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What about Multi-core Systems?
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Throughput  = ∑  IPC (i) 

Weighted Speedup = ∑  (IPC-together(i) / IPC-alone (i)) 

Harmonic Mean of Speedups = N/∑  (IPC-alone(i)/IPC-together (i)) 

Unfairness = 
Max-Slowdown/Min-Slowdown = 
max(Individual slowdowns)/min(individual slowdowns) 

Individual Slowdown (i) = CPI-together (i) / CPI-alone (i)

Application i running on an N-core system 



Example
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Single Program IMTEL AND

App. A IPC=1 IPC=0.5 1

App. B IPC=2 IPC=1 0.5

IMTEL AND

Weighted Speedup 1 1.25

Hmean of Speedups 0.5 0.4

Amean of IPCs 0.75 0.75

Hmean of IPCs 0.66 0.66



ISA
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ISA 
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• ISA: Instruction SetArchitecture

– A well-defined hardware/software interface

• The “contract” between software andhardware

– Functional definition of operations supported byhardware

– Precise description of how toinvoke all features

• No guarantees regarding

– How operations are implemented

– Which operations are fast and which are slow (andwhen)

– Which operations take more energy (and which takeless)



ISA
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... the attributes of a [computing] system as seen by the programmer, 
i.e.  the conceptual structure and functional behavior, as distinct 
from the organization of the data flows and controls the logic design, 
and the physical implementation.    

– Amdahl, Blaaw, and Brooks,  1964



ISA
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• Programmer-visible states

– Program counter, general purpose registers,  
memory, control registers

• Programmer-visible behaviors
– What to do, when todo it

ISAs last forever, don’t add stuff you don’t need



An Example of Instruction Encoding
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Syntax: ADD $8 $9 $10 Semantics: $8 = $9 + $10

000000 01001 01010 01000 00000 100000Binary:

opcode rs rt rd functshamtBitfield:



Features of the Ideal ISA
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• Unambiguous

• Expressive

• Easily describes all the algorithms that will run on this platform

• Instructions are used

• Very complex instructions might not be used often

• (Relatively) easy to compile, easy to implement well

• Implementation provides good performance, cost, etc.

• ISAs often highly reliant on microarchitecture and vice-versa

• Some ISAs easy to implement on some microarchitectures

• Some microarchitectures make some instructions easy to implement



Do not get confused with micro-architecture
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◼ ISA

❑ Agreed upon interface between software and hardware

◼ SW/compiler assumes, HW promises

❑ What the software writer needs to know to write and debug system/user 
programs 

◼ Microarchitecture

❑ Specific implementation of an ISA, Not visible to the software

◼ Microprocessor

❑ ISA, uarch, circuits

❑ “Architecture” = ISA + microarchitecture
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◼ Instructions

❑ Opcodes, Addressing Modes, Data Types

❑ Instruction Types and Formats

❑ Registers, Condition Codes

◼ Memory

❑ Address space, Addressability, Alignment, Virtual memory management

◼ Call, Interrupt/Exception Handling, Access Control, Priority/Privilege 

◼ I/O: memory-mapped vs. instr, Task/thread Management, Power and Thermal 
Management

◼ Multi-threading support, Multiprocessor support

ISA



Micro-architecture
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◼ Implementation of the ISA under specific design constraints and goals

◼ Anything done in hardware without exposure to software

❑ Pipelining

❑ In-order versus out-of-order instruction execution

❑ Memory access scheduling policy

❑ Speculative execution

❑ Superscalar processing (multiple instruction issue?)

❑ Clock gating

❑ Caching? Levels, size, associativity, replacement policy, Prefetching?

❑ Voltage/frequency scaling? Error correction?



