
Lecture-2 (Instruction Set Architecture)
CS422-Spring 2018

Biswa@CSE-IITK

CS422: Spring 2018 Biswabandan Panda, CSE@IITK 2

ISA

... the attributes of a [computing] system as seen by the
programmer, i.e. the conceptual structure and functional behavior,
as distinct from the organization of the data flows and controls the
logic design, and the physical implementation.

– Amdahl, Blaaw, and Brooks, 1964

CS422: Spring 2018 Biswabandan Panda, CSE@IITK 3

Instruction Set Architecture (ISA)

instruction set

software

hardware

I/O systemProcessor

Digital Design

Circuit Design

Datapath & Control

Transistors

Memory

Compiler

Operating

System
(Mac OS X)

Application (iTunes)

Assembler

CS422: Spring 2018 Biswabandan Panda, CSE@IITK 4

ISA

Syntax: ADD $8 $9 $10 Semantics: $8 = $9 + $10

000000 01001 01010 01000 00000 100000Binary:

opcode rs rt rd functshamtBitfield: “R-Format”

In Hexadecimal: 012A4020 Why opcode and funct?
Why shamt?
+1 point: Piazza

CS422: Spring 2018 Biswabandan Panda, CSE@IITK 5

ISA

Instruction

Fetch

Instruction

Decode

Operand

Fetch

Execute

Result

Store

Next

Instruction

Fetch next inst from memory:012A4020

opcode rs rt rd functshamt
Decode fields to get : ADD $8 $9 $10

“Retrieve” register values: $9 $10

Add $9 to $10

Place this sum in $8

Prepare to fetch instruction that follows the ADD in the
program.

Syntax: ADD $8 $9 $10 Semantics: $8 = $9 + $10

CS422: Spring 2018 Biswabandan Panda, CSE@IITK 6

Memory Instructions: LW $1,32($2)

Instruction

Fetch

Instruction

Decode

Operand

Fetch

Execute

Result

Store

Next

Instruction

Fetch the load inst from memory

“Retrieve” register value: $2

Compute memory address: 32 + $2

Load memory address contents into: $1

Decode fields to get : LW $1, 32($2)

opcode rs rt offset “I-Format”

Prepare to fetch instr. that follows the LW in the program.

CS422: Spring 2018 Biswabandan Panda, CSE@IITK 7

Branch Instructions: BEQ $1,$2,25

Instruction

Fetch

Instruction

Decode

Operand

Fetch

Execute

Result

Store

Next

Instruction

Fetch branch inst from memory

“Retrieve” register values: $1, $2

Compute if we take branch: $1 == $2 ?

Decode fields to get: BEQ $1, $2, 25

opcode rs rt offset “I-Format”

ALWAYS prepare to fetch instr. that follows the BEQ in the program
(”delayed branch”). IF we take branch, the instr. we fetch AFTER that
instruction is PC + 4 + 100.

J-type during branches

CS422: Spring 2018 Biswabandan Panda, CSE@IITK 8

The Contract: An Architect’s Contract

To the program, it appears that instructions execute in the correct order
defined by the ISA.

What the machine actually does is up to the hardware designers, as long
as the contract is kept.

As each instruction completes, the machine state (regs, mem) appears
to the program to obey the ISA.

CS422: Spring 2018 Biswabandan Panda, CSE@IITK 9

ISA

 ISA

 Agreed upon interface between software and hardware

 SW/compiler assumes, HW promises

 What the software writer needs to know to write and debug system/user
programs

 Microarchitecture

 Specific implementation of an ISA

 Not visible to the software

 Microprocessor

 ISA, uarch, circuits

 “Architecture” = ISA + microarchitecture

CS422: Spring 2018 Biswabandan Panda, CSE@IITK 10

ISA

• Basic element of the HW/SW interface

• Consists of
• opcode: what the instruction does

• operands: ?

CS422: Spring 2018 Biswabandan Panda, CSE@IITK 11

Elements of an ISA

• Instruction processing style

• Specifies the number of “operands” an instruction “operates” on and how it
does so

• 0, 1, 2, 3 address machines: 0-address: stack machine (push A, pop A, op)

• 1-address: accumulator machine (ld A, st A, op A)

• 2-address: 2-operand machine (one is both source and dest)

• 3-address: 3-operand machine (source and dest are separate)

• Tradeoffs? Larger operate instructions vs. more executed operations

• Code size vs. execution time vs. on-chip memory space

CS422: Spring 2018 Biswabandan Panda, CSE@IITK 12

ISA vs uarch
 What is part of ISA vs. Uarch?

