
Lecture-2 (Instruction Set Architecture)
CS422-Spring 2018

Biswa@CSE-IITK

CS422: Spring 2018 Biswabandan Panda, CSE@IITK 2

ISA

... the attributes of a [computing] system as seen by the
programmer, i.e. the conceptual structure and functional behavior,
as distinct from the organization of the data flows and controls the
logic design, and the physical implementation.

– Amdahl, Blaaw, and Brooks, 1964

CS422: Spring 2018 Biswabandan Panda, CSE@IITK 3

Instruction Set Architecture (ISA)

instruction set

software

hardware

I/O systemProcessor

Digital Design

Circuit Design

Datapath & Control

Transistors

Memory

Compiler

Operating

System
(Mac OS X)

Application (iTunes)

Assembler

CS422: Spring 2018 Biswabandan Panda, CSE@IITK 4

ISA

Syntax: ADD $8 $9 $10 Semantics: $8 = $9 + $10

000000 01001 01010 01000 00000 100000Binary:

opcode rs rt rd functshamtBitfield: “R-Format”

In Hexadecimal: 012A4020 Why opcode and funct?
Why shamt?
+1 point: Piazza

CS422: Spring 2018 Biswabandan Panda, CSE@IITK 5

ISA

Instruction

Fetch

Instruction

Decode

Operand

Fetch

Execute

Result

Store

Next

Instruction

Fetch next inst from memory:012A4020

opcode rs rt rd functshamt
Decode fields to get : ADD $8 $9 $10

“Retrieve” register values: $9 $10

Add $9 to $10

Place this sum in $8

Prepare to fetch instruction that follows the ADD in the
program.

Syntax: ADD $8 $9 $10 Semantics: $8 = $9 + $10

CS422: Spring 2018 Biswabandan Panda, CSE@IITK 6

Memory Instructions: LW $1,32($2)

Instruction

Fetch

Instruction

Decode

Operand

Fetch

Execute

Result

Store

Next

Instruction

Fetch the load inst from memory

“Retrieve” register value: $2

Compute memory address: 32 + $2

Load memory address contents into: $1

Decode fields to get : LW $1, 32($2)

opcode rs rt offset “I-Format”

Prepare to fetch instr. that follows the LW in the program.

CS422: Spring 2018 Biswabandan Panda, CSE@IITK 7

Branch Instructions: BEQ $1,$2,25

Instruction

Fetch

Instruction

Decode

Operand

Fetch

Execute

Result

Store

Next

Instruction

Fetch branch inst from memory

“Retrieve” register values: $1, $2

Compute if we take branch: $1 == $2 ?

Decode fields to get: BEQ $1, $2, 25

opcode rs rt offset “I-Format”

ALWAYS prepare to fetch instr. that follows the BEQ in the program
(”delayed branch”). IF we take branch, the instr. we fetch AFTER that
instruction is PC + 4 + 100.

J-type during branches

CS422: Spring 2018 Biswabandan Panda, CSE@IITK 8

The Contract: An Architect’s Contract

To the program, it appears that instructions execute in the correct order
defined by the ISA.

What the machine actually does is up to the hardware designers, as long
as the contract is kept.

As each instruction completes, the machine state (regs, mem) appears
to the program to obey the ISA.

CS422: Spring 2018 Biswabandan Panda, CSE@IITK 9

ISA

 ISA

 Agreed upon interface between software and hardware

 SW/compiler assumes, HW promises

 What the software writer needs to know to write and debug system/user
programs

 Microarchitecture

 Specific implementation of an ISA

 Not visible to the software

 Microprocessor

 ISA, uarch, circuits

 “Architecture” = ISA + microarchitecture

CS422: Spring 2018 Biswabandan Panda, CSE@IITK 10

ISA

• Basic element of the HW/SW interface

• Consists of
• opcode: what the instruction does

• operands: ?

CS422: Spring 2018 Biswabandan Panda, CSE@IITK 11

Elements of an ISA

• Instruction processing style

• Specifies the number of “operands” an instruction “operates” on and how it
does so

• 0, 1, 2, 3 address machines: 0-address: stack machine (push A, pop A, op)

• 1-address: accumulator machine (ld A, st A, op A)

• 2-address: 2-operand machine (one is both source and dest)

• 3-address: 3-operand machine (source and dest are separate)

• Tradeoffs? Larger operate instructions vs. more executed operations

• Code size vs. execution time vs. on-chip memory space

CS422: Spring 2018 Biswabandan Panda, CSE@IITK 12

ISA vs uarch
 What is part of ISA vs. Uarch?

 Gas pedal: interface for “acceleration”

 Internals of the engine: implement “acceleration”

 Implementation (uarch) can be various as long as it satisfies the specification
(ISA)

 Add instruction vs. Adder implementation

 Bit serial, ripple carry, carry lookahead adders are all part of
microarchitecture

 x86 ISA has many implementations: 286, 386, 486, Pentium, Pentium Pro,
Pentium 4, Core, …

 Microarchitecture usually changes faster than ISA

 Few ISAs (x86, ARM, SPARC, MIPS, Alpha) but many uarchs. Why?

CS422: Spring 2018 Biswabandan Panda, CSE@IITK 13

ISA

 Instructions

 Opcodes, Addressing Modes, Data Types

 Instruction Types and Formats

 Registers, Condition Codes

 Memory

 Address space, Addressability, Alignment

 Virtual memory management

 Call, Interrupt/Exception Handling, Access Control, Priority/Privilege

 I/O: memory-mapped vs. instr, Task/thread Management, Power and Thermal
Management

 Multi-threading support, Multiprocessor support

CS422: Spring 2018 Biswabandan Panda, CSE@IITK 14

Uarch

 Implementation of the ISA under specific design constraints and goals

 Anything done in hardware without exposure to software

 Pipelining

 In-order versus out-of-order instruction execution

 Memory access scheduling policy

 Speculative execution

 Superscalar processing (multiple instruction issue?)

 Clock gating

 Caching? Levels, size, associativity, replacement policy

 Prefetching?

 Voltage/frequency scaling? Error correction?

CS422: Spring 2018 Biswabandan Panda, CSE@IITK 15

ISA vs uarch

 ADD instruction’s opcode

 Number of general purpose registers

 Number of ports to the register file

 Number of cycles to execute the MUL instruction

 Whether or not the machine employs pipelined instruction execution

 Remember

 Microarchitecture: Implementation of the ISA under specific design
constraints and goals

CS422: Spring 2018 Biswabandan Panda, CSE@IITK 16

Why Have Instructions

• Alternatives

• Special purpose hardware

• Reconfigurable hardware (FPGAs)

• Minimize everything as much as possible?

• Simplifies interface

• Software knows what is available

• Hardware knows what needs to be implemented

• Abstraction protects software and hardware

• Software can run on new machines

• Hardware can run old software

