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Hardware Prefetching

What?
Latency-hiding technique - Fetches data before the core demands.  

Why? 
Off-chip DRAM latency has grown up to 400 to 800 cycles.

How?
By observing/predicting the demand access (LOAD/STORE) patterns.



CS422: Spring 2018                                                                       Biswabandan Panda, CSE@IITK         3

Prefetch Engine
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Prefetch Degree

Prefetch Degree: Number of prefetch requests to issue at a given time.
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Prefetch Distance

Prefetch Distance: How far ahead of the demand access stream are the 
prefetch requests issued?

demand 
access

Prefetch-distance

X Y

prefetch

Y = X + 4
Y = X + 8
Y = X + 16



CS422: Spring 2018                                                                       Biswabandan Panda, CSE@IITK         6

Next-line Prefetcher

Next Line: Miss to cache block  X , prefetch X+1. Degree=1, Distance=1

Works well for L1 Icache and L1 Dcache. 
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What About This?
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Stride Prefetching
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Quantifying Prefetchers
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Design Issues: Unified vs Split

• Unified:
+ Dynamic sharing of cache space: no overprovisioning that might happen with static 

partitioning (i.e., split I and D caches)

-- Instructions and data can thrash each other (i.e., no guaranteed space for either)

-- I and D are accessed in different places in the pipeline. Where do we place the unified 
cache for fast access?

• First level caches are almost always split 
• for the last reason above

• Second and higher levels are almost always unified



CS422: Spring 2018                                                                       Biswabandan Panda, CSE@IITK         11

Reads are not Writes

• If a write enters the cache, what happens if
• There is a cache miss

• Does the cache need to bring in the cache line?

• There is a cache hit

• Does the cache need to write back to memory?
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Write Policies

• Cache hit:
• write through: write both cache & memory

• Generally higher traffic but simpler pipeline & cache design
• write back: write cache only, memory is written only when the 

entry is evicted
• A dirty bit per line further reduces write-back traffic
• Must handle 0, 1, or 2 accesses to memory for each 

load/store

• Cache miss:
• no write allocate:  only write to main memory
• write allocate (aka fetch on write):  fetch into cache

• Common combinations:
• write through and no write allocate
• write back with write allocate
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Write Buffers

Processor is not stalled on writes, and read misses can go ahead of 
write to main memory

Problem: Write buffer may hold updated value of location needed by a read miss

Simple solution: on a read miss, wait for the write buffer to go empty

Faster solution: Check write buffer addresses against read miss addresses, if no 
match, allow read miss to go ahead of writes, else, return value in write buffer
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Multi-level Caches

Problem: A memory cannot be large and fast

Solution: Increasing sizes of cache at each level

CPU L1$ L2$ DRAM

Local miss rate = misses in cache / accesses to cache
Global miss rate = misses in cache / CPU memory accesses
Misses per instruction = misses in cache / number of instructions


