
Lecture-7 (Branch Predictors)
CS422-Spring 2020

Biswa@CSE-IITK

Welcome to
the World of
Predictors

2

Impact of a Branch?

CS422 3

Average dynamic instruction mix of SPEC CPU 2017
[Limaye and Adegbiya , ISPASS’18]:

SPECint SPECfp

Branches 19 % 11 %
Loads 24 % 26 %
Stores 10 % 7 %
Other 47 % 56 %

SPECint17: perlbench, gcc, mcf, omnetpp, xalancbmk, x264,
deepsjeng, leela, exchange2, xz

SPECfp17: bwaves, cactus, lbm, wrf, pop2, imagick, nab, fotonik3d, roms

What is the average run length between branches?

Roughly 5-10 instructions

http://www2.engr.arizona.edu/~tosiron/papers/2018/SPEC2017_ISPASS18.pdf

Branches and Jumps

CS422 4

Instruction Taken known? Target known?

J
After Inst. Decode After Inst. Decode

BEQZ/BNEZ After Inst. Execute After Inst. Execute

Static Branch Prediction

CS422 5

backward
90%

forward
50%

BEQ

BEQ

ISA can attach preferred direction semantics to branches,
e.g., Motorola MC88110

bne0 (preferred taken) beq0 (not taken)

ISA can allow arbitrary choice of statically predicted direction,
e.g., HP PA-RISC, Intel IA-64

typically reported as ~80% accurate

I1:
I2:

I3:
I4:
I5:

t1 t2 t3 t4 t5 t6 t7 t8Time:
Inst

I6:

IR IR

IF (Fetch) ID (Decode) EX (ALU)

IR IR

MEM WB

IF ID

IF

EX

ID

IF

MEM WB
EX stage

computes
if branch is

taken
If we predicted incorrectly,

these instructions MUST NOT
complete!

We update the PC based on the outputs of the
branch predictor. If it is perfect, pipe stays full!
Dynamic Predictors: a cache of branch history

I-Cache

A control

instr?

Taken

or Not

Taken?

If taken,

where to?

What PC?

Branch

Predictor

Predictions

Dynamic Branch Predictor

Branch Prediction

◼ Idea: Predict the next fetch address (to be used in the next cycle)

◼ Requires three things to be predicted at fetch stage:

❑ Whether the fetched instruction is a branch

❑ (Conditional) branch direction

❑ Branch target address (if taken)

◼ Observation: Target address remains the same for a conditional direct branch across
dynamic instances

❑ Idea: Store the target address from previous instance and access it with the PC

❑ Called Branch Target Buffer (BTB) or Branch Target Address Cache

Static Branch Prediction

◼ Always not-taken

❑ Simple to implement: no need for BTB, no direction prediction

❑ Low accuracy: ~30-40%

◼ Always taken

❑ No direction prediction

❑ Better accuracy: ~60-70%

◼ Backward branches (i.e. loop branches) are usually taken

Static Branch Prediction

◼ Profile-based

❑ Idea: Compiler determines likely direction for each branch using profile run. Encodes
that direction as a hint bit in the branch instruction format.

+ Per branch prediction → accurate if profile is representative!

-- Requires hint bits in the branch instruction format

-- Accuracy depends on dynamic branch behavior:

TTTTTTTTTTNNNNNNNNNN → 50% accuracy

TNTNTNTNTNTNTNTNTNTN → 50% accuracy

-- Accuracy depends on the representativeness of profile input set

Dynamic Branch Prediction

◼ Idea: Predict branches based on dynamic information (collected at run-time)

◼ Advantages

+ Prediction based on history of the execution of branches

+ It can adapt to dynamic changes in branch behavior

+ No need for static profiling: input set representativeness problem goes away

◼ Disadvantages

-- More complex (requires additional hardware)

Predictor as a Black Box

Predictor

Operations

• Predict

• Update

Truth/Feedback

Input Prediction

Prediction as a feedback control process

Learning

Temporal correlation

The way a branch resolves may be a good
predictor of the way it will resolve at the next
execution

Spatial correlation

Several branches may resolve in a highly
correlated manner (a preferred path of
execution)

