Lecture-7 (Branch Predictors)
CS422-Spring 2020

Biswa@CcCSE-1ITK

Welcome to
the World of
Predictors

Impact of a Branch?

Average dynamic instruction mix of SPEC CPU 2017
[Limaye and Adegbiya , ISPASS'18]:

SPECint SPECfp
Branches 19 % 11 %
Loads 24 % 26 %
Stores 10 % 7 %
Other 47 % 56 %

SPECintl17: peribench, gcc, mcf, omnetpp, xalancbmk, x264,
deepsjeng, leela, exchange2, xz
SPECfp17: bwaves, cactus, Ibm, wrf, pop2, imagick, nab, fotonik3d, roms

What is the average run length between branches?
Roughly 5-10 instructions

CS422

http://www2.engr.arizona.edu/~tosiron/papers/2018/SPEC2017_ISPASS18.pdf

Branches and Jumps

Instruction Taken known? Target known?

After Inst. Decode After Inst. Decode

BEQZ/BNEZ After Inst. Execute After Inst. Execute

CS422

Static Branch Prediction

backward ' forward
90% 50%

ISA can attach preferred direction semantics to branches,
e.g., Motorola MC88110
bneO (preferred taken) beqO (not taken)

ISA can allow arbitrary choice of statically predicted direction,
e.g., HP PA-RISC, Intel IA-64
typically reported as ~80% accurate

Dynamic Branch Predictor

IF (Fetch)

D (Decode) CEX(ALUY™TTMEM WB

>LR >R >TR[—

F*:::::g4u4
_ i

I e
PC

Addr Datph

Branch
Predictor

Predlctlons

A control
instr?
Take If taken

or Not where to?
Taken? What PC-?

We update the PC based on the outputs of the

branch predictor. If it is perfect, pipe stays full!
Dynamic Predictors: a cache of branch history

Time: t1 t2 t3 t4 t5 t6 +t7 t8
Inst - — EX stage

IF ID @ MEM WB computes

if branch is
I
taken
If we predicted incorrectly,
these instructions MUST NOT

complete!

Branch Prediction

= |ldea: Predict the next fetch address (to be used in the next cycle)

= Requires three things to be predicted at fetch stage:
Whether the fetched instruction is a branch
(Conditional) branch direction
Branch target address (if taken)

= Observation: Target address remains the same for a conditional direct branch across

dynamic instances
ldea: Store the target address from previous instance and access it with the PC

Called Branch Target Buffer (BTB) or Branch Target Address Cache

Static Branch Prediction

= Always not-taken
Simple to implement: no need for BTB, no direction prediction
Low accuracy: ~30-40%

= Always taken
No direction prediction
Better accuracy: ~60-70%
m Backward branches (i.e. loop branches) are usually taken

Static Branch Prediction

m Profile-based

Idea: Compiler determines likely direction for each branch using profile run. Encodes
that direction as a hint bit in the branch instruction format.

+ Per branch prediction = accurate if profile is representative!

-- Requires hint bits in the branch instruction format

-- Accuracy depends on dynamic branch behavior:
TTTTTTTTTTNNNNNNNNNN = 50% accuracy

TNTNTNTNTNTNTNTNTNTN = 50% accuracy

-- Accuracy depends on the representativeness of profile input set

Dynamic Branch Prediction

= Idea: Predict branches based on dynamic information (collected at run-time)

= Advantages
+ Prediction based on history of the execution of branches
+ It can adapt to dynamic changes in branch behavior

+ No need for static profiling: input set representativeness problem goes away

Disadvantages

-- More complex (requires additional hardware)

Predictor as a Black Box

Truth/Feedback

Input

Prediction

Prediction as a feedback control process

Operations
e Predict
e Update

Learning

Temporal correlation

The way a branch resolves may be a good
predictor of the way it will resolve at the next
execution

Spatial correlation

Several branches may resolve in a highly
correlated manner (a preferred path of
execution)

Primitive

e Indexed table holding values

_ Index
e Operations
— Predict Prediction
- Update >
Update

e Algebraic notation

Prediction = P[Width, Depth](Index; Update)

Simplest One: Last-Time Predictor

= Last time predictor
Indicates which direction branch went last time it executed
TTTTTTTTTTNNNNNNNNNN = 90% accuracy

= Always mis-predicts the last iteration and the first iteration of a loop branch
Accuracy for a loop with N iterations = (N-2)/N

+ Loop branches for loops with large number of iterations
-- Loop branches for loops will small number of iterations
TNTNTNTNTNTNTNTNTNTN = 0% accuracy

Last-time predictor CPI =[1 + (0.20%0.15) *2] =1.06 (Assuming 20% instructions are branches
and branch predictor has 85% accuracy)

