2 rdl] > L .
5 k 4

ws 32 32 U
rdz'éﬁ EXt >

P AN

Y

CS422: Spring 2018

Biswabandan Panda, CSE@IITK

Adding Data Memory

: RegFile ALUctr
\\ rsl 32 y
5 N ra2 rdil \\ , . °p Data Memory T~
\I > \\ WS 32 \ — Addr
< rd2 |-, > i 32
J AN wd N\ 32 U Dout ——
i) B N\ WE . |
RegDest Ext | D —
| 1 AN
Redhie MemToReg
7 AIMe%Wr
k
Syntax: LW $1, 32(S$2)
| op | rs | rt | iImmediate
Action: S1 = M[S2 4+ 32]

CS422: Spring 2018

Biswabandan Panda, CSE@IITK

What is Single Cycle Here?

Instr
Mem

IAddr Data

Equal Combinational Logic
. (Only Gates, No Flip Flops)
Iy Just specify logic functions!
RegDest PCSTC
RegWr
ExtOp MemToReg

rs,rt,rd, imm

CS422: Spring 2018

AlLUsrc MemWr

Biswabandan Panda, CSE@IITK

10

Let’s Understand This

>

Pe ¢ / ~> Add
PCSrc
RegWrite
- i MemToR:
Read Instruction 1[25 - 21] Road | MemWrite emToReg
address [31-0] [® g el theaa? |
1 [20 - 16] 7 @ Read Read 1
Instruction ® Read X Rend address data M
memory register data 2 Write u
Write address ;
register Write Data
1[15-11] Wiite ~ osters data Memory
data |
MemRead
RegDst AlLUSrc
1[15-0] Sign
extend
Biswabandan Panda, CSE@IITK

CS422: Spring 2018

11

Implications?

= For example, lw St0, -4(Ssp) needs 8ns, assuming the delays shown here.

reading the instruction memory 2ns O
reading the base register Ssp 1ns
computing memory address Ssp-4 2ns > 8ns
reading the data memory 2ns
storing data back to $t0O 1ns
Read Instruction I [25 - 21]
address [31-0] —? g ?e?i‘sdter‘l n::IEteaa[‘:ll ’\
| [20 - 16] ALU Read Read |— 1
Instruction ® Read —~ > Zero address data M
memory register 2 theag —p—> 0 Result Write u
Write atd M —r/ address . X
register) u | Write Data 0
2 Ns Write Registers . : 2 ns v data memory 0 ns
data p— 2 ns
0 ns 1ns O ns
1[15-0] Sign
extend

O ns

CS422: Spring 2018 Biswabandan Panda, CSE@IITK

Implications?

For example, the instruction add $s4, St1, $t2 really needs just 6ns.

reading the instruction memory
reading registers $St1 and $t2

computing St1 + $t2
storing the result into $sO

Read

address

Instruction
[31-0]

Instruction

memory

Z ns

CS422: Spring 2018

2 Nns ™
1 ns
2 ns

> 6 nNns

1 ns

| [25 - 21] Read Read
register 1 data 1 Read Read o 1
® | [20 - 16] Read address data M
register 2 Read | Write u
Write data 2 address x
register Write Data ™ O
_ Registers memory
I[15-11] * Write — data 0 ns
® ' data 2
ns
O ns 1 ns O ns
| [15 - O] [sign
extend
0 ns

Biswabandan Panda, CSE@IITK

13

So 8ns enough?

CS422: Spring 2018

Biswabandan Panda, CSE@IITK

14

It’s the Memory Stupid (~ 50 ns) — Oh NO!!

= - e e
-(J /"""“ ‘- ""’ T - -~

,Jl
W/ﬂll /IlllﬂllllllllllllllllllllllllIIII/IIIII/II/IIII

d /,,//WM/

So, frequency of ~ 10MHz
But Confucius says “Make the common case first” ©

CS422: Spring 2018 Biswabandan Panda, CSE@IITK

15

World of Latency, Throughput, Parallelism

* Latency
* time it takes to complete one instance

* Throughput
* number of computations done per unit time

CS422: Spring 2018 Biswabandan Panda, CSE@IITK

16

Pipelining: Goal

* Goal: Increase machine throughput by making better use of available
hardware resources
* Pipelining increases throughput at the cost of latency
* Hopefully not too high of a cost

* Assumptions
 [dle hardware resources exist
* parallelism!
 Work available
* parallelism!

CS422: Spring 2018 Biswabandan Panda, CSE@IITK 17

How?

