
Lecture-12
(Register Renaming+O3 wrap up)
CS422-Spring 2020

Biswa@CSE-IITK

All in One

Branch prediction

and instr fetch

R1 R1+R2

R2 R1+R3

BEQZ R2

R3 R1+R2

R1 R3+R2

Instr Fetch Queue

(16/32/64 entries)

Decode &

Rename

Instr 1

Instr 2

Instr 3

Instr 4

Instr 5

Instr 6

T1

T2

T3

T4

T5

T6

Reorder Buffer (ROB)

T1 R1+R2

T2 T1+R3

BEQZ T2

T4 T1+T2

T5 T4+T2

Issue Queue (IQ)

ALU ALU ALU

Register File

R1-R32

Results written to

ROB and tags

broadcast to IQ

Execution Units

In-order

In-order

In-order

Out-of-order

T1->R1, T5-> R1 when commit

Register value copy at ROB and IQ

All in One

Branch prediction

and instr fetch

R1 R1+R2

R2 R1+R3

BEQZ R2

R3 R1+R2

R1 R3+R2

Instr Fetch Queue

Decode &

Rename

Instr 1

Instr 2

Instr 3

Instr 4

Instr 5

Instr 6

Reorder Buffer (ROB)

P33 P1+P2

P34 P33+P3

BEQZ P34

P35 P33+P34

P36 P35+P34

Issue Queue (IQ)

ALU ALU ALU

Register File

P1-P64

Speculative

Reg Map

R1→P36

R2→P34

Committed

Reg Map

R1→P1

R2→P2

Logical

Registers

Rename

Registers

R1->P1, R2->P2 ….. P32,
free pool: based on commits

Now, we can assume
T1->P33

T1

T2

T3

T4

T5

T6

R1->P1, P33

Left the pipeline

In the pipeline

R1->P33
When I1 commits
Similarly R2-> P34, P1 and P2 free
When R3 commits no change to map, I
t was P3, P3 is free

Size of the ROB = physical -logical

Speculative

Reg Map

Committed

Reg Map

Program order
In ROB: some form

I-commit

I-issued

The Complete Picture: From The Beginning (All in-
order)

D XF M W

In-order Fetch, Issue, O3 Execution, In-order Write

F D

X0

M0 M1

Y0 Y1 Y2 Y3

X1 X2 X3

X2 X3 W

Some More structures

I

X0

M0 M1

Y0 Y1 Y2 Y3

SB ARF
X1 X2 X3

F D X2 X3 W
LB

Dig Deep

L0 L1 W

Y0 Y1 Y2 Y3

S0

CIF D
SB X0 PRF ARF

ROB

LB

Y0

I M0

SB X0

M1

Y1 Y2 Y3

ARF

I
QF

In-order Frontend, Out-of-order Issue/Writeback/Commit

D W
LB

C

PRF

ROB

With SuperScalar

CS422 10

Y0

I M0

SB X0

M1

Y1 Y2 Y3

ARF

I
QF D W

LB

C

PRF

ROB

IF
Q

Reorder Buffer (ROB)
State S ST V Preg

--

P 1

F 1

P 1

P

F

P

P

--

--

State: {Empty (--), Pending, Finished}
S: Speculative
ST: Store bit
V: Physical Register File Specifier Valid
Preg: Physical Register File Specifier

--

P 1

F 1

P 1

P

F

P

P

--

--

State S ST V Preg

Reorder Buffer (ROB)
Next instruction allocates here in D

State: {Empty (--), Pending, Finished}
S: Specula<ve
ST: Store bit
V: Physical Register File Specifier Valid
Preg: Physical Register File Specifier

Tail of ROB

Speculative because branch is in flight

Instruction wrote ROB out of order

Head of ROB

Commit stage is waiting for
Head of ROB to be finished

What about LOADs and STOREs

CS422 13

st R1, 0(R2)

ld R3, 0(R4)

When can we execute the load?

O3 Loads

CS422 14

• Split execution of store instruction into two phases:
address calculation and data write

• Can execute load before store, if addresses known and r4 != r2

• Each load address compared with addresses of all previous
uncommiped stores

• Don’t execute load if any previous store address not known

Value Prediction

CS422 15

st R1, 0(R2)

ld R3, 0(R4)

• Guess that r4 != r2

• Execute load before store address known

• Need to hold all completed but uncommitted load/store
addresses in program order

• If subsequently find r4==r2, squash load and all following
instructions

=> Large penalty for inaccurate value prediction

