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Before That: Single Cycle Design
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An R-format single Cycle CPU

opcode rs rt rd functshamt

Syntax: ADD $8 $9 $10 Semantics: $8 = $9 + $10

Sample program:
ADD $8 $9 $10
SUB $4 $8 $3
AND $9 $8 $4
...

How registers get their 
initial values are not of 
concern to us right now.

No loads or stores: machine has no use for 
data memory, only instruction memory.

No branches or jumps: machine only runs 
straight line code.
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Instruction Memory

32

Addr

Data

32

Instr
Mem

Reads are combinational: Put a stable 
address on input, a short time later data 
appears on output. 

Not concerned about how programs 
are loaded into this memory.

Related to separate instruction 
and data caches in “real” designs.
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Let’s Fetch It

32

Addr

Data

32

Instr
Mem

Fetching straight-line MIPS instructions requires a 
machine that generates this timing diagram:

Why +4 and not +1?

Why increment every cycle?

CLK

Addr

Data IMem[PC + 8]IMem[PC + 4]IMem[PC]

PC + 8PC + 4PC

PC == Program Counter, points to next instruction.

32-bit instructions.

Straight-line code.
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Decode & Execute
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RegFile
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32
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op

opcode rs rt rd functshamt

Decode fields to get : ADD $8 $9 $10  

Logic
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Let’s Put It Together
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op decode

logic ...
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R TO I Format
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Adding Data Memory

32

rd1

RegFile
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ExtRegDest

ALUsrcExtOp

ALUctr

MemToReg

MemWr

Syntax: LW $1, 32($2)  

Action: $1 = M[$2 + 32]

RegWr
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What is Single Cycle Here?

32

Addr Data

Instr

Mem
Equal

RegDest

RegWr

ExtOp

ALUsrc MemWr

MemToReg

PCSrc

Combinational Logic

(Only Gates, No Flip Flops)

Just specify logic functions!

rs,rt,rd,imm
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Let’s Understand This 
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Implications?
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Implications?
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So 8ns enough?
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It’s the Memory Stupid ( ~ 50 ns) – Oh NO!!

So, frequency of ~ 10MHz
But Confucius says “Make the common case first” ☺
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World of Latency, Throughput, Parallelism

• Latency
• time it takes to complete one instance

• Throughput
• number of computations done per unit time
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Pipelining: Goal

• Goal: Increase machine throughput by making better use of available 
hardware resources

• Pipelining increases throughput at the cost of latency

• Hopefully not too high of a cost

• Assumptions

• Idle hardware resources exist

• parallelism!

• Work available

• parallelism!
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How?

• Partition hardware function into sub-functions so overlap can occur

• Ideally each sub-function same time

f

t

t + t

f1

f2

f3

t

t + t/3

t + 2t/3

t + t
Issue op every t time units

Issue op every t/3 time units (may be slightly more than t/3-- why?)
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Malformed Pipeline

A
2ns

B
1ns

C
1ns

X

F(X)

How many stage pipeline is this?
What is the problem?
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Ideal Pipeline

• Goal: Increase throughput with little increase in cost (hardware 
cost, in case of instruction processing)

• Repetition of identical operations
• The same operation is repeated on a large number of different 

inputs

• Repetition of independent operations
• No dependencies between repeated operations

• Uniformly partitionable suboperations
• Processing can be evenly divided into uniform-latency 

suboperations (that do not share resources)

• Fitting examples: automobile assembly line, doing laundry
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Ideal Pipeline

• All objects go through the same stages

• No sharing of resources between any two stages

• Propagation delay through all pipeline stages is equal

• The scheduling of an object entering the pipeline is not affected by the 
objects in other stages

stage
1

stage
2

stage
3

stage
4
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Ideal Pipeline

combinational logic (F,D,E,M,W)
T psec

BW=~(1/T)

BW=~(2/T)T/2 ps (F,D,E) T/2 ps (M,W)

BW=~(3/T)T/3
ps (F,D)

T/3
ps (E,M)

T/3
ps (M,W)
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More Realistic One

 Nonpipelined version with delay T 

BW = 1/(T+S) where S = latch delay

 k-stage pipelined version

BWk-stage = 1 / (T/k +S )

BWmax = 1 / (1 gate delay + S )

T ps

T/k
ps

T/k
ps
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More Realistic One

 Nonpipelined version with combinational cost G 

Cost = G+L where L = latch cost

 k-stage pipelined version

Costk-stage = G + Lk 

G gates

G/k G/k
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World Is Not The Ideal One

Identical operations ... NOT! 

 different instructions do not need all stages
- Forcing different instructions to go through the same multi-function pipe

 external fragmentation (some pipe stages idle for some instructions)

Uniform suboperations ...  NOT! 

 difficult to balance the different pipeline stages
- Not all pipeline stages do the same amount of work

 internal fragmentation (some pipe stages are too-fast but take the same clock 
cycle time)

Independent operations ... NOT!

 instructions are not independent of each other
- Need to detect and resolve inter-instruction dependencies to ensure the  pipeline 
operates correctly  Pipeline is not always moving (it stalls)
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Let’s Digress a Bit: Latch and Flip-flop (Piazza: +1)
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Simple 5-stage Pipeline
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• Data stationary control
– local decode for each instruction phase 
/ pipeline stage

Next PC
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IR <= mem[PC]; 

PC <= PC + 4

A <= Reg[IRrs]; 

B <= Reg[IRrt]

rslt <= A opIRop B

Reg[IRrd] <= WB

WB <= rslt
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Visualise It
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