Lecture-12
(Register Renaming+03 wrap up)

CS422-Spring 2020

Biswa@-CSE-IITK

All in One

T1->R1, T5-> R1 when commit
Register value copy at ROB and 1Q &

Reorder Buffer
i ﬁg&’\ln-order
Branch prediction Instr1| T1 R
and instr fetch :nstrg ;’2% =i
nstr
ll n_order Instr4| T4 S R1-R32
Instr5| T5 7,
Instr6| T6 %,
R1 € R1+R2 L
R2 € R1+R3 Out-of-oxder
BEQzR2 || Decode & — \
R3 ¢ R1+R2 RIBTEITIE T1 € R1+R2 | = |ALU| |ALU|JALU
R1 € R3+R2 \ T2 € T1+R3 =
In-order BEQZ T2 ,§>‘? 1 | S
Instr Fetch Queue T4 & T1+T2 & Results written to
(16/32/64 entries) T5 & T4+T2 ROB and tags
broadcast to 1Q

Issue Queue (1Q)

All in One

Reorder Buffer (ROB)

m————— ;
Branch prediction Instr 1! T1 i
and instr fetch Instr 21 T2 |
Instr 3! T3 i
l Instr 41 T4 |
Instr 51 T5 |
R1 € R1+R2 /‘—LInStr o i
R2 < R1+R3
BEQzR2 || Decode &
R3 ¢ R1+R2 Rename
R1 € R3+R2) | P33 ¢ P1+P2
Speculative P34 € P33+P3
Instr Fetch Queue Reg Map BEQZ P34
R1SP36 P35 < P33+P34
In the pipeline | Ro-paa P36 & P35+P34
R1->p1, P33

Left the pipeline

Committed | R1->P33
Reg Map | When |1 commits

R1-2>P1 | Similarly R2-> P34, P1 and P2 free
R22P2 | When R3 commits no change to map, |

t was P3, P3 is free

Register File
P1-P64

Logical
Registers

Rename
Registers

— |ALU| |ALU

ALU

Issue Queue (1Q)
Size of the ROB = physical -logical

R1->P1, R2->P2

free pool: based on commits

Now, we can assume

T1->P33

Committed
|-commit Reg Map

Program order
In ROB: some form

\ 4

Speculative
Reg Map

l-issued

\ 4

The Complete Picture: From The Beginning (All in-
order)

FUD U X VW

In-order Fetch, Issue, O3 Execution, In-order Write
X1 m X2 X3

X2 m X3

Some More structures

In-order Frontend, Out-of-order Issue/Writeback/Commit

With SuperScalar

CS422

10

Reorder Buffer (ROB)

State S 1) Vv Preg

State: {Empty (--), Pending, Finished}
S: Speculative

ST: Store bit

V: Physical Register File Specifier Valid
Preg: Physical Register File Specifier

Reorder Buffer (ROB)
State S ST Vv Preg / Next instruction allocates here in D

P 1 € Tail of ROB

F 1 Speculative because branch is in flight

P 1

P

F G .

Instruction wrote ROB out of order

P

p €&——— Head of ROB
State: {Empty (--), Pending, Finished}
S: Specula<ve Commit stage is waiting for
ST: Store bit Head of ROB to be finished

V: Physical Register File Specifier Valid
Preg: Physical Register File Specifier

What about LOADs and STOREs

st R1, O (R2)
1d R3, O(R4)

When can we execute the load?

O3 Loads

« Split execution of store instruction into two phases:
address calculation and data write

 (Can execute load before store, if addresses known and r4 1=r2

 Each load address compared with addresses of all previous
uncommiped stores

 Don’t execute load if any previous store address not known

Value Prediction
st R1, 0(R2)
1d R3, 0 (R4)

Guess thatr4d 1=r2

e Execute load before store address known

* Need to hold all completed but uncommitted load/store
addresses in program order

* If subsequently find r4==r2, squash load and all following
instructions

=> Large penalty for inaccurate value prediction