Last-Time

actually
taken
actually actually
not taken taken
actually

not taken

Last-time Predictor: The hardware

K bits of branch Branch history table of 2K entries,
instruction address 1 bit per entry

@
Use this entry to predict
\ Index - @ : Yy P

0: predict not taken
1: predict taken

®

When branch direction resolved, go back into the table and
update entry: O if not taken, 1 if taken

Example: Predict!!

o . 99.998%
OxDCO08: for(i=0; i < 100000; i++) prediction
{ cf Rate
OxDC44: if((i% 100)==0)
ick(');
OxDC50: if((i &1)==1)

odd();

Change Predictor after 2 Mistakes

actually actually “weakly
taken r ltaken taken”
“strongly pred pred
taken” taken
actually
actually taken afti?Hy
Itaken
taken actually “strongly
ltaken ltaken”
“weakly actually
ltaken” actually ltaken

taken

s This Enough

* Control flow instructions (branches) are frequent
e 15-25% of all instructions

 Problem: Next fetch address after a control-flow instruction is not determined after N
cycles in a pipelined processor

* N cycles: (minimum) branch resolution latency
e Stalling on a branch wastes instruction processing bandwidth (i.e. reduces IPC)

* How do we keep the pipeline full after a branch?

* Problem: Need to determine the next fetch address when the branch is fetched (to avoid a
pipeline bubble)

s This Enough?

* Assume a pipeline with 20-cycle branch resolution latency

 How long does it take to fetch 100 5-instruction blocks (500 instructions)?

 Assume 1 out of 5 instructions is a branch, fetch width of 5, each 5 instruction block
ends in a branch

e 100% accuracy : 100 cycles (all instructions fetched on the correct path)
* No wasted work
* 99% accuracy: 100 (correct path) + 20 (wrong path) = 120 cycles
e 20% extra instructions fetched
* 98% accuracy: 100 (correct path) + 20 * 2 (wrong path) = 140 cycles
* 40% extra instructions fetched
* 95% accuracy: 100 (correct path) + 20 * 5 (wrong path) = 200 cycles
* 100% extra instructions fetched

Fetch Stage with BTB and Direction Prediction

Direction predictor (2-bit counters)

2
R — taken: N
>J l
PC + inst size— NE}(t Fetch
Program , Address
hit?

Address of the
current branch

\

target address

Cache of Target Addresses (BTB: Branch Target Buffer)

In Some Cases: No Need of BTB Access

A: A
CALL B
B: LlAlB
CALL C
C
RET > Al BC
RET » A| B
A

Let’s Revisit

ounte %

Direction predictor (2-bit counters)

?
R — taken: N
L
PC + inst size— Next Fetch
Address
hit?
. (Push) (Ppp)
W
target address \ A
Return \/
BTB n—

Address
Stack (RAS)

BTB (Why 30-bit Tag?)

Address of branch instruction Branch instruction
0b0110[...]01001000 BNEZ R1 Loop
30 bi
| s | - BranCh Drawn
igfr?es Branch Target Buffer (BTB) HISt?g% Iable as fully associative
"+ 30-bit address tag target address () to focus
®_ on the essentials.
®_ In real designs, always
direct-mapped.
@ 0b0110[...]0010 | PC + 4 + Loop 2bS_ttate
S 1TSS

At EX stage,

update BTB/BHT,
- m 7 kill instructions,
it Taken” Address ! “Taken”lor“Not Taken” if necessary,

No History based Branch Predictor

kbit

(PC >> 2) &(2P-1}
2p

Bimodal predictor: Good for biased branches

Local History & Global History

e |Local Behavior

What is the predicted direction of Branch A given the outcomes of previous instances of
Branch A?

e Global Behavior

What is the predicted direction of Branch Z given the outcomes of all* previous branches
A B, .. XandY?

* Number of previous branches tracked limited by the history length

Two Level Global Branch Prediction [MICRO ‘91]

m First level: Global branch history register (N bits)
0 The direction of last N branches
m Second level: Table of saturating counters for each history entry
o The direction the branch took the last time the same history was seen

Pattern History Table (PHT)
0000
0001

previous on 00....10

GHR |
(global history register) index g -

1M1 ... 1

PHT

* Table of saturating counters

GHR

00
— 00

00

11 ...

