
Lectures:15-17 (Caches Continued)
CS422-Spring 2020

Biswa@CSE-IITK

Design Issues: Unified vs Split

• Unified:
+ Dynamic sharing of cache space: no overprovisioning that might happen with static

partitioning (i.e., split I and D caches)

-- Instructions and data can thrash each other (i.e., no guaranteed space for either)

-- I and D are accessed in different places in the pipeline. Where do we place the unified
cache for fast access?

• First level caches are almost always split
• for the last reason above

• Second and higher levels are almost always unified

Reads are not Writes

• If a write enters the cache, what happens if
• There is a cache miss

• Does the cache need to bring in the cache line?

• There is a cache hit

• Does the cache need to write back to memory?

Write Policies

• Cache hit:
• write through: write both cache & memory

• Generally higher traffic but simpler pipeline & cache design
• write back: write cache only, memory is written only when the

entry is evicted
• A dirty bit per line further reduces write-back traffic
• Must handle 0, 1, or 2 accesses to memory for each

load/store

• Cache miss:
• no write allocate: only write to main memory
• write allocate (aka fetch on write): fetch into cache

• Common combinations:
• write through and no write allocate
• write back with write allocate

Write Buffers

Processor is not stalled on writes, and read misses can go ahead of
write to main memory

Problem: Write buffer may hold updated value of location needed by a read miss

Simple solution: on a read miss, wait for the write buffer to go empty

Faster solution: Check write buffer addresses against read miss addresses, if no
match, allow read miss to go ahead of writes, else, return value in write buffer

Data Cache
Unified
L2 Cache

RF

CPU

Write
buffer

Evicted dirty lines for writeback cache
OR
All writes in writethrough cache

Multi-level Caches

Problem: A memory cannot be large and fast

Solution: Increasing sizes of cache at each level

CPU L1$ L2$ DRAM

Local miss rate = misses in cache / accesses to cache
Global miss rate = misses in cache / CPU memory accesses
Misses per instruction = misses in cache / number of instructions

Performance: AMAT

Average memory access time (AMAT) = Hit time + Miss rate x Miss penalty

Average memory access time (AMAT) = Hit time + Miss rate1 x Miss penalty1

+ Miss rate2 x Miss penalty2

Improving Cache Performance

Average memory access time (AMAT) =
Hit time + Miss rate x Miss penalty

To improve performance:
• reduce the hit time
• reduce the miss rate
• reduce the miss penalty

Biggest cache that doesn’t increase hit time past 1 cycle
(approx 8-32KB in modern technology)

[design issues more complex with deeper pipelines and/or out-of-
order superscalar processors]

The 3Cs

Compulsory:

first reference to a line (a.k.a. cold start misses)
• misses that would occur even with infinite cache

Capacity:

cache is too small to hold all data needed by the
program

• misses that would occur even under perfect
replacement policy

Conflict:

misses that occur because of collisions due to line-
placement strategy

• misses that would not occur with ideal full associativity

Cache Knobs and Performance

• Larger cache size
+ reduces capacity and conflict misses
- hit time will increase

• Higher associativity
+ reduces conflict misses
- may increase hit time

• Larger line size
+ reduces compulsory and capacity (reload) misses
- increases conflict misses and miss penalty

Non-blocking Cache

• Enable cache access when there is a pending miss

• Enable multiple misses in parallel
• Memory-level parallelism (MLP)

• generating and servicing multiple memory accesses in parallel

• Why generate multiple misses?

• Enables latency tolerance: overlaps latency of different misses

• How to generate multiple misses?
• Out-of-order execution, multithreading, prefetching

time

A
C

B

isolated miss parallel miss

Miss-Status Holding Registers

• Also called “miss buffer”

• Keeps track of
• Outstanding cache misses
• Pending load/store accesses that refer to the missing cache

block

• Fields of a single MSHR
• Valid bit
• Cache block address (to match incoming accesses)
• Control/status bits (prefetch, issued to memory, which

subblocks have arrived, etc)
• Data for each subblock
• For each pending load/store

• Valid, type, data size, byte in block, destination register or store buffer
entry address

MSHRs

MSHR in Action

• On a cache miss:
• Search MSHR for a pending access to the same block

• Found: Allocate a load/store entry in the same MSHR entry

• Not found: Allocate a new MSHR

• No free entry: stall

• When a subblock returns from the next level in memory
• Check which loads/stores waiting for it

