
Lecture-10 (Branch Prediction)
CS422-Spring 2018

Biswa@CSE-IITK

• In-class Branch Prediction Championship

• Will be evaluated based on MPPKI – Miss Prediction Per Kilo
instructions (10 traces)

• Goal: Design a predictor that is better than Ghsare based
predictors.

• Bonus: 10/5/2 (Top 1/2/3 submissions)

CS422: Spring 2018 Biswabandan Panda, CSE@IITK 2

PA2: ICBP

• Is the order of update to PHT and BHT important ?

• What about nested branches: New branch while handling the current branch: Is it
possible in 5 stage pipeline? What about 10-stage, 20-stage ?

• Aliasing

• PC = PC + 4 ?

PC = EX Stage Target

PC based on BTB?

CS422: Spring 2018 Biswabandan Panda, CSE@IITK 3

Few Subtle Issues

CS422: Spring 2018 Biswabandan Panda, CSE@IITK 4

Global Branch Correlation

 Recently executed branch outcomes in the execution path is correlated with
the outcome of the next branch

 If first branch not taken, second also not taken

 If first branch taken, second definitely not taken

CS422: Spring 2018 Biswabandan Panda, CSE@IITK 5

Global Branch Correlation

 If Y and Z both taken, then X also taken

 If Y or Z not taken, then X also not taken

CS422: Spring 2018 Biswabandan Panda, CSE@IITK 6

Global Branch Correlation

 Eqntott, SPEC 1992

if (aa!=2) ;; B1

aa=0;

if (bb!=2) ;; B2

bb=0;

if (aa==bb) { ;; B3

….

}

If B1 is not taken (i.e., aa==0@B3) and B2 is not taken (i.e. bb=0@B3) then B3 is
certainly taken

CS422: Spring 2018 Biswabandan Panda, CSE@IITK 7

Interference

• Sharing the PHTs between histories/branches leads to interference
• Different branches map to the same PHT entry and modify it

• Interference can be positive, negative, or neutral

• Interference can be eliminated by dedicating a PHT per branch
-- Too much hardware cost

• How else can you eliminate

or reduce interference?

CS422: Spring 2018 Biswabandan Panda, CSE@IITK 8

Reducing Interference

• Increase size of PHT

• Branch filtering
• Predict highly-biased branches separately so that they do

not consume PHT entries

• E.g., static prediction or BTB based prediction

• Hashing/index-randomization
• Gshare

• Gskew

• Agree prediction

CS422: Spring 2018 Biswabandan Panda, CSE@IITK 9

Biased Branches

• Observation: Many branches are biased in one direction (e.g., 99% taken)

• Problem: These branches pollute the branch prediction structures make
the prediction of other branches difficult by causing “interference” in branch
prediction tables and history registers

• Solution: Detect such biased branches, and predict them with a simpler
predictor (e.g., last time, static, …)

• Chang et al., “Branch classification: a new mechanism for improving branch
predictor performance,” MICRO 1994.

CS422: Spring 2018 Biswabandan Panda, CSE@IITK 10

Agree Predictor [ISCA ‘97]

 Idea 2: Agree prediction

 Each branch has a “bias” bit associated with
it in BTB

 Ideally, most likely outcome for the branch

 High bit of the PHT counter indicates
whether or not the prediction agrees with the
bias bit (not whether or not prediction is
taken)

+ Reduces negative interference (Why???)

-- Requires determining bias bits (compiler vs.
hardware)

CS422: Spring 2018 Biswabandan Panda, CSE@IITK 11

GSkew

• Idea 3: Gskew predictor
• Multiple PHTs

• Each indexed with a different type of hash function, Final prediction is a majority vote

+ Distributes interference patterns in a more randomized way (interfering patterns
less likely in different PHTs at the same time)

-- More complexity (due to multiple PHTs, hash functions)

Seznec, “An optimized 2bcgskew
branch predictor,” IRISA Tech
Report 1993.

Michaud, “Trading conflict and
capacity aliasing in conditional
branch predictors,” ISCA 1997

Branch Address

Global BHR

f0

f1

f2

Majority

Final Prediction

PHT0 PHT1 PHT2

CS422: Spring 2018 Biswabandan Panda, CSE@IITK 12

Agree Predictor

 Assume two branches have taken rates of 85% and 15%.

 Assume they conflict in the PHT

 Let’s compute the probability they have opposite outcomes

 Baseline predictor:

 P (b1 T, b2 NT) + P (b1 NT, b2 T)

= (85%*85%) + (15%*15%) = 74.5%

 Agree predictor:

 Assume bias bits are set to T (b1) and NT (b2)

 P (b1 agree, b2 disagree) + P (b1 disagree, b2 agree)

= (85%*15%) + (15%*85%) = 25.5%

 Works because most branches are biased (not 50% taken)

CS422: Spring 2018 Biswabandan Panda, CSE@IITK 13

Additional Reading: Intel Technology Journal [‘03]

Online Test 3 but not in-class

CS422: Spring 2018 Biswabandan Panda, CSE@IITK 14

Moving Forward: ALPHA 21264 (Tournament Predictor)
[IEEE MICRO ‘99]

Pred0 Pred1

Meta-

Predictor

Final Prediction

table of 2-/3-bit

counters

If meta-counter MSB = 0,

use pred0 else use pred1

CS422: Spring 2018 Biswabandan Panda, CSE@IITK 15

Perceptron Branch Predictor [HPCA ‘01]

 Idea: Use a perceptron to learn the correlations between branch history register
bits and branch outcome

 A perceptron learns a target Boolean function of N inputs

A perceptron contains a set of weights wi
 Each weight corresponds to a bit in the GHR
How much the bit is correlated with the

direction of the branch
 Positive correlation: large + weight
 Negative correlation: large - weight

Prediction:
 Express GHR bits as 1 (T) and -1 (NT)
 Take dot product of GHR and weights
 If output > 0, predict taken

CS422: Spring 2018 Biswabandan Panda, CSE@IITK 16

Perceptron Branch Predictor

Bias weight

(bias of branch independent of

the history)

Dot product of GHR

and perceptron weights

Output

compared

to 0

Prediction function:

Training function:

