
Lecture-13 and 14 (Memory Hierarchy)
CS422-Spring 2020

Biswa@CSE-IITK

The Ideal World

Instruction

Supply

Pipeline

(Instruction

execution)

Data

Supply

- Zero-cycle latency

- Infinite capacity

- Zero cost

- Perfect control flow

- No pipeline stalls

-Perfect data flow

(reg/memory dependencies)

- Zero-cycle interconnect

(operand communication)

- Enough functional units

- Zero latency compute

- Zero-cycle latency

- Infinite capacity

- Infinite bandwidth

- Zero cost

Semiconductor Memory

• Semiconductor memory began to be competitive in
early 1970s
• Intel formed to exploit market for semiconductor memory

• Early semiconductor memory was Static RAM (SRAM). SRAM cell
internals similar to a latch (cross-coupled inverters).

• First commercial Dynamic RAM (DRAM) was Intel
1103
• 1Kbit of storage on single chip

• charge on a capacitor used to hold value

Semiconductor memory quickly replaced core in ‘70s

One-transistor DRAM
1-T DRAM Cell

word

bit

access transistor

Storage
capacitor (FET gate, trench, stack)

VREF

DRAM vs SRAM
• DRAM

• Slower access (capacitor)

• Higher density (1T 1C cell)

• Lower cost

• Requires refresh (power, performance, circuitry)

• SRAM
• Faster access (no capacitor)

• Lower density (6T cell)

• Higher cost

• No need for refresh

The Problem?

• Bigger is slower
• SRAM, 512 Bytes, sub-nanosec
• SRAM, KByte~MByte, ~nanosec
• DRAM, Gigabyte, ~50 nanosec
• Hard Disk, Terabyte, ~10 millisec

• Faster is more expensive (dollars and chip area)
• SRAM, < 10$ per Megabyte
• DRAM, < 1$ per Megabyte
• Hard Disk < 1$ per Gigabyte
• These sample values scale with time

• Other technologies have their place as well
• Flash memory, PC-RAM, MRAM, RRAM (not mature yet)

Why Memory Hierarchy?

• We want both fast and large

• But we cannot achieve both with a single level of memory

• Idea: Have multiple levels of storage (progressively bigger and slower as the
levels are farther from the processor) and ensure most of the data the
processor needs is kept in the fast(er) level(s)

Memory Wall Problem

Time

µProc 60%/year

DRAM
7%/year

1

10

100

1000
1

9
8

0

1
9

8
1

1
9

8
3

1
9

8
4

1
9

8
5

1
9

8
6

1
9

8
7

1
9

8
8

1
9

8
9

1
9

9
0

1
9

9
1

1
9

9
2

1
9

9
3

1
9

9
4

1
9

9
5

1
9

9
6

1
9

9
7

1
9

9
8

1
9

9
9

2
0

0
0

DRAM

CPU

1
9

8
2

Processor-Memory
Performance Gap:
(growing 50%/yr)

Pe
rf

o
rm

an
ce

Size Affects Latency

Small
Memory

CPU

Big Memory

CPU

▪ Signals have further to travel
▪ Fan out to more locations

Motivates 3D stacking

Memory Hierarchy

Small,
Fast Memory

(RF, SRAM)

• capacity: Register << SRAM << DRAM
• latency: Register << SRAM << DRAM
• bandwidth: on-chip >> off-chip

On a data access:
if data fast memory low latency access (SRAM)
if data fast memory high latency access (DRAM)

CPU
Big, Slow Memory

(DRAM)

A B

holds frequently used data

Access Patterns

Donald J. Hatfield, Jeanette Gerald: Program Restructuring for Virtual

Memory. IBM Systems Journal 10(3): 168-192 (1971)

Time

M
e

m
o

ry
 A

d
d

re
ss

 (
o

n
e

 d
o

t
p

e
r

ac
ce

ss
)

Examples

Address

Time

Instruction
fetches

Stack
accesses

Data
accesses

n loop iterations

subroutine
call

subroutine
return

argument access

scalar accesses

Locality of Reference

• Temporal Locality: If a location is referenced it is likely to be referenced
again in the near future.

• Spatial Locality: If a location is referenced it is likely that locations near
it will be referenced in the near future.

