
Lecture-10 (Exception/Interrupts)
CS422-Spring 2020

Biswa@CSE-IITK

Going Beyond Scalar
• Scalar pipeline limited to CPI ≥ 1.0

• Can never run more than 1 insn per cycle

• “Superscalar” can achieve CPI ≤ 1.0 (i.e., IPC ≥ 1.0)
• Superscalar means executing multiple insns in parallel

Architectures for Instruction Parallelism

• Scalar pipeline (baseline)
• Instruction overlap parallelism = D

• Operation Latency = 1

• Peak IPC = 1.0

D
Su

cc
e
ss

iv
e

In
st

ru
ct

io
n
s

Time in cycles

1 2 3 4 5 6 7 8 9 10 11 12

D different instructions overlapped

Superscalar Machine
• Superscalar (pipelined) Execution

• Instruction parallelism = D x N

• Operation Latency = 1

• Peak IPC = N per cycle

Su
cc

e
ss

iv
e

In
st

ru
ct

io
n
s

Time in cycles

1 2 3 4 5 6 7 8 9 10 11 12

N

D x N different instructions overlapped

Problems with Pipelining
• Exception: An unusual event happens to an instruction during its execution
–Examples: divide by zero, undefined opcode

• Interrupt: Hardware signal to switch the processor to a new instruction stream
–Example: a sound card interrupts when it needs more audio output samples

(an audio “click” happens if it is left waiting)

• Problem: It must appear that the exception or interrupt must appear between 2
instructions (Ii and Ii+1)
–The effect of all instructions up to and including Ii is totaling complete
– No effect of any instruction after Ii can take place

• The interrupt (exception) handler either aborts program or restarts at
instruction Ii+1

• SYNC Interrupts (Exceptions)
Faults
Traps

• ASYNC Interrupts

Actual interrupts

Others:
ABORTS

World of Faults, interrupts, aborts

Interrupts

Faults

Aborts

Interrupts: altering the normal flow of control

Ii-1 HI1

HI2

HIn

Ii

Ii+1

program
interrupt
handler

An external or internal event that needs to be processed by another (system)
program. The event is usually unexpected or rare from program’s point of view.

Causes

▪ Asynchronous: an external event

– input/output device service-request

– timer expiration

– power disruptions, hardware failure

▪ Synchronous: an internal event (a.k.a. traps or exceptions)

– undefined opcode, privileged instruction

– arithmetic overflow, FPU exception

– misaligned memory access

– virtual memory exceptions: page faults, protection violations

– system calls, e.g., jumps into kernel

In General

▪ An I/O device requests attention by asserting one of the prioritized interrupt
request lines

When the processor decides to process the interrupt

– It stops the current program at instruction Ii, completing all the
instructions up to Ii (precise interrupt)

– It saves the PC of instruction Ii+1 in a special register (EPC)

– It disables interrupts and transfers control to a designated interrupt
handler running in the kernel mode

Interrupt Handler

▪ Saves EPC before enabling interrupts to allow nested interrupts

– need an instruction to move EPC into GPRs

– need a way to mask further interrupts at least until EPC can be saved

▪ Needs to read a status register that indicates the cause of the interrupt

Syn. Interrupts

▪ A synchronous interrupt (exception) is caused by a particular instruction

▪ In general, the instruction cannot be completed and needs to be restarted
after the exception has been handled

– requires undoing the effect of one or more partially executed instructions

▪ In the case of a system call trap, the instruction is considered to have been
completed

– a special jump instruction involving a change to privileged kernel mode

Exception Handling

PC
Inst.
Mem D Decode E M

Data
Mem W+

Illegal
Opcode

Overflow
Data address
Exceptions

PC address
Exception

Asynchronous Interrupts

• How to handle multiple simultaneous exceptions in different pipeline stages?

• How and where to handle external asynchronous interrupts?

Exception Handling

PC Inst. Mem D Decode E M
Data
Mem W+

Illegal Opcode Overflow Data address
Exceptions

PC address
Exception

Asynchronous
Interrupts

Exc
D

PC
D

Exc
E

PC
E

Exc
M

PC
M

C
au

se
EP

C

Kill D
Stage

Kill F Stage Kill E
Stage

Select
Handler PC

Kill
Writeback

Commit Point

Exception Handling

• Hold exception flags in pipeline until commit point for instructions that will be
killed (M stage): Why? To ensure precise exception so that all the previous
instructions should commit before triggering the exception.

• Exceptions in earlier pipe stages override later exceptions for a given
instruction

• If exception at commit: update Cause and EPC registers, kill all stages, inject
handler PC into fetch stage

Pipeline with Exception

time

t0 t1 t2 t3 t4 t5 t6 t7

(I1) 096: ADD IF1 ID1 EX1 MA1 nop overflow!

(I2) 100: XOR IF2 ID2 EX2 nop nop
(I3) 104: SUB IF3 ID3 nop nop nop

(I4) 108: ADD IF4 nop nop nop nop

(I5) Exc. Handler code IF5 ID5 EX5 MA5 WB5

time
t0 t1 t2 t3 t4 t5 t6 t7

Resource
Usage

IF I1 I2

ID I1
EX
MA

WB

I3
I2

I1

I4
I3

I2
I1

I5
nop I5

nop nop I5
nop nop nop I5 nop

nop nop nop I5

