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Semiconductor Memory

• Semiconductor memory began to be competitive in 
early 1970s
• Intel formed to exploit market for semiconductor memory

• Early semiconductor memory was Static RAM  (SRAM).  SRAM cell 
internals similar to a latch (cross-coupled inverters).

• First commercial Dynamic RAM (DRAM) was Intel 
1103
• 1Kbit of storage on single chip

• charge on a capacitor used to hold value

Semiconductor memory quickly replaced core in ‘70s
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DRAM vs SRAM
• DRAM

• Slower access (capacitor)

• Higher density (1T 1C cell)

• Lower cost

• Requires refresh (power, performance, circuitry)

• SRAM
• Faster access (no capacitor)

• Lower density (6T cell)

• Higher cost

• No need for refresh



The Problem?

• Bigger is slower
• SRAM, 512 Bytes, sub-nanosec
• SRAM,  KByte~MByte, ~nanosec
• DRAM, Gigabyte, ~50 nanosec
• Hard Disk, Terabyte, ~10 millisec

• Faster is more expensive (dollars and chip area)
• SRAM, < 10$ per Megabyte
• DRAM, < 1$ per Megabyte
• Hard Disk < 1$ per Gigabyte
• These sample values scale with time

• Other technologies have their place as well 
• Flash memory, PC-RAM, MRAM, RRAM (not mature yet)



Why Memory Hierarchy?

• We want both fast and large

• But we cannot achieve both with a single level of memory

• Idea: Have multiple levels of storage (progressively bigger and slower as the 
levels are farther from the processor) and ensure most of the data the 
processor needs is kept in the fast(er) level(s)



Memory Wall Problem
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Size Affects Latency

Small 
Memory

CPU

Big Memory

CPU

▪ Signals have further to travel
▪ Fan out to more locations

Motivates 3D stacking



Memory Hierarchy

Small,
Fast Memory

(RF, SRAM)

• capacity:  Register << SRAM << DRAM
• latency:   Register << SRAM << DRAM
• bandwidth: on-chip >> off-chip

On a data access:
if data  fast memory  low latency access (SRAM)
if data  fast memory  high latency access (DRAM)

CPU
Big, Slow Memory

(DRAM)

A B

holds frequently used data



Access Patterns

Donald J. Hatfield, Jeanette Gerald: Program Restructuring for Virtual 

Memory. IBM Systems Journal 10(3): 168-192 (1971)
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Examples

Address

Time
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Locality of Reference

• Temporal Locality: If a location is referenced it is likely to be referenced 
again in the near future.

• Spatial Locality: If a location is referenced it is likely that locations near 
it will be referenced in the near future.
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Inside a Cache
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Cache Events

Look at Processor Address, search cache tags to find match.  Then 
either

Found in cache
a.k.a.  HIT

Return copy
of data from
cache

Not in cache
a.k.a. MISS

Read block of data from
Main Memory

Wait … 

Return data to processor
and update cache

Q: Which line do we replace?



Placement Policy
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Direct Mapped
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Set-Associative 
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Block (line) Size ?

Word3Word0 Word1 Word2

Larger block size has distinct hardware advantages
• less tag overhead
• exploit fast burst transfers from DRAM
• exploit fast burst transfers over wide busses

What are the disadvantages of increasing block size?

block address offsetb

2b = block size a.k.a line size (in bytes)

Split CPU 
address

b bits32-b bits

Tag 4 word block, b=2

Fewer blocks => more conflicts.  Can waste bandwidth.



Block Size?

◼ Block size is the data that is associated with an address tag 

❑ not necessarily the unit of transfer between hierarchies

◼ Sub-blocking: A block divided into multiple pieces (each with V bit)

❑ Can improve “write” performance

◼ Too small blocks

❑ don’t exploit spatial locality well

❑ have larger tag overhead

◼ Too large blocks

❑ too few total # of blocks

◼ likely-useless data transferred

◼ Extra bandwidth/energy consumed

hit rate

block

size



Cache Size

◼ Cache size: total data (not including tag) capacity

❑ bigger can exploit temporal locality better

❑ not ALWAYS better

◼ Too large a cache adversely affects hit and miss latency

❑ smaller is faster => bigger is slower

❑ access time may degrade critical path

◼ Too small a cache

❑ doesn’t exploit temporal locality well

❑ useful data replaced often

◼ Working set: the whole set of data                                                    
the executing application references 

❑ Within a time interval 

hit rate

cache size

“working set”
size



Associativity 

◼ How many blocks can map to the same index (or set)?

◼ Larger associativity

❑ lower miss rate, less variation among programs

❑ diminishing returns, higher hit latency

◼ Smaller associativity

❑ lower cost

❑ lower hit latency

◼ Especially important for L1 caches

◼ Power of 2 associativity? associativity

hit rate



CPU – Cache Interaction 
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