
Lecture-13 (ROB and Multi-threading)
CS422-Spring 2018

Biswa@CSE-IITK

CS422: Spring 2018 Biswabandan Panda, CSE@IITK 2

Cycle 62 (Scoreboard) vs 57 in Tomasulo
Instruction status: Read Exec Write Exec Write

Instruction j k Issue Oper Comp Result Issue ComplResult

LD F6 34+ R2 1 2 3 4 1 3 4

LD F2 45+ R3 5 6 7 8 2 4 5

MULTD F0 F2 F4 6 9 19 20 3 15 16

SUBD F8 F6 F2 7 9 11 12 4 7 8

DIVD F10 F0 F6 8 21 61 62 5 56 57

ADDD F6 F8 F2 13 14 16 22 6 10 11

CS422: Spring 2018 Biswabandan Panda, CSE@IITK 3

Tomasulo vs Scoreboard
Pipelined Functional Units Multiple Functional Units

(6 load, 3 store, 3 +, 2 x/÷) (1 load/store, 1 + , 2 x, 1 ÷)

window size: ≤ 14 instructions ≤ 5 instructions

No issue on structural hazard same

WAR: renaming avoids stall completion

WAW: renaming avoids stall issue

Broadcast results from FU Write/read registers

Control: reservation stations central scoreboard

CS422: Spring 2018 Biswabandan Panda, CSE@IITK 4

Register Renaming + Scoreboard ?

Rename
Table

F
un

ct
io
na

l
U
ni
ts

R
e
gi
st

e
rs

FP Mult

FP Mult

FP Divide

FP Add

Integer

MemorySCOREBOARD

CS422: Spring 2018 Biswabandan Panda, CSE@IITK 5

Explicit Register Renaming
• Make use of a physical register file that is larger than number of registers specified by ISA

• Keep a translation table:

– ISA register => physical register mapping

– Physical register becomes free when not being used by any instructions in progress.

Fetch
Decode/
Rename

Execute

Rename
Table

CS422: Spring 2018 Biswabandan Panda, CSE@IITK 6

Explicit Register Renaming includes
• Rapid access to a table of translations

• A physical register file that has more registers than specified by the ISA

• Ability to figure out which physical registers are free.

– No free registers  stall on issue

• Many modern architectures use explicit register renaming + Tomasulo-like reservation
stations to control execution.

• Relationship between #registers and #RS entries: Piazza +1

CS422: Spring 2018 Biswabandan Panda, CSE@IITK 7

What About Exceptions and Interrupts?
• Both Scoreboard and Tomasulo have:

– In-order issue, out-of-order execution, out-of-order completion

• Recall: An interrupt or exception is precise if there is a single instruction for
which:

– All instructions before that have committed their state

– No following instructions (including the interrupting instruction) have
modified any state.

• Need way to resynchronize execution with instruction stream (I.e. with issue-
order)

CS422: Spring 2018 Biswabandan Panda, CSE@IITK 8

Re-order Buffer

• Out-of-order commit: What about precise exceptions ?

• It would be great to have in-order commit with O3 execute.

• The process of an instruction leaving the ROB will now be called as commit.

• To preserve precise exceptions, a result is written into the register file only
when the instruction commits.

• Until then, the result is saved in a temporary register in the ROB.

CS422: Spring 2018 Biswabandan Panda, CSE@IITK 9

Re-order Buffer (ROB)

Reorder

Buffer
FP

Op

Queue

FP Adder FP Adder

Res Stations Res Stations

FP Regs

C
om

pa
r ne

tw
ork

Reorder Table

D
e
st

 R
e
g

R
e
su

lt

E
x
ce

pt
io
ns

?

V
a
li
d

Pr
og

ra
m
 C

ou
nt

e
r

CS422: Spring 2018 Biswabandan Panda, CSE@IITK 10

Speculative Tomasulo with ROB
1. Issue—get instruction from FP Op Queue

If reservation station and reorder buffer slot free, issue instr & send operands &
reorder buffer no. for destination (this stage sometimes called “dispatch”)

2. Execution—operate on operands (EX)

When both operands ready then execute; if not ready, watch CDB for result; when both
in reservation station, execute; checks RAW (sometimes called “issue”)

3. Write result—finish execution (WB)

Write on Common Data Bus to all awaiting FUs
& reorder buffer; mark reservation station available.