What is What?
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◼ ADD instruction’s opcode

◼ Number of general purpose registers

◼ Number of ports to the register file

◼ Number of cycles to execute the MUL instruction

◼ Whether or not the machine employs pipelined instruction execution

◼ Remember

❑ Microarchitecture: Implementation of the ISA under specific design 
constraints and goals



Design Point
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◼ A set of design considerations and their importance 

❑ leads to tradeoffs in both ISA and uarch

◼ Considerations

❑ Cost

❑ Performance

❑ Maximum power consumption and Energy consumption (battery life)

❑ Availability

❑ Reliability and Correctness 

❑ Time to Market

◼ Design point determined by the “Problem” space (application space), the 
intended users/market



Trade-offs
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◼ ISA-level tradeoffs

◼ Microarchitecture-level tradeoffs

◼ System and Task-level tradeoffs

❑ How to divide the labor between hardware and software

◼ Computer architecture is the science and art of making the appropriate trade-
offs to meet a design point

❑ Why art?



Mantra
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Microarchitecture
ISA

PLs
Algorithm
Problem

Runtime System
(VM, OS, MM)

User

We do not (fully) know the future (applications, users, market) and it changes

Logic
Circuits
Electrons

New demands 
from the top
(Look Up)

New issues and
capabilities
at the bottom
(Look Down)

New demands and
personalities of users
(Look Up)



ISA in Details
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• Which architecture to use: Stack, Accumulator, R-R, R-M 

• #Registers 

• Trade-offs in terms of #operands, #registers, ….

• Big vs Little Endian 

• Importance of Alignment 

• Which instructions are dominant and which addressing modes are 
dominant ?

• Fixed vs Variable Encoding , RISC vs CISC 

• Pseudo - instructions

• ISA vs micro-architecture



Architecture, registers, operands, etc
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• Instruction processing style

• Specifies the number of “operands” an instruction “operates” on and how it 
does so

• 0, 1, 2, 3 address machines: 0-address: stack machine (push A, pop A, op)

• 1-address: accumulator machine (ld A, st A, op A)

• 2-address: 2-operand machine (one is both source and dest)

• 3-address: 3-operand machine (source and dest are separate)

• Tradeoffs? Larger operate instructions vs. more executed operations

• Code size vs. execution time vs. on-chip memory space



Endianness (Byte Ordering within a Word)
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• Big Endian:  address of most significant byte = word address 
(xx00 = Big End of word)

– IBM 360/370, Motorola 68k, MIPS, Sparc, HP PA

• Little Endian: address of least significant byte = word address
(xx00 = Little End of word)

– Intel 80x86, DEC Vax, DEC Alpha (Windows NT)

msb lsb

3          2          1           0

little endian byte 0

0          1          2           3

big endian byte 0



Example

• int x = ABCD 

• Big-endian: 

Little-endian: 

Big –endian: A B C D, Little-endian: D C B A

But why to have two options? Why not an universal one? What about bi-
endianness? Can we check the endianness of our machine? Why not have 
endianness at the bit level? 
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msb lsb

0          1          2           3

msb lsb

3          2          1           0



Alignment (A myth may be ☺)
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• Object of size s bytes at byte address A is aligned if 

A mod s = 0

• Alignment for faster transfer of data ? 

• Why fast ?? 

• Think about memory. 

0      1      2      3

Aligned

Not

Aligned



Dominant Instructions
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° Rank instruction Integer Average Percent total executed

1 load 22%

2 conditional branch 20%

3 compare 16%

4 store 12%

5 add 8%

6 and 6%

7 sub 5%

8 move register-register 4%

9 call 1%

10 return 1%

Total 96%

° Simple instructions dominate instruction frequency



RISC vs CISC
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RISC-I (1982) Contains 44,420 transistors, 
fabbed in 5 µm NMOS, with a die area of 77 
mm2, ran at 1 MHz. This chip is probably the 
first VLSI RISC.

RISC-II (1983) contains 40,760 transistors, was 
fabbed in 3 µm NMOS, ran at 3 MHz, and the 
size is 60 mm2.