Primitive

• Indexed table holding values

• Operations
Index

– Predict

– Update Depth P

Prediction

Update
I U

Width

• Algebraic notation

Prediction = P[Width, Depth](Index; Update)

Simplest One: Last-Time Predictor

◼ Last time predictor

❑ Indicates which direction branch went last time it executed

TTTTTTTTTTNNNNNNNNNN → 90% accuracy

◼ Always mis-predicts the last iteration and the first iteration of a loop branch

❑ Accuracy for a loop with N iterations = (N-2)/N

+ Loop branches for loops with large number of iterations

-- Loop branches for loops will small number of iterations

TNTNTNTNTNTNTNTNTNTN → 0% accuracy

Last-time predictor CPI = [1 + (0.20*0.15) * 2] = 1.06 (Assuming 20% instructions are branches
and branch predictor has 85% accuracy)

Last-Time

predict
taken

predict
not

taken

actually
not taken

actually
taken

actually
taken

actually
not taken

Last-time Predictor: The hardware

K bits of branch
instruction address

Index

Branch history table of 2K entries,
1 bit per entry

Use this entry to predict

0: predict not taken
1: predict taken

When branch direction resolved, go back into the table and
update entry: 0 if not taken, 1 if taken

①

②

③

Example: Predict!!

0xDC08: for(i=0; i < 100000; i++)
{

0xDC44: if((i % 100) == 0)
tick();

0xDC50: if((i & 1) == 1)
odd();

}

T

N

99.998%
Prediction

Rate

98.0%

0.0%

Change Predictor after 2 Mistakes

pred
taken

pred
taken

pred
!taken

pred
!taken

actually
taken

actually
taken actually

!taken

actually
!taken

actually
!taken

actually
!taken

actually
taken

actually
taken

“weakly
taken”

“strongly
taken”

“weakly
!taken”

“strongly
!taken”

Is This Enough
• Control flow instructions (branches) are frequent

• 15-25% of all instructions

• Problem: Next fetch address after a control-flow instruction is not determined after N
cycles in a pipelined processor

• N cycles: (minimum) branch resolution latency

• Stalling on a branch wastes instruction processing bandwidth (i.e. reduces IPC)

• How do we keep the pipeline full after a branch?

• Problem: Need to determine the next fetch address when the branch is fetched (to avoid a
pipeline bubble)

Is This Enough?

• Assume a pipeline with 20-cycle branch resolution latency

• How long does it take to fetch 100 5-instruction blocks (500 instructions)?

• Assume 1 out of 5 instructions is a branch, fetch width of 5, each 5 instruction block
ends in a branch

• 100% accuracy : 100 cycles (all instructions fetched on the correct path)

• No wasted work

• 99% accuracy: 100 (correct path) + 20 (wrong path) = 120 cycles

• 20% extra instructions fetched

• 98% accuracy: 100 (correct path) + 20 * 2 (wrong path) = 140 cycles

• 40% extra instructions fetched

• 95% accuracy: 100 (correct path) + 20 * 5 (wrong path) = 200 cycles

• 100% extra instructions fetched

Fetch Stage with BTB and Direction Prediction

target address

Direction predictor (2-bit counters)

Cache of Target Addresses (BTB: Branch Target Buffer)

Program
Counter

PC + inst size

taken?

Next Fetch
Address

hit?

Address of the
current branch

In Some Cases: No Need of BTB Access

A:
CALL B

CALL C

C:
RET

RET

B:

A

A B

A B C

A B

A

target address

Direction predictor (2-bit counters)

BTB

Program
Counter

PC + inst size

taken?

Next Fetch
Address

hit?

Let’s Revisit

(Push)

Return
Address
Stack (RAS)

(Pop)

BTB (Why 30-bit Tag?)

0b0110[...]01001000

2 state

bits

Branch

History Table

(BHT)target address

Branch Target Buffer (BTB)

PC + 4 + Loop

30-bit address tag

0b0110[...]0010

Address of branch instruction

Drawn
as fully associative

to focus
on the essentials.

In real designs, always
direct-mapped.

At EX stage,
update BTB/BHT,
kill instructions,

if necessary,

Branch instruction

BNEZ R1 Loop

“Taken” or“Not Taken”“Taken” Address

30 bits

=

=

=

=

“Hit”

4096
entries ...

