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The Ideal World

Instruction

Supply

Pipeline

(Instruction

execution)

Data

Supply

- Zero-cycle latency 

- Infinite capacity

- Zero cost

- Perfect control flow

- No pipeline stalls 

-Perfect data flow 

(reg/memory dependencies)

- Zero-cycle interconnect

(operand communication)

- Enough functional units

- Zero latency compute

- Zero-cycle latency

- Infinite capacity

- Infinite bandwidth 

- Zero cost



CS422: Spring 2018                                                                       Biswabandan Panda, CSE@IITK         3

World of Memory Hierarchy. But Why?
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Semiconductor Memory

• Semiconductor memory began to be competitive in 
early 1970s
• Intel formed to exploit market for semiconductor memory

• Early semiconductor memory was Static RAM  (SRAM).  SRAM cell 
internals similar to a latch (cross-coupled inverters).

• First commercial Dynamic RAM (DRAM) was Intel 
1103
• 1Kbit of storage on single chip

• charge on a capacitor used to hold value

Semiconductor memory quickly replaced core in ‘70s
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DRAM Architecture
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▪ Bits stored in 2-dimensional arrays on chip
▪ Modern chips have around 4-8 logical banks on each chip

▪ each logical bank physically implemented as many smaller arrays
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DRAM

• Dynamic random access memory

• Capacitor charge state indicates stored value
• Whether the capacitor is charged or discharged indicates storage of 1 or 

0

• 1 capacitor

• 1 access transistor

• Capacitor leaks 
• DRAM cell loses charge over time

• DRAM cell needs to be refreshed
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SRAM

• Static random access memory

• Two cross coupled inverters store a single bit
• Feedback path enables the stored value to persist in the “cell”

• 4 transistors for storage

• 2 transistors for access
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DRAM vs SRAM
• DRAM

• Slower access (capacitor)

• Higher density (1T 1C cell)

• Lower cost

• Requires refresh (power, performance, circuitry)

• SRAM
• Faster access (no capacitor)

• Lower density (6T cell)

• Higher cost

• No need for refresh
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The Problem?

• Bigger is slower
• SRAM, 512 Bytes, sub-nanosec
• SRAM,  KByte~MByte, ~nanosec
• DRAM, Gigabyte, ~50 nanosec
• Hard Disk, Terabyte, ~10 millisec

• Faster is more expensive (dollars and chip area)
• SRAM, < 10$ per Megabyte
• DRAM, < 1$ per Megabyte
• Hard Disk < 1$ per Gigabyte
• These sample values scale with time

• Other technologies have their place as well 
• Flash memory, PC-RAM, MRAM, RRAM (not mature yet)
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Why Memory Hierarchy?

• We want both fast and large

• But we cannot achieve both with a single level of memory

• Idea: Have multiple levels of storage (progressively bigger and slower as the 
levels are farther from the processor) and ensure most of the data the 
processor needs is kept in the fast(er) level(s)
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Memory Wall Problem
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Size Affects Latency

Small 
Memory

CPU

Big Memory

CPU

▪ Signals have further to travel
▪ Fan out to more locations

Motivates 3D stacking
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Memory Hierarchy

Small,
Fast Memory

(RF, SRAM)

• capacity:  Register << SRAM << DRAM
• latency:   Register << SRAM << DRAM
• bandwidth: on-chip >> off-chip

On a data access:
if data  fast memory  low latency access (SRAM)
if data  fast memory  high latency access (DRAM)

CPU
Big, Slow Memory

(DRAM)

A B

holds frequently used data
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Access Patterns

Donald J. Hatfield, Jeanette Gerald: Program Restructuring for Virtual 

Memory. IBM Systems Journal 10(3): 168-192 (1971)
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Examples

Address

Time

Instruction
fetches

Stack
accesses

Data
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argument access

scalar accesses
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Locality of Reference

• Temporal Locality: If a location is referenced it is likely to be referenced 
again in the near future.

• Spatial Locality: If a location is referenced it is likely that locations near 
it will be referenced in the near future.
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Inside a Cache

CACHEProcessor Main
Memory 

Address Address

DataData
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Intel i7

▪ Private L1 and L2
– L2 is 256KB each. 10 cycle latency

▪ 8MB shared L3. ~40 cycles latency
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Cache Events

Look at Processor Address, search cache tags to find match.  Then 
either

Found in cache
a.k.a.  HIT

Return copy
of data from
cache

Not in cache
a.k.a. MISS

Read block of data from
Main Memory

Wait … 

Return data to processor
and update cache

Q: Which line do we replace?
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Placement Policy
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Direct Mapped
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High bits or Low bits
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Set-Associative 
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Fully-associative
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What’s in Tag Store?

• Valid bit

• Tag

• Replacement policy bits

• Dirty bit?
• Write back vs. write through caches


