
Lecture-5 (Pipelining)
CS422-Spring 2018

Biswa@CSE-IITK

CS422: Spring 2018 Biswabandan Panda, CSE@IITK 2

Before That: Single Cycle Design

CS422: Spring 2018 Biswabandan Panda, CSE@IITK 3

An R-format single Cycle CPU

opcode rs rt rd functshamt

Syntax: ADD $8 $9 $10 Semantics: $8 = $9 + $10

Sample program:
ADD $8 $9 $10
SUB $4 $8 $3
AND $9 $8 $4
...

How registers get their
initial values are not of
concern to us right now.

No loads or stores: machine has no use for
data memory, only instruction memory.

No branches or jumps: machine only runs
straight line code.

CS422: Spring 2018 Biswabandan Panda, CSE@IITK 4

Instruction Memory

32

Addr

Data

32

Instr
Mem

Reads are combinational: Put a stable
address on input, a short time later data
appears on output.

Not concerned about how programs
are loaded into this memory.

Related to separate instruction
and data caches in “real” designs.

CS422: Spring 2018 Biswabandan Panda, CSE@IITK 5

Let’s Fetch It

32

Addr

Data

32

Instr
Mem

Fetching straight-line MIPS instructions requires a
machine that generates this timing diagram:

Why +4 and not +1?

Why increment every cycle?

CLK

Addr

Data IMem[PC + 8]IMem[PC + 4]IMem[PC]

PC + 8PC + 4PC

PC == Program Counter, points to next instruction.

32-bit instructions.

Straight-line code.

CS422: Spring 2018 Biswabandan Panda, CSE@IITK 6

Decode & Execute

32
rd1

RegFile

32
rd2

WE32
wd

5
rs1

5
rs2

5
ws

32A
L
U

32

32

op

opcode rs rt rd functshamt

Decode fields to get : ADD $8 $9 $10

Logic

CS422: Spring 2018 Biswabandan Panda, CSE@IITK 7

Let’s Put It Together

32

Addr Data

Instr

Mem

32
D

PC

Q

32

32

+

32

32

0x4

To rs1,

rs2, ws,

op decode

logic ...

32

rd1

RegFile

32
rd2

WE
32

wd

5
rs1

5
rs2

5
ws

32A

L

U

32

32

op

CS422: Spring 2018 Biswabandan Panda, CSE@IITK 8

R TO I Format

CS422: Spring 2018 Biswabandan Panda, CSE@IITK 9

Adding Data Memory

32

rd1

RegFile

32
rd2

WE
32

wd

5
rs1

5
rs2

5
ws

ExtRegDest

ALUsrcExtOp

ALUctr

MemToReg

MemWr

Syntax: LW $1, 32($2)

Action: $1 = M[$2 + 32]

RegWr

CS422: Spring 2018 Biswabandan Panda, CSE@IITK 10

What is Single Cycle Here?

32

Addr Data

Instr

Mem
Equal

RegDest

RegWr

ExtOp

ALUsrc MemWr

MemToReg

PCSrc

Combinational Logic

(Only Gates, No Flip Flops)

Just specify logic functions!

rs,rt,rd,imm

CS422: Spring 2018 Biswabandan Panda, CSE@IITK 11

Let’s Understand This

CS422: Spring 2018 Biswabandan Panda, CSE@IITK 12

Implications?

CS422: Spring 2018 Biswabandan Panda, CSE@IITK 13

Implications?

CS422: Spring 2018 Biswabandan Panda, CSE@IITK 14

So 8ns enough?

CS422: Spring 2018 Biswabandan Panda, CSE@IITK 15

It’s the Memory Stupid (~ 50 ns) – Oh NO!!

So, frequency of ~ 10MHz
But Confucius says “Make the common case first” ☺

CS422: Spring 2018 Biswabandan Panda, CSE@IITK 16

World of Latency, Throughput, Parallelism

• Latency
• time it takes to complete one instance

• Throughput
• number of computations done per unit time

CS422: Spring 2018 Biswabandan Panda, CSE@IITK 17

Pipelining: Goal

• Goal: Increase machine throughput by making better use of available
hardware resources

• Pipelining increases throughput at the cost of latency

• Hopefully not too high of a cost

• Assumptions

• Idle hardware resources exist

• parallelism!

• Work available

• parallelism!

CS422: Spring 2018 Biswabandan Panda, CSE@IITK 18

How?