Again

Time

M
e

m
o

ry
 A

d
d

re
ss

 (
o

n
e

 d
o

t
p

e
r

ac
ce

ss
)

Spatial
Locality

Temporal
Locality

Inside a Cache

CACHEProcessor Main
Memory

Address Address

DataData

Address
Tag

Data Block

Data
Byte

Data
Byte

Data
Byte

Line100

304

6848

copy of main
memory
location 100

copy of main
memory
location 101

416

Cache Events

Look at Processor Address, search cache tags to find match. Then
either

Found in cache
a.k.a. HIT

Return copy
of data from
cache

Not in cache
a.k.a. MISS

Read block of data from
Main Memory

Wait …

Return data to processor
and update cache

Q: Which line do we replace?

Placement Policy

0 1 2 3 4 5 6 70 1 2 3Set Number

Cache

Fully (2-way) Set Direct
Associative Associative Mapped
anywhere anywhere in only into

set 0 block 4
(12 mod 4) (12 mod 8)

0 1 2 3 4 5 6 7 8 9

1 1 1 1 1 1 1 1 1 1
0 1 2 3 4 5 6 7 8 9

2 2 2 2 2 2 2 2 2 2
0 1 2 3 4 5 6 7 8 9

3 3
0 1

Memory

Block Number

block 12
can be placed

Direct Mapped

Tag Data BlockV

=

Block
Offset

Tag Index

t
k b

t

HIT Data Word or Byte

2k

lines

In reality, tag-store is placed
separately

High bits or Low bits

Tag Data BlockV

=

Block
Offset

Index

tk

b

t

HIT Data Word or Byte

2k

lines

Tag

Set-Associative

Tag Data BlockV

=

Block
Offset

Tag Index

t
k

b

HIT

Tag Data BlockV

Data
Word
or Byte

=

t

Fully-associative

Tag Data BlockV

=

B
lo

ck
O

ff
se

t
Ta

g

t

b

HIT

Data
Word
or Byte

=

=

t

Block (line) Size ?

Word3Word0 Word1 Word2

Larger block size has distinct hardware advantages
• less tag overhead
• exploit fast burst transfers from DRAM
• exploit fast burst transfers over wide busses

What are the disadvantages of increasing block size?

block address offsetb

2b = block size a.k.a line size (in bytes)

Split CPU
address

b bits32-b bits

Tag 4 word block, b=2

Fewer blocks => more conflicts. Can waste bandwidth.

Block Size?

◼ Block size is the data that is associated with an address tag

❑ not necessarily the unit of transfer between hierarchies

◼ Sub-blocking: A block divided into multiple pieces (each with V bit)

❑ Can improve “write” performance

◼ Too small blocks

❑ don’t exploit spatial locality well

❑ have larger tag overhead

◼ Too large blocks

❑ too few total # of blocks

◼ likely-useless data transferred

◼ Extra bandwidth/energy consumed

hit rate

block

size

Cache Size

◼ Cache size: total data (not including tag) capacity

❑ bigger can exploit temporal locality better

❑ not ALWAYS better

◼ Too large a cache adversely affects hit and miss latency

❑ smaller is faster => bigger is slower

❑ access time may degrade critical path

◼ Too small a cache

❑ doesn’t exploit temporal locality well

❑ useful data replaced often

◼ Working set: the whole set of data
the executing application references

❑ Within a time interval

hit rate

cache size

“working set”
size

Associativity

◼ How many blocks can map to the same index (or set)?

◼ Larger associativity

❑ lower miss rate, less variation among programs

❑ diminishing returns, higher hit latency

◼ Smaller associativity

❑ lower cost

❑ lower hit latency

◼ Especially important for L1 caches

◼ Power of 2 associativity? associativity

hit rate

CPU – Cache Interaction

PC addr inst

Instruction
Cache

0x4
Add

IR

D

bubble

hit?

PCen

Decode,
Register
Fetch

wdata

R

addr

wdata

rdata
Primary
Data
Cache

we
A

B

YYALU

MD1 MD2

Cache Refill Data from Lower Levels of
Memory Hierarchy

hit?

Stall entire
CPU on data
cache miss

To Memory Control

M
E