RISC vs CISC
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• CISC vs. RISC

• Complex instruction set computer → complex instructions

• Initially motivated by “not good enough” code generation

• Reduced instruction set computer → simple instructions

• John Cocke, mid 1970s, IBM 801, Goal: enable better compiler control

• RISC motivated by 

• Memory stalls (no work done in a complex instruction when there is a 
memory stall?)

• Simplifying the hardware → lower cost, higher frequency

• Enabling the compiler to optimize the code better

• Find fine-grained parallelism to reduce stalls



Warm-up on Scribing: Due January 21th

• ISA, RISC-CISC, RISC-V 

• https://people.eecs.berkeley.edu/~kubitron/courses/cs252-
F00/handouts/papers/patterson80.pdf

• http://www.cs.uccs.edu/~xzhou/teaching/CS4520/Assignment/paper
s/R1_Comment_Case_RISC_SigArchNews_patterson.pdf

• https://engineering.berkeley.edu/magazine/spring-2015/simplify-risc-
story
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https://people.eecs.berkeley.edu/~kubitron/courses/cs252-F00/handouts/papers/patterson80.pdf
http://www.cs.uccs.edu/~xzhou/teaching/CS4520/Assignment/papers/R1_Comment_Case_RISC_SigArchNews_patterson.pdf
https://engineering.berkeley.edu/magazine/spring-2015/simplify-risc-story


Instruction Pipelining
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Single-Instruction Datapath
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• Process one instruction at a time

• Single-cycle control: hardwired
• Low CPI (1)
• Long clock period (to accommodate slowest instruction)

• Multi-cycle control: typically micro-programmed
• Short clock period
• High CPI

• Can we have both low CPI and short clock period?
• Not if datapath executes only one instruction at a time
• No good way to make a single instruction go faster

Single-cycle

Multi-cycle

ins0.(fetch,dec,ex,mem,wb) ins1.(fetch,dec,ex,mem,wb)

ins0.(dec,ex)ins0.fetch ins1.(dec,ex)ins1.fetchins0.(mem,wb) ins1.(mem,wb)

time



Write-Back (WB)

Memory
(MEM)

Execute
(EX)

Inst. Decode &
Register Read

(ID)

5-Stage MIPS Datapath

Inst. Fetch
(IF)

I-cache

Reg

File
PC

+1

D-cache

ALU

RS_STEPIF_STEP ID_STEP OF_STEP EX_STEP



Stage 1: Fetch
• Fetch instruction from instruction cache

• Use PC to index instruction cache

• Increment PC (assume no branches for now)

• Write state to the pipeline register (IF/ID)
• The next stage will read this pipeline register



Stage 1: Fetch Diagram
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Stage 2: Decode
• Decodes opcode bits

• Set up Control signals for later stages

• Read input operands from register file
• Specified by decoded instruction bits

• Write state to the pipeline register (ID/EX)
• Opcode

• Register contents, immediate operand

• PC+1 (even though decode didn’t use it)

• Control signals (from insn) for opcode and destReg



Stage 2: Decode Diagram
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Stage 3: Execute
• Perform ALU operations

• Calculate result of instruction
• Control signals select operation

• Contents of regA used as one input

• Either regB or constant offset (imm from insn) used as second input

• Calculate PC-relative branch target
• PC+1+(constant offset)

• Write state to the pipeline register (EX/Mem)
• ALU result, contents of regB, and PC+1+offset

• Control signals (from insn) for opcode and destReg



Stage 3: Execute Diagram
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Stage 4: Memory
• Perform data cache access

• ALU result contains address for LD or ST

• Opcode bits control R/W and enable signals

• Write state to the pipeline register (Mem/WB)
• ALU result and Loaded data

• Control signals (from insn) for opcode and destReg



Stage 4: Memory Diagram
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Stage 5: Write-back
• Writing result to register file (if required)

• Write Loaded data to destReg for LD 

• Write ALU result to destReg for ALU insn

• Opcode bits control register write enable signal



Stage 5: Write-back Diagram
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Putting It All Together
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