 Gas pedal: interface for “acceleration”

 Internals of the engine: implement “acceleration”

 Implementation (uarch) can be various as long as it satisfies the specification
(ISA)

 Add instruction vs. Adder implementation

 Bit serial, ripple carry, carry lookahead adders are all part of
microarchitecture

 x86 ISA has many implementations: 286, 386, 486, Pentium, Pentium Pro,
Pentium 4, Core, …

 Microarchitecture usually changes faster than ISA

 Few ISAs (x86, ARM, SPARC, MIPS, Alpha) but many uarchs. Why?

CS422: Spring 2018 Biswabandan Panda, CSE@IITK 13

ISA

 Instructions

 Opcodes, Addressing Modes, Data Types

 Instruction Types and Formats

 Registers, Condition Codes

 Memory

 Address space, Addressability, Alignment

 Virtual memory management

 Call, Interrupt/Exception Handling, Access Control, Priority/Privilege

 I/O: memory-mapped vs. instr, Task/thread Management, Power and Thermal
Management

 Multi-threading support, Multiprocessor support

CS422: Spring 2018 Biswabandan Panda, CSE@IITK 14

Uarch

 Implementation of the ISA under specific design constraints and goals

 Anything done in hardware without exposure to software

 Pipelining

 In-order versus out-of-order instruction execution

 Memory access scheduling policy

 Speculative execution

 Superscalar processing (multiple instruction issue?)

 Clock gating

 Caching? Levels, size, associativity, replacement policy

 Prefetching?

 Voltage/frequency scaling? Error correction?

CS422: Spring 2018 Biswabandan Panda, CSE@IITK 15

ISA vs uarch

 ADD instruction’s opcode

 Number of general purpose registers

 Number of ports to the register file

 Number of cycles to execute the MUL instruction

 Whether or not the machine employs pipelined instruction execution

 Remember

 Microarchitecture: Implementation of the ISA under specific design
constraints and goals

CS422: Spring 2018 Biswabandan Panda, CSE@IITK 16

Why Have Instructions

• Alternatives

• Special purpose hardware

• Reconfigurable hardware (FPGAs)

• Minimize everything as much as possible?

• Simplifies interface

• Software knows what is available

• Hardware knows what needs to be implemented

• Abstraction protects software and hardware

• Software can run on new machines

• Hardware can run old software

CS422: Spring 2018 Biswabandan Panda, CSE@IITK 17

MIPS Addressing Modes

op rs rt rd

immed

register

Register (direct)

op rs rt

register

Base+index

+

Memory

immedop rs rtImmediate

immedop rs rt

PC

PC-relative

+

Memory

• All instructions 32 bits wide

How to read a 32-bit constant then?

LUI (load upper immediate) and ORI (OR immediate) instructions, will it help?

LUI $t0 constant
ORI $t0 $t0 constant

CS422: Spring 2018 Biswabandan Panda, CSE@IITK 18

Characteristics of Good ISA

• Unambiguous

• Expressive

• Easily describes all the algorithms that will run on this platform

• Instructions are used

• Very complex instructions might not be used often

• (Relatively) easy to compile

• (Relatively) easy to implement well

• Implementation provides good performance, cost, etc.

• ISAs often highly reliant on microarchitecture and vice-versa

• Some ISAs easy to implement on some microarchitectures

• Some microarchitectures make some instructions easy to implement

CS422: Spring 2018 Biswabandan Panda, CSE@IITK 19

Design Point

 A set of design considerations and their importance

 leads to tradeoffs in both ISA and uarch

 Considerations

 Cost

 Performance

 Maximum power consumption and Energy consumption (battery life)

 Availability

 Reliability and Correctness

 Time to Market

 Design point determined by the “Problem” space (application space), the
intended users/market

CS422: Spring 2018 Biswabandan Panda, CSE@IITK 20

ISA Tradeoffs

 ISA-level tradeoffs

 Microarchitecture-level tradeoffs

 System and Task-level tradeoffs

 How to divide the labor between hardware and software

 Computer architecture is the science and art of making the appropriate trade-
offs to meet a design point

 Why art?

CS422: Spring 2018 Biswabandan Panda, CSE@IITK 21

Art ??

Microarchitecture
ISA

PLs
Algorithm
Problem

Runtime System
(VM, OS, MM)

User

We do not (fully) know the future (applications, users, market) and it changes

Logic
Circuits
Electrons

New demands
from the top
(Look Up)

New issues and
capabilities
at the bottom
(Look Down)

New demands and
personalities of users
(Look Up)

CS422: Spring 2018 Biswabandan Panda, CSE@IITK 22

ISA Trade-offs

• Fewer instructions

• Pros?

• Cons?