4. Commit—update register with reorder result

When instr. at head of reorder buffer & result present, update register with result (or
store to memory) and remove instr from reorder buffer. Mispredicted branch flushes
reorder buffer (sometimes called “graduation”)

• Type of Instruction

• Destination: None, Memory Address, Register including ROB entry

• Value and its presence/absence.

• Reservation station tags and true register tags are now ids of entries
in the ROB.

CS422: Spring 2018 Biswabandan Panda, CSE@IITK 11

ROB Entry

CS422: Spring 2018 Biswabandan Panda, CSE@IITK 12

Tomasulo + ROB

To
Memory

FP adders FP multipliers

Reservation
Stations

FP Op
Queue

ROB7

ROB6

ROB5

ROB4

ROB3

ROB2

ROB1F0 LD F0,10(R2) N

Done?

Dest
Dest

Oldest

Newest

from
Memory

1 10+R2
Dest

Reorder Buffer

Registers

CS422: Spring 2018 Biswabandan Panda, CSE@IITK 13

Tomasulo + ROB

2 ADDD R(F4),ROB1

To
Memory

FP adders FP multipliers

Reservation
Stations

FP Op
Queue

ROB7

ROB6

ROB5

ROB4

ROB3

ROB2

ROB1

F10

F0

ADDD F10,F4,F0

LD F0,10(R2)

N

N

Done?

Dest
Dest

Oldest

Newest

from
Memory

1 10+R2
Dest

Reorder Buffer

Registers

CS422: Spring 2018 Biswabandan Panda, CSE@IITK 14

Tomasulo + ROB

3 DIVD ROB2,R(F6)
2 ADDD R(F4),ROB1

To
Memory

FP adders FP multipliers

Reservation
Stations

FP Op
Queue

ROB7

ROB6

ROB5

ROB4

ROB3

ROB2

ROB1

F2

F10

F0

DIVD F2,F10,F6

ADDD F10,F4,F0

LD F0,10(R2)

N

N

N

Done?

Dest
Dest

Oldest

Newest

from
Memory

1 10+R2
Dest

Reorder Buffer

Registers

CS422: Spring 2018 Biswabandan Panda, CSE@IITK 15

Tomasulo + ROB

3 DIVD ROB2,R(F6)
2 ADDD R(F4),ROB1
6 ADDD ROB5, R(F6)

To
Memory

FP adders FP multipliers

Reservation
Stations

FP Op
Queue

ROB7

ROB6

ROB5

ROB4

ROB3

ROB2

ROB1

F0 ADDD F0,F4,F6 N

F4 LD F4,0(R3) N

-- BNE F2,<…> N

F2

F10

F0

DIVD F2,F10,F6

ADDD F10,F4,F0

LD F0,10(R2)

N

N

N

Done?

Dest
Dest

Oldest

Newest

from
Memory

1 10+R2
Dest

Reorder Buffer

Registers

6 0+R3

CS422: Spring 2018 Biswabandan Panda, CSE@IITK 16

Tomasulo + ROB

3 DIVD ROB2,R(F6)

To
Memory

FP adders FP multipliers

Reservation
Stations

FP Op
Queue

ROB7

ROB6

ROB5

ROB4

ROB3

ROB2

ROB1

--

F0

M[10] ST 0(R3),F4

ADDD F0,F4,F6

Y

N

F4 M[10] LD F4,0(R3) Y

-- BNE F2,<…> N

F2

F10

F0

DIVD F2,F10,F6

ADDD F10,F4,F0

LD F0,10(R2)

N

N

N

Done?