No History based Branch Predictor

k bit

2p

(PC >> 2) & (2p -1)

Bimodal predictor: Good for biased branches

Local History & Global History

• Local Behavior

What is the predicted direction of Branch A given the outcomes of previous instances of
Branch A?

• Global Behavior

What is the predicted direction of Branch Z given the outcomes of all* previous branches
A, B, …, X and Y?

* Number of previous branches tracked limited by the history length

Two Level Global Branch Prediction [MICRO ‘91]

◼ First level: Global branch history register (N bits)

❑ The direction of last N branches

◼ Second level: Table of saturating counters for each history entry

❑ The direction the branch took the last time the same history was seen

1 1 ….. 1 0

GHR

(global history register)

00 …. 00

00 …. 01

00 …. 10

11 …. 11

0 1

2 3

index

Pattern History Table (PHT)

previous one

• Table of saturating counters

GHR

PHT

1 1 ….. 1 0

00 …. 00

00 …. 01

00 …. 10

11 …. 11

m bit

k bit

2m

Set of Branches – One Register

1 1 ….. 1 0

m bit

2p

(PC % 2p)

BHT

Interference in Tables

• Sharing the PHTs between histories/branches leads to interference

• Different branches map to the same PHT entry and modify it

• Interference can be positive, negative, or neutral

• Interference can be eliminated by dedicating a PHT per branch

-- Too much hardware cost

• How else can you eliminate

or reduce interference?

What if One Branch -> One History -> One PHT ?

1 1 ….. 1 0

00 …. 00

00 …. 01

00 …. 10

11 …. 11

m bit k bit

2p

(PC >> 2) & (2p -1)

BHT PHT

2m

GShare

1 1 ….. 1 0

00 …. 00

00 …. 01

00 …. 10

11 …. 11

m bit

k bit

2m

PC >>2 & 2m -1

For a given history and for a given branch (PC) counters are trained

Y & P Classification [MICRO 91]

GBHR

GPHT

GAg
GPHT

PABHR

PAg (SAg?)

PAPHT
PABHR

PAp

• GAg: Global History Register, Global History Table
• PAg: Per-Address History Register, Global History Table
• PAp: Per-Address History Register, Per-Address History Table

Tournament Predictor

Pred0 Pred1

Meta-

Predictor

Final Prediction

table of 2-/3-bit

counters

If meta-counter MSB = 0,

use pred0 else use pred1

Some Other Predictors

• Loop branch detector and predictor
• Loop iteration count detector/predictor
• Works well for loops, where iteration count is predictable
• Used in Intel Pentium M

• Perceptron branch predictor
• Learns the direction correlations between individual branches
• Assigns weights to correlations
• Jimenez and Lin, “Dynamic Branch Prediction with

Perceptrons,” HPCA 2001.

• Hybrid history length based predictor
• Uses different tables with different history lengths
• Seznec, “Analysis of the O-Geometric History Length branch

predictor,” ISCA 2005.

Intel Pentium M Predictors

Gochman et al.,

“The Intel Pentium M Processor: Microarchitecture and Performance,”

Intel Technology Journal, May 2003.

State-of-the-Art

L(0)
?

L(4)

L(3)

L(2)

L(1)

TO

T1

T2

T3

T4

The TAGE

The TAGE

The set of history lengths forms a geometric series

What is important: L(i)-L(i-1) is drastically increasing

{0, 2, 4, 8, 16, 32, 64, 128}

Capture correlation

on very long histories

Micro-architecture

pc h[0:L1]

ctr
u

tag

has
h

has
h

=?

ctr
u

tag

has
h

has
h

=?

ctr
u

tag

has
h

has
h

=?

prediction

pc pc h[0:L2] pc h[0:L3]

1
1 1 1 1 1 1

1

1

Tagless base
predictor

Impact

• Seznec's TAGE paper from 2006 had a huge impact on
processor designs but it also resulted in raising the bar so high
that the number of publications in this area reduced
significantly

• http://www.irisa.fr/alf/downloads/seznec/IntelResearchIm
pactMedal.pdf

http://www.irisa.fr/alf/downloads/seznec/IntelResearchImpactMedal.pdf