• There are 1 instruction ISAs

• subleq a, b, c ;

• Mem[b] = Mem[b] - Mem[a] ;if (Mem[b] ≤ 0) goto c

• Number of registers per instruction

• Number of bits per instruction

• Number of registers to implement

• Zero, One, Two, Three, Four, …

• Fixed verses Variable Length instructions

• Code Size: Dense (good for embedded applications?)

• Ease of decoding

• Flexibility

CS422: Spring 2018 Biswabandan Panda, CSE@IITK 23

Fixed vs Variable

CS422: Spring 2018 Biswabandan Panda, CSE@IITK 24

Control Transfer Instructions (Remind me during branches)

CS422: Spring 2018 Biswabandan Panda, CSE@IITK 25

Sign Extend
• When value is sign extended, copy upper bit to full value:

Examples of sign extending 8 bits to 16 bits:
00001010 00000000 00001010
10001100 11111111 10001100

• When is an immediate operand sign extended?

– Arithmetic instructions (add, sub, etc.) always sign extend immediates even for the unsigned
versions of the instructions!

– Logical instructions do not sign extend immediates (They are zero extended)

– Load/Store address computations always sign extend immediates

• Multiply/Divide have no immediate operands however:

– “unsigned” treat operands as unsigned

• The data loaded by the instructions lb and lh are extended as follows:

– lbu, lhu are zero extended

– lb, lh are sign extended

CS422: Spring 2018 Biswabandan Panda, CSE@IITK 26

Endianness and Alignment (*Pointers)

• Big Endian: address of most significant byte = word address
(xx00 = Big End of word)

– IBM 360/370, Motorola 68k, MIPS, Sparc, HP PA

• Little Endian: address of least significant byte = word address
(xx00 = Little End of word)

– Intel 80x86, DEC Vax, DEC Alpha (Windows NT)

msb lsb

3 2 1 0

little endian byte 0

0 1 2 3

big endian byte 0
Alignment:
require that objects fall on address that is multiple of their size.

0 1 2 3

Aligned

Not

Aligned

Think about a
network packet
from BE to LE
machine

• Object of size s bytes at byte add. A is aligned if A mod s = 0

• Alignment for faster transfer of data ?

• Why fast ??

• Think about memory.

CS422: Spring 2018 Biswabandan Panda, CSE@IITK 27

Alignment

0 1 2 3

Aligned

Not

Aligned

• LB 0x1, r1

4-byte chunk

Register r1

CS422: Spring 2018 Biswabandan Panda, CSE@IITK 28

Bit More

• Memory Size

• Register Size

• OS

• Limited by Physical and virtual address width

• Instruction Size

CS422: Spring 2018 Biswabandan Panda, CSE@IITK 29

Hang on? What determines this 32-bit & 64-bit ?

CS422: Spring 2018 Biswabandan Panda, CSE@IITK 30

Hang on? What determines this 32-bit & 64-bit ?

• Memory Size

• Register Size

• OS

• Limited by Physical and virtual address width

• Instruction Size

• 32-bit OS on 32-bit and 64-bit ISA

• What about other apps?

• Old legacy code ?

• Test it

• Write a simple program

• Compile using –m32 with gcc and then disassemble using
gdb

• Try playing with the pointers

CS422: Spring 2018 Biswabandan Panda, CSE@IITK 31

More Questions

CS422: Spring 2018 Biswabandan Panda, CSE@IITK 32

Orthogonality

• Orthogonal ISA:

• All addressing modes can be used with all instruction types

• Example: VAX

• (~13 addressing modes) x (>300 opcodes) x (integer and FP formats)

• Who is this good for?

• Who is this bad for?

CS422: Spring 2018 Biswabandan Panda, CSE@IITK 33

Orthogonality

CS422: Spring 2018 Biswabandan Panda, CSE@IITK 34

Simple vs Complex

• Complex instruction: An instruction does a lot of work, e.g. many operations

• Insert in a doubly linked list

• Compute FFT

• String copy

• Simple instruction: An instruction does small amount of work, it is a primitive
using which complex operations can be built

• Add

• XOR

• Multiply

CS422: Spring 2018 Biswabandan Panda, CSE@IITK 35

Simple vs Complex

• Advantages of Complex instructions

+ Denser encoding smaller code size better memory utilization, saves off-
chip bandwidth, better cache hit rate (better packing of instructions)

+ Simpler compiler: no need to optimize small instructions as much

• Disadvantages of Complex Instructions

- Larger chunks of work compiler has less opportunity to optimize (limited
in fine-grained optimizations it can do)

- More complex hardware translation from a high level to control signals
and optimization needs to be done by hardware

CS422: Spring 2018 Biswabandan Panda, CSE@IITK 36

Semantic Gap

• Where to place the ISA? Semantic gap

• Closer to high-level language (HLL) Small semantic gap, complex
instructions

• Closer to hardware control signals? Large semantic gap, simple
instructions

• RISC vs. CISC machines

• RISC: Reduced instruction set computer

• CISC: Complex instruction set computer

• FFT, QUICKSORT, POLY, FP instructions?