Dest
Dest

Oldest

Newest

from
Memory

1 10+R2
Dest

Reorder Buffer

Registers

2 ADDD R(F4),ROB1
6 ADDD M[10],R(F6)

CS422: Spring 2018 Biswabandan Panda, CSE@IITK 17

Tomasulo + ROB

3 DIVD ROB2,R(F6)
2 ADDD R(F4),ROB1

To
Memory

FP adders FP multipliers

Reservation
Stations

FP Op
Queue

ROB7

ROB6

ROB5

ROB4

ROB3

ROB2

ROB1

--

F0

M[10]

<val2>

ST 0(R3),F4

ADDD F0,F4,F6

Y

Ex

F4 M[10] LD F4,0(R3) Y

-- BNE F2,<…> N

F2

F10

F0

DIVD F2,F10,F6

ADDD F10,F4,F0

LD F0,10(R2)

N

N

N

Done?

Dest
Dest

Oldest

Newest

from
Memory

1 10+R2
Dest

Reorder Buffer

Registers

CS422: Spring 2018 Biswabandan Panda, CSE@IITK 18

Tomasulo + ROB
--

F0

M[10]

<val2>

ST 0(R3),F4

ADDD F0,F4,F6

Y

Ex

F4 M[10] LD F4,0(R3) Y

-- BNE F2,<…> N

3 DIVD ROB2,R(F6)
2 ADDD R(F4),ROB1

To
Memory

FP adders FP multipliers

Reservation
Stations

FP Op
Queue

ROB7

ROB6

ROB5

ROB4

ROB3

ROB2

ROB1

F2

F10

F0

DIVD F2,F10,F6

ADDD F10,F4,F0

LD F0,10(R2)

N

N

N

Done?

Dest
Dest

Oldest

Newest

from
Memory

1 10+R2
Dest

Reorder Buffer

Registers

CS422: Spring 2018 Biswabandan Panda, CSE@IITK 19

Limits of ILP

CS422: Spring 2018 Biswabandan Panda, CSE@IITK 20

Limits to ILP

Initial HW Model here; MIPS compilers.

Assumptions for ideal/perfect machine to start:

1. Register renaming – infinite virtual registers
 all register WAW & WAR hazards are avoided

2. Branch prediction – perfect; no mispredictions

3. Jump prediction – all jumps perfectly predicted (returns, case statements)
2 & 3  no control dependencies; perfect speculation & an unbounded buffer of
instructions available

Also: perfect caches; 1 cycle latency for all instructions (FP *,/); unlimited instructions
issued/clock cycle;

CS422: Spring 2018 Biswabandan Panda, CSE@IITK 21

Window Impact on IPC

55
63

18

75

119

150

36
41

15

61 59 60

10
15 12

49

16

45

10 13 11

35

15

34

8 8 9
14

9
14

0

20

40

60

80

100

120

140

160

gcc espresso li fpppp doduc tomcatv

In
st

ru
ct

io
ns

 P
er

 C
lo

ck

Infinite 2048 512 128 32

Change from Infinite window 2048, 512, 128, 32

CS422: Spring 2018 Biswabandan Panda, CSE@IITK 22

Branch Impact

35

41

16

58
60

9

12
10

48

15

46

6
7 6

46

13

45

6 6 7

45

14

45

2 2 2

29

4

19

0

10

20

30

40

50

60

gcc espresso li fpppp doducd tomcatv

In
st

ru
ct

io
n

is
su

es
 p

er
 c

yc
le

Program

Perfect Selective predictor Standard 2-bit Static None

StaticBHT (512)TournamentPerfect No prediction

FP: 15 - 45

Integer: 6 - 12

IP
C

CS422: Spring 2018 Biswabandan Panda, CSE@IITK 23

Beyond ILP

• There can be much higher natural parallelism in some
applications
(e.g., Database or Scientific codes)

• Explicit Thread Level Parallelism or Data Level Parallelism

• Thread: instruction stream with own PC and data
– thread may be a process part of a parallel program of multiple processes, or it

may be an independent program

– Each thread has all the state (instructions, data, PC, register state, and so on)
necessary to allow it to execute

• Data Level Parallelism: Perform identical operations on
data, and lots of data

CS422: Spring 2018 Biswabandan Panda, CSE@IITK 24

TLP – Thread Level Parallelism

• ILP exploits implicit parallel operations within a loop or straight-line code
segment

• TLP explicitly represented by the use of multiple threads of execution that
are inherently parallel

• Goal: Use multiple instruction streams to improve

1. Throughput of computers that run many programs

2. Execution time of multi-threaded programs

• TLP could be more cost-effective to exploit than ILP

CS422: Spring 2018 Biswabandan Panda, CSE@IITK 25

Multiple Threads in Execution

• Multithreading: multiple threads to share the functional units of 1 processor via
overlapping

–processor must duplicate independent state of each thread e.g., a separate copy of
register file, a separate PC, and for running independent programs, a separate page table

–memory shared through the virtual memory mechanisms, which already support
multiple processes

–HW for fast thread switch; much faster than full process switch  100s to 1000s of
clocks

• When switch?

