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Going Beyond Scalar
• Scalar pipeline limited to CPI ≥ 1.0

• Can never run more than 1 insn per cycle

• “Superscalar” can achieve CPI ≤ 1.0 (i.e., IPC ≥ 1.0)
• Superscalar means executing multiple insns in parallel



Architectures for Instruction Parallelism

• Scalar pipeline (baseline)
• Instruction overlap parallelism = D

• Operation Latency = 1

• Peak IPC = 1.0
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Superscalar Machine
• Superscalar (pipelined) Execution

• Instruction parallelism = D x N

• Operation Latency = 1

• Peak IPC = N per cycle
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Problems with Pipelining
• Exception:  An unusual event happens to an instruction during its execution  
–Examples: divide by zero, undefined opcode

• Interrupt:  Hardware signal to switch the processor to a new instruction stream  
–Example: a sound card interrupts when it needs more audio output samples 

(an audio “click” happens if it is left waiting)

• Problem: It must appear that the exception or interrupt must appear between 2 
instructions (Ii and Ii+1)
–The effect of all instructions up to and including Ii is totaling complete
– No effect of any instruction after Ii can take place

• The interrupt (exception) handler either aborts program or restarts at 
instruction Ii+1



• SYNC Interrupts (Exceptions)
Faults
Traps

• ASYNC Interrupts 

Actual interrupts

Others:
ABORTS

World of Faults, interrupts, aborts 



Interrupts



Faults



Aborts



Interrupts: altering the normal flow of control
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An external or internal event that needs to be processed by another (system) 
program. The event is usually unexpected or rare from program’s point of view. 



Causes

▪ Asynchronous: an external event 

– input/output device service-request

– timer expiration

– power disruptions, hardware failure

▪ Synchronous: an internal event (a.k.a. traps or exceptions)

– undefined opcode, privileged instruction

– arithmetic overflow, FPU exception

– misaligned memory access 

– virtual memory exceptions: page faults, protection violations

– system calls, e.g., jumps into kernel 



In General

▪ An I/O device requests attention by asserting one of the prioritized interrupt 
request lines

When the processor decides to process the interrupt 

– It stops the current program at instruction Ii, completing all the 
instructions up to Ii (precise interrupt)

– It saves the PC of instruction Ii+1 in a special register (EPC)

– It disables interrupts and transfers control to a designated interrupt 
handler running in the kernel mode



Interrupt Handler

▪ Saves EPC before enabling interrupts to allow nested interrupts 

– need an instruction to move EPC into GPRs 

– need a way to mask further interrupts at least until EPC can be saved

▪ Needs to read a status register that indicates the cause of the interrupt



Syn. Interrupts

▪ A synchronous interrupt (exception) is caused by a particular instruction

▪ In general, the instruction cannot be completed and needs to be restarted
after the exception has been handled

– requires undoing the effect of one or more partially executed instructions

▪ In the case of a system call trap, the instruction is considered to have been 
completed  

– a special jump instruction involving a change to privileged kernel mode



Exception Handling
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Asynchronous Interrupts

• How to handle multiple simultaneous exceptions in different pipeline stages?

• How and where to handle external asynchronous interrupts?



Exception Handling
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Exception Handling

• Hold exception flags in pipeline until commit point for instructions that will be 
killed (M stage): Why? To ensure precise exception so that all the previous 
instructions should commit before triggering the exception. 

• Exceptions in earlier pipe stages override later exceptions for a given 
instruction

• If exception at commit: update Cause and EPC registers, kill all stages, inject 
handler PC into fetch stage



Pipeline with Exception

time

t0 t1 t2 t3 t4 t5 t6 t7 . . . .

(I1) 096: ADD IF1 ID1 EX1 MA1 nop overflow!

(I2) 100: XOR IF2 ID2 EX2 nop nop
(I3) 104: SUB IF3 ID3 nop nop nop

(I4) 108: ADD IF4 nop nop nop nop

(I5) Exc. Handler code IF5 ID5 EX5 MA5 WB5
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t0 t1 t2 t3 t4 t5 t6 t7 . . . .
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