• VAX INDEX instruction (array access with bounds checking)

CS422: Spring 2018 Biswabandan Panda, CSE@IITK 37

Top 10 x86 Instructions

° Rank instruction Integer Average Percent total executed

1 load 22%

2 conditional branch 20%

3 compare 16%

4 store 12%

5 add 8%

6 and 6%

7 sub 5%

8 move register-register 4%

9 call 1%

10 return 1%

Total 96%

° Simple instructions dominate instruction frequency

CS422: Spring 2018 Biswabandan Panda, CSE@IITK 38

RISC vs CISC

Berkeley RISC Chips

RISC-I (1982) Contains 44,420 transistors,
fabbed in 5 µm NMOS, with a die area of 77
mm2, ran at 1 MHz. This chip is probably the
first VLSI RISC.

RISC-II (1983) contains 40,760 transistors, was
fabbed in 3 µm NMOS, ran at 3 MHz, and the
size is 60 mm2. Stanford built some too…

CS422: Spring 2018 Biswabandan Panda, CSE@IITK 39

CISC vs RISC

• CISC vs. RISC

• Complex instruction set computer complex instructions

• Initially motivated by “not good enough” code generation

• Reduced instruction set computer simple instructions

• John Cocke, mid 1970s, IBM 801, Goal: enable better compiler control

• RISC motivated by

• Memory stalls (no work done in a complex instruction when there is a
memory stall?)

• Simplifying the hardware lower cost, higher frequency

• Enabling the compiler to optimize the code better

• Find fine-grained parallelism to reduce stalls

CS422: Spring 2018 Biswabandan Panda, CSE@IITK 40

ARM Instructions (Thumb and Zazzle)

Embedded applications that use ROM

Compressed 16-bit instructions ~ 32-bit ones

De-compressed before decode and execution

Typically 60 to 65% of the size of the normal ARM code

For rich features – switch to ARM mode from thumb mode

• Which architecture to use: Stack, Accumulator, R-R, R-M

• #Registers

• Trade-offs in terms of #operands, #registers, ….

• Big vs Little Endian

• Importance of Alignment

• Which instructions are dominant and which addressing modes are
dominant ?

• Fixed vs Variable Encoding

• RISC vs CISC

• Pseudo - instructions

• ISA vs micro-architecture

CS422: Spring 2018 Biswabandan Panda, CSE@IITK 41

ISA In a Nutshell

BACK-UP SLIDES

• Reading a constant

0000 0000 0011 1101 0000 1001 0000 0000

• lui $t0, 61

Then

Ori $t0, $t0, 2304

BACK-UP SLIDES

Confused?

Welcome to the world of
pseudo instructions

li $t0, 32-bit constant

CS422: Spring 2018 Biswabandan Panda, CSE@IITK 44

MIPS in Nutshell

• 32-bit fixed format inst (3 formats)

• 32 32-bit GPR (R0 contains zero) and 32 FP registers (and HI LO)

– partitioned by software convention

• 3-address, reg-reg arithmetic instr.

• Single address mode for load/store: base+displacement, no indirection

• 16-bit immediate plus LUI

• Simple branch conditions

– compare against zero or two registers for =,, no integer condition codes

• Delayed branch

– execute instruction after a branch (or jump) even if the branch is taken
(Compiler can fill a delayed branch with useful work about 50% of the time)

CS422: Spring 2018 Biswabandan Panda, CSE@IITK 45

Different ISAs
• x86

• PDP-x: Programmed Data Processor (PDP-11)

• VAX

• IBM 360

• CDC 6600

• SIMD ISAs: CRAY-1, Connection Machine

• VLIW ISAs: Multiflow, Cydrome, IA-64 (EPIC)

• PowerPC, POWER

• RISC ISAs: Alpha, MIPS, SPARC, ARM

• What are the fundamental differences?
• E.g., how instructions are specified and what they do
• E.g., how complex are the instructions

CS422: Spring 2018 Biswabandan Panda, CSE@IITK 46

ISA: What Else?

• Privilege modes

• User vs supervisor

• Who can execute what instructions?

• Exception and interrupt handling

• What procedure is followed when something goes wrong with an instruction?

• What procedure is followed when an external device requests the processor?

• Vectored vs. non-vectored interrupts (early MIPS)

• Virtual memory

• Each program has the illusion of the entire memory space, which is greater
than physical memory

• Access protection