–Alternate instruction per thread (fine grain)

–When a thread is stalled, perhaps for a cache miss, another thread can be executed
(coarse grain)

CS422: Spring 2018 Biswabandan Panda, CSE@IITK 26

Fine-grained
• Switches between threads on each instruction, causing the execution of multiples threads

to be interleaved

• Usually done in a round-robin fashion, skipping any stalled threads

• CPU must be able to switch threads every clock

• Advantage is it can hide both short and long stalls, since instructions from other threads
executed when one thread stalls

• Disadvantage is it slows down execution of individual threads, since a thread ready to
execute without stalls will be delayed by instructions from other threads

• Used on Sun’s Niagara

CS422: Spring 2018 Biswabandan Panda, CSE@IITK 27

Coarse-grained
• Switches threads only on costly stalls, such as L2 cache misses

• Advantages
–Relieves need to have very fast thread-switching
–Doesn’t slow down thread, since instructions from other threads issued only when

the thread encounters a costly stall

• Disadvantage is hard to overcome throughput losses from shorter stalls, due to pipeline
start-up costs
– Since CPU issues instructions from 1 thread, when a stall occurs, the pipeline must

be emptied or frozen
–New thread must fill pipeline before instructions can complete

• Because of this start-up overhead, coarse-grained multithreading is better for reducing
penalty of high cost stalls, where pipeline refill << stall time

• Used in IBM AS/400, Alewife

CS422: Spring 2018 Biswabandan Panda, CSE@IITK 28

TLP + ILP
• TLP and ILP exploit two different kinds of parallel structure in a program

• Could a processor oriented at ILP to exploit TLP?

– functional units are often idle in data path designed for ILP because of either stalls or dependences in the code

• Could the TLP be used as a source of independent instructions that might keep
the processor busy during stalls?

• Could TLP be used to employ the functional units that would otherwise lie idle
when insufficient ILP exists?

CS422: Spring 2018 Biswabandan Panda, CSE@IITK 29

SMT

1

2

3

4

5

6

7

8

9

M M FX FX FP FP BR CCCycle

One thread, 8 units

M = Load/Store, FX = Fixed Point, FP = Floating Point, BR = Branch, CC = Condition Codes

1

2

3

4

5

6

7

8

9

M M FX FX FP FP BR CCCycle
Two threads, 8 units

CS422: Spring 2018 Biswabandan Panda, CSE@IITK 30

SMT
• Simultaneous multithreading (SMT): insight that dynamically scheduled processor already

has many HW mechanisms to support multithreading

–Large set of virtual registers that can be used to hold the register sets of independent
threads

–Register renaming provides unique register identifiers, so instructions from multiple
threads can be mixed in data path without confusing sources and destinations across
threads

–Out-of-order completion allows the threads to execute out of order, and get better
utilization of the HW

• Just adding a per thread renaming table and keeping separate PCs

– Independent commitment can be supported by logically keeping a separate reorder
buffer for each thread

CS422: Spring 2018 Biswabandan Panda, CSE@IITK 31

All in One
T

im
e

(p
ro

ce
ss

or
 c

yc
le

) Superscalar Fine-Grained Coarse-Grained Multiprocessing
Simultaneous

Multithreading

Thread 1

Thread 2

Thread 3

Thread 4

Thread 5

Idle slot

CS422: Spring 2018 Biswabandan Panda, CSE@IITK 32

IBM POWER 4 and 5

Power 4

Power 5

2 fetch (PC),

2 initial decodes

2 commits

(architected

register sets)

CS422: Spring 2018 Biswabandan Panda, CSE@IITK 33

Power 5 Data flow