* Partition hardware function into sub-functions so overlap can occur
* [deally each sub-function same time

t
| 7
: t+t/3
I
l /2
t+t Y t+ 2t/3
Issue op every t time units jf” ot

[ssue op every t/3 time units (may be slightly more than t/3-- why?)

CS422: Spring 2018 Biswabandan Panda, CSE@IITK

Malformed Pipeline

CS422: Spring 2018

e

[
>

-

How many stage pipeline is this?
What is the problem?

Biswabandan Panda, CSE@IITK

19

|deal Pipeline

* Goal: Increase throughput with little increase in cost (hardware
cost, in case of instruction processing)
* Repetition of identical operations
* The same operation is repeated on a large number of different
inputs
* Repetition of independent operations
* No dependencies between repeated operations

* Uniformly partitionable suboperations

* Processing can be evenly divided into uniform-latency
suboperations (that do not share resources)

CS422:Spring 2018 BiswabaRdanyPanda, CSE@IITK . .
oa 'I-s'lp1r+§'%“f\' n‘ff\W\Y\]nﬁl f\rl‘l-nmr\linﬁn f\(‘(‘@nml‘\]TT]1“[\ AnIY\l’T]f\IIY\AIﬂTY

20

|deal Pipeline

stage stage stage stage

* All objects go through the same stages
* No sharing of resources between any two stages
* Propagation delay through all pipeline stages is equal

* The scheduling of an object entering the pipeline is not affected by the
objects in other stages

CS422: Spring 2018 Biswabandan Panda, CSE@IITK

|deal Pipeline

. _’combinational logic (F,D,E,M,W) l [Bw=~(1/T)
T psec

\ 4
\ 4

L, BW="~(2/T)

— [T/2ps (FD,E) ¥ T/2 ps (M,W)

/3 /3 | T/3 . BW="(3/T)

— — > <1

ps (F,D) ps (E,M) ps (M,W)

\ 4
\ 4

CS422: Spring 2018 Biswabandan Panda, CSE@IITK

More Realistic One

s Nonpipelined version with delay T
BW = 1/(T+S) where S = latch delay

= k-stage pipelined version

BWk-stage =1 / (T/k +5)
BW_..=1/(1gatedelay +S)

| 7/K

(ON)

—> & & & o 0 0 0 —»>

T/k
ps

CS422: Spring 2018

Biswabandan Panda, CSE@IITK

23

More Realistic One

= Nonpipelined version with combinational cost G
Cost = G+L where L = latch cost

— » G gates

m k-stage pipelined version
CoSty giage = G + LK

N =G/k > —>ooooooo—>G/k

CS422: Spring 2018 Biswabandan Panda, CSE@IITK

World Is Not The Ideal One

BMldentical operations ... NOT!

= different instructions do not need all stages

- Forcing different instructions to go through the same multi-function pipe
—> external fragmentation (some pipe stages idle for some instructions)

B Uniform suboperations ... NOT!

= difficult to balance the different pipeline stages
- Not all pipeline stages do the same amount of work
- internal fragmentation (some pipe stages are too-fast but take the same clock
cycle time)
BIndependent operations ... NOT!

—> instructions are not independent of each other

- Need to detect and resolve inter-instruction dependencies to ensure the pipeline

operates correctly = Pipeline is not always moving (it stalls)
CS422: Spring 2018 Biswabandan Panda, CSE@IITK 25

Let’s Digress a Bit: Latch and Flip-flop (Piazza: +1)

CS422: Spring 2018 Biswabandan Panda, CSE@IITK

26

Simple 5-stage Pipeline

Instruction
Fetch

Instr. Decode
Reg. Fetch

Execute

Addr. Calc

Memory
Access

IR <= mem[PC];
PC <= PC + 4

A <= Reg[IR,.]’
B <= Reg[IR,.]

rslt <= A op;z,, B

WB <= rslt
Reg[IR, 4] <= WB

CS422: Spring 2018

>

Next SEQ PC

RS1

RS2

P Next SEQ PC

—
ﬁ

Write
Back

- Data stationary control

- local decode for each instruction phase
/ pipeline stage
Biswabandan Panda, CSE@IITK

WB Data

27

Visualise It

Time (clock cycles)

v

Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 5 Cycle 6 Cycle 7

I H E‘ 1
n Ifetch % DMem |—% —E
s E M
t : '._ : P
r. :
Ifetch R DMem |— 9
o]
r ' i g
d Ifetch R B DMem |——
e [
r _ i _: :

CS422: Spring 2018 Biswabandan Panda, CSE@IITK 28