00
01
10

11

k bit

A

v

Zm

Set of Branches — One Register

m bit

2P
ol

BHT

(PC% 2P)

Interference in Tables

* Sharing the PHTs between histories/branches leads to interference
 Different branches map to the same PHT entry and modify it
* Interference can be positive, negative, or neutral

* Interference can be eliminated by dedicating a PHT per branch
-- Too much hardware cost

®
L] L]
* How else can you eliminate °
® Pattern History Table (PHT)
. Branch A’s Index EER—— :D
or reduce interference? o [Loooocont] e)
Branch A — -
e E— Prediction of Branch B
P [may be altered due to
the outcome of Branch A
® [J
Branch B’s Index ®
Branch B :
®
[]
®

Figure 2: Interference in a two-level predictor.

What if One Branch -> One History -> One PHT ?

bt kbit
' 00...00 | 14
—00...01 |
00...10 |
2 11 ... 1! -
1. 11
| " BHT PHT

(PC>>2) & (2P-1)

GShare

Kk bit
. mbit | 00 00
11...1 00 ... 01
. 00....10
Zm
PC>>2 & 2m-1
THRRET

For a given history and for a given branch (PC) counters are trained

Y & P Classification [MICRO 91]

munill

GBHR

GPHT

GAg

* PAg: Per-Address History Register, Global History Table

PABHR

GPHT

PABHR

PAg (SAg?)

* GAg: Global History Register, Global History Table

* PAp: Per-Address History Register, Per-Address History Table

N

PAp

PAPHT

Tournament Predictor

Program Clobal History
Counter |:|
s 2 table of 2-/3-bit
] ' | a -
predictl 112 Meta counters
Predictor
4,096 [*
x
2 bits
| N
Clobal
Prediction Prediction
Final Prediction
Final Prediction
If meta-counter MSB = 0,
use pred, else use pred,
Meta
Pr Pr
edo ed, Update
x X .
x v Inc
v x Dec
v’ v -

Some Other Predictors

* Loop branch detector and predictor
 Loop iteration count detector/predictor
* Works well for loops, where iteration count is predictable
* Used in Intel Pentium M

* Perceptron branch predictor
* Learns the direction correlations between individual branches
* Assigns weights to correlations

* Jimenez and Lin, “Dynamic Branch Prediction with
Perceptrons,” HPCA 2001.

* Hybrid history length based predictor

* Uses different tables with different history lengths

* Seznec, “Analysis of the O-Geometric History Length branch
predictor,” ISCA 2005.

Intel Pentium M Predictors

The advanced branch prediction in the Pentium M
processor 1s based on the Intel Pentium” 4 processor’s

[6] branch predictor.

On top of that. two additional

predictors to capture special program flows. were added:

a Loop Detector and an Indirect Branch Predictor. Instruction
1 Pointer
\J
Count | Limit | Prediction
"'j 10 Target : type : hit
\V =

Figure 2: The Loop Detector logic

Global
History

)

target : hit

s

Gochman et al.,

“The Intel Pentium M Processor: Microarchitecture and Performance,”

-
N it

Intel Technology Journal, May 2003.

&

Ty

Figure 3: The Indirect Branch Predictor logic

State-of-the-Art
State of the art: Neural vs. TAGE

1970:
1972:

1979:

1991:
1993:

Flynn
Riseman/Foster

* Neural: AMD, Samsung
* TAGE: Intel?, ARM?

Two-level predictions Simila r|ty

gshare, tournament

Smith Predictor

1996:

Confidence estimation — Many sources or “features”

1996: Vary history length

1998: Cache exceptions e Key difference: how to combine them
2001: Neural predictor — TAGE: Override via partial match
2004: PPM _

— Neural: integrate + threshold
2006: TAGE .

* Every CBP is a cage match

— Andre Seznec vs. Daniel Jimenez

2016: Still TAGE vs Neural

The TAGE

L(0)

L(1)
L(2)
L(3)

L(4)

The TAGE

The set of history lengths forms a geometric series

Capture correlation
on very long histories

/

’ 32, 64, 128}

What is important: L(1)-L(i-1) Is drastically increasing

Micro-architecture

pC pc h[O0:L1] pc h[0:L2] pc h[0:L3]
i I
has has has | has | has | has |
% ¥ Et 1%
tag u ctri tag u
A1 A1 A1
% A4
/1 \\ 4

prediction

Moinuddin Qureshi @mointweets - Aug 29, 2019

Replying to @RunBaconHockey

Will do -- | meant that after his paper was published, we almost
stopped publishing Branch Prediction papers at top tier
conferences. Yes, | agree it is a very important topic (and hence |
chaired CBP-2014).

e Seznec's TAGE paper from 2006 had a huge impact on
processor designs but it also resulted in raising the bar so high
that the number of publications in this area reduced
significantly

http://www.irisa.fr/alf/downloads/seznec/IntelResearchim
pactMedal.pdf

http://www.irisa.fr/alf/downloads/seznec/IntelResearchImpactMedal.pdf