• Partition hardware function into sub-functions so overlap can occur

• Ideally each sub-function same time

f

t

t + t

f1

f2

f3

t

t + t/3

t + 2t/3

t + t
Issue op every t time units

Issue op every t/3 time units (may be slightly more than t/3-- why?)

CS422: Spring 2018 Biswabandan Panda, CSE@IITK 19

Malformed Pipeline

A
2ns

B
1ns

C
1ns

X

F(X)

How many stage pipeline is this?
What is the problem?

CS422: Spring 2018 Biswabandan Panda, CSE@IITK 20

Ideal Pipeline

• Goal: Increase throughput with little increase in cost (hardware
cost, in case of instruction processing)

• Repetition of identical operations
• The same operation is repeated on a large number of different

inputs

• Repetition of independent operations
• No dependencies between repeated operations

• Uniformly partitionable suboperations
• Processing can be evenly divided into uniform-latency

suboperations (that do not share resources)

• Fitting examples: automobile assembly line, doing laundry

CS422: Spring 2018 Biswabandan Panda, CSE@IITK 21

Ideal Pipeline

• All objects go through the same stages

• No sharing of resources between any two stages

• Propagation delay through all pipeline stages is equal

• The scheduling of an object entering the pipeline is not affected by the
objects in other stages

stage
1

stage
2

stage
3

stage
4

CS422: Spring 2018 Biswabandan Panda, CSE@IITK 22

Ideal Pipeline

combinational logic (F,D,E,M,W)
T psec

BW=~(1/T)

BW=~(2/T)T/2 ps (F,D,E) T/2 ps (M,W)

BW=~(3/T)T/3
ps (F,D)

T/3
ps (E,M)

T/3
ps (M,W)

CS422: Spring 2018 Biswabandan Panda, CSE@IITK 23

More Realistic One

 Nonpipelined version with delay T

BW = 1/(T+S) where S = latch delay

 k-stage pipelined version

BWk-stage = 1 / (T/k +S)

BWmax = 1 / (1 gate delay + S)

T ps

T/k
ps

T/k
ps

CS422: Spring 2018 Biswabandan Panda, CSE@IITK 24

More Realistic One

 Nonpipelined version with combinational cost G

Cost = G+L where L = latch cost

 k-stage pipelined version

Costk-stage = G + Lk

G gates

G/k G/k

CS422: Spring 2018 Biswabandan Panda, CSE@IITK 25

World Is Not The Ideal One

Identical operations ... NOT!

 different instructions do not need all stages
- Forcing different instructions to go through the same multi-function pipe

 external fragmentation (some pipe stages idle for some instructions)

Uniform suboperations ... NOT!

 difficult to balance the different pipeline stages
- Not all pipeline stages do the same amount of work

 internal fragmentation (some pipe stages are too-fast but take the same clock
cycle time)

Independent operations ... NOT!

 instructions are not independent of each other
- Need to detect and resolve inter-instruction dependencies to ensure the pipeline
operates correctly Pipeline is not always moving (it stalls)

CS422: Spring 2018 Biswabandan Panda, CSE@IITK 26

Let’s Digress a Bit: Latch and Flip-flop (Piazza: +1)

CS422: Spring 2018 Biswabandan Panda, CSE@IITK 27

Simple 5-stage Pipeline

Memory
Access

Write
Back

Instruction
Fetch

Instr. Decode
Reg. Fetch

Execute
Addr. Calc

A
L
U

M
e
m

ory

R
e
g F

ile

M
U

X
M

U
X

D
ata

M
e
m

ory

M
U

X

Sign
Extend

Zero?

IF
/ID

ID
/E

X

M
E

M
/W

B

E
X

/M
E

M

4

A
d
d
e
r

Next SEQ PC Next SEQ PC

RD RD RD W
B

 D
at

a

• Data stationary control
– local decode for each instruction phase
/ pipeline stage

Next PC

A
d
d
re

ss

RS1

RS2

Imm

M
U

X

IR <= mem[PC];

PC <= PC + 4

A <= Reg[IRrs];

B <= Reg[IRrt]

rslt <= A opIRop B

Reg[IRrd] <= WB

WB <= rslt

CS422: Spring 2018 Biswabandan Panda, CSE@IITK 28

Visualise It

I
n
s
t
r.

O
r
d
e
r

Time (clock cycles)

Reg

A
L
U

DMemIfetch Reg

Reg

A
L
U

DMemIfetch Reg

Reg

A
L
U

DMemIfetch Reg

Reg

A
L
U

DMemIfetch Reg

Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 6 Cycle 7Cycle 5

