
Lecture-17 (Hardware Prefetching)
CS422-Spring 2018

Biswa@CSE-IITK

CS422: Spring 2018 Biswabandan Panda, CSE@IITK 2

Hardware Prefetching

What?
Latency-hiding technique - Fetches data before the core demands.

Why?
Off-chip DRAM latency has grown up to 400 to 800 cycles.

How?
By observing/predicting the demand access (LOAD/STORE) patterns.

CS422: Spring 2018 Biswabandan Panda, CSE@IITK 3

Prefetch Engine

L2

Prefetcher

X+2

X+3

C
o

re X+3

❶

❷

❸

❹

❺
HIT

X+1

X

CS422: Spring 2018 Biswabandan Panda, CSE@IITK 4

Prefetch Degree

Prefetch Degree: Number of prefetch requests to issue at a given time.

L2

L3/DRAM

Prefetcher

X

Demand
Access

X+1

X+2

X+1 X+2

X+1 X+3 X+4

CS422: Spring 2018 Biswabandan Panda, CSE@IITK 5

Prefetch Distance

Prefetch Distance: How far ahead of the demand access stream are the
prefetch requests issued?

demand
access

Prefetch-distance

X Y

prefetch

Y = X + 4
Y = X + 8
Y = X + 16

CS422: Spring 2018 Biswabandan Panda, CSE@IITK 6

Next-line Prefetcher

Next Line: Miss to cache block X , prefetch X+1. Degree=1, Distance=1

Works well for L1 Icache and L1 Dcache.

CS422: Spring 2018 Biswabandan Panda, CSE@IITK 7

What About This?

CS422: Spring 2018 Biswabandan Panda, CSE@IITK 8

Stride Prefetching

PC effective address

instruction tag previous address stride state

-

+

prefetch address

CS422: Spring 2018 Biswabandan Panda, CSE@IITK 9

Quantifying Prefetchers

(i)Prefetch

(i)Prefetch
curacy(i)PrefetchAc

issued

hits


(i)Prefetch

(i)Prefetch
)Lateness(i

hits

late


(i)Demand

Poll(i) LLC
i)Pollution(

misses



Prefetched Block in the Cache.

Prefetched Block Still on its way

Prefetched Block evicted a demand
block that will be reused

(i)Demand (i) HitsPrefetch

Hits(i)Prefetch
)Coverage(i

misses


Fraction of misses avoided

CS422: Spring 2018 Biswabandan Panda, CSE@IITK 10

Design Issues: Unified vs Split

• Unified:
+ Dynamic sharing of cache space: no overprovisioning that might happen with static

partitioning (i.e., split I and D caches)

-- Instructions and data can thrash each other (i.e., no guaranteed space for either)

-- I and D are accessed in different places in the pipeline. Where do we place the unified
cache for fast access?

• First level caches are almost always split
• for the last reason above

• Second and higher levels are almost always unified

CS422: Spring 2018 Biswabandan Panda, CSE@IITK 11

Reads are not Writes

• If a write enters the cache, what happens if
• There is a cache miss

• Does the cache need to bring in the cache line?

• There is a cache hit

• Does the cache need to write back to memory?

CS422: Spring 2018 Biswabandan Panda, CSE@IITK 12

Write Policies

• Cache hit:
• write through: write both cache & memory

• Generally higher traffic but simpler pipeline & cache design
• write back: write cache only, memory is written only when the

entry is evicted
• A dirty bit per line further reduces write-back traffic
• Must handle 0, 1, or 2 accesses to memory for each

load/store

• Cache miss:
• no write allocate: only write to main memory
• write allocate (aka fetch on write): fetch into cache

• Common combinations:
• write through and no write allocate
• write back with write allocate

CS422: Spring 2018 Biswabandan Panda, CSE@IITK 13

Write Buffers

Processor is not stalled on writes, and read misses can go ahead of
write to main memory

Problem: Write buffer may hold updated value of location needed by a read miss

Simple solution: on a read miss, wait for the write buffer to go empty

Faster solution: Check write buffer addresses against read miss addresses, if no
match, allow read miss to go ahead of writes, else, return value in write buffer

Data Cache
Unified
L2 Cache

RF

CPU

Write
buffer

Evicted dirty lines for writeback cache
OR
All writes in writethrough cache

CS422: Spring 2018 Biswabandan Panda, CSE@IITK 14

Multi-level Caches

Problem: A memory cannot be large and fast

Solution: Increasing sizes of cache at each level

CPU L1$ L2$ DRAM

Local miss rate = misses in cache / accesses to cache
Global miss rate = misses in cache / CPU memory accesses
Misses per instruction = misses in cache / number of instructions