• Forward data to the load/store unit

• Deallocate load/store entry in the MSHR entry

• Write subblock in cache or MSHR

• If last subblock, dellaocate MSHR (after writing the block in
cache)

Early Restart and CWF

° Don’t wait for full block to be loaded before restarting CPU

•Early restart—As soon as the requested word of the block arrives, send it to the
CPU and let the CPU continue execution

•Critical Word First—Request the missed word first from memory and send it to
the CPU as soon as it arrives; let the CPU continue execution while filling the rest
of the words in the block. Also called wrapped fetch and requested word first

° Generally useful only in large blocks,

° Spatial locality a problem; tend to want next sequential word, so not clear if benefit
by early restart

Victim Cache

To Next Lower Level In
Hierarchy

DATATAGS

One Cache line of DataTag and Comparator

One Cache line of DataTag and Comparator

One Cache line of DataTag and Comparator

One Cache line of DataTag and Comparator

° How to combine fast hit time
of direct mapped
yet still avoid conflict misses?

° Add buffer to place data
discarded from cache

° Jouppi [1990]: 4-entry victim
cache removed 20% to 95% of
conflicts for a 4 KB direct
mapped data cache

° Used in Alpha, HP machines

Trace Cache

Key Idea: Pack multiple non-contiguous basic blocks into one
contiguous trace cache line

• Single fetch brings in multiple basic blocks

• Trace cache indexed by start address and next n

branch predictions

BR BR BR

BRBRBR

Multi-Banked Cache
• Rather than treat the cache as a single monolithic block, divide into independent banks that

can support simultaneous accesses
– E.g.,T1 (“Niagara”) L2 has 4 banks

• Banking works best when accesses naturally spread themselves across banks mapping of
addresses to banks affects behavior of memory system

• Simple mapping that works well is “sequential interleaving”
– Spread block addresses sequentially across banks

– E,g, if there 4 banks, Bank 0 has all blocks whose address modulo 4 is 0; bank 1 has all blocks whose address modulo 4
is 1; …

Way Prediction

❖ Way prediction helps select one block among those in a set, thus requiring only one tag
comparison (if hit).

➢ Preserves advantages of direct-mapping (why?);

➢ In case of a miss, other block(s) are checked.

❖ Pseudoassociative (also called column associative) caches

➢ Operate exactly as direct-mapping caches when hit, thus again preserving
advantages of the direct-mapping;

➢ In case of a miss, another block is checked (as if in set-associative caches), by simply
inverting the most significant bit of the index field to find the other block in the
“pseudoset”.

➢ real hit time < pseudo-hit time

Hardware Prefetching

What?
Latency-hiding technique - Fetches data before the core demands.

Why?
Off-chip DRAM latency has grown up to 400 to 800 cycles.

How?
By observing/predicting the demand access (LOAD/STORE) patterns.

Prefetch Engine

L2

Prefetcher

X+2

X+3

C
o

re X+3

❶

❷

❸

❹

❺
HIT

X+1

X

Prefetch Degree

Prefetch Degree: Number of prefetch requests to issue at a given time.

L2

L3/DRAM

Prefetcher

X

Demand
Access

X+1

X+2

X+1 X+2

X+1 X+3 X+4

Prefetch Distance

Prefetch Distance: How far ahead of the demand access stream are the
prefetch requests issued?

demand
access

Prefetch-distance

X Y

prefetch

Y = X + 4
Y = X + 8
Y = X + 16

Next-line Prefetcher

Next Line: Miss to cache block X , prefetch X+1. Degree=1, Distance=1

Works well for L1 Icache and L1 Dcache.

What About This?

Stride Prefetching

PC effective address

instruction tag previous address stride state

-

+

prefetch address

Quantifying Prefetchers

(i)Prefetch

(i)Prefetch
curacy(i)PrefetchAc

issued

hits
=

(i)Prefetch

(i)Prefetch
)Lateness(i

hits

late
=

(i)Demand

Poll(i) LLC
i)Pollution(

misses

=

Prefetched Block in the Cache.

Prefetched Block Still on its way

Prefetched Block evicted a demand
block that will be reused

(i)Demand (i) HitsPrefetch

Hits(i)Prefetch
)Coverage(i

misses+
=

Fraction of misses avoided

