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10,000 Feet View on Caches
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Speculation technique

Speculation works 
because of locality



Locality
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• Temporal locality:  
• Recently referenced items are likely 

to be referenced again

• Spatial locality:  
• Items with nearby addresses tend 

to be referenced again



Access Patterns

Donald J. Hatfield, Jeanette Gerald: Program Restructuring for Virtual 

Memory. IBM Systems Journal 10(3): 168-192 (1971)
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Examples

Address

Time

Instruction
fetches

Stack
accesses

Data
accesses

n loop iterations

subroutine 
call

subroutine 
return

argument access

scalar accesses



Locality of Reference

• Temporal Locality: If a location is referenced it is likely to be referenced 
again in the near future.

• Spatial Locality: If a location is referenced it is likely that locations near 
it will be referenced in the near future.



Again
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Locality: Example
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• Data references
• Reference array elements in succession 

(stride-1 reference pattern).
• Reference variable sum each iteration.

sum = 0;

for (i = 0; i < n; i++)

sum += a[i];

return sum;

Spatial/Temporal
Locality?

temporal

spatial



Wake-up Test: Improve Spatial Locality
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int sum_array_3d(int a[M][N][N])

{

int i, j, k, sum = 0;

for (i = 0; i < N; i++)

for (j = 0; j < N; j++)

for (k = 0; k < M; k++)

sum += a[k][i][j];

return sum;

}



Cache and DRAM
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Look Like This 
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Intel Sandy Bridge Processor Die

L1: 32KB Instruction + 32KB Data
L2: 256KB
L3: 3–20MB



Cache Mapping
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OFFSETSET INDEXTAG
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Direct Mapped: One block=One set
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S = 2s sets

t bits 0…01 100

Address of int:

0 1 2 7tagv 3 654

0 1 2 7tagv 3 654

0 1 2 7tagv 3 654

0 1 2 7tagv 3 654

find set



Set Associative
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W = 2w blocks per set

S = 2s sets

set

line

0 1 2 B-1tagv

B = 2b bytes per cache block (the data)

Cache size:
= S x W x B data bytes

valid bit



Set Associative in Action:
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Way = 2: Two lines per set
Assume: cache block size B=8 bytes

t bits 0…01 100

Address of short int:

0 1 2 7tagv 3 654 0 1 2 7tagv 3 654

compare both

valid?  + match: yes (= hit)

block offset

tag



Wake-up test again: #ints inside a block?
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18 bits 10 bits 4 bits

031

Tag Set index Block offset

Address:

# of int in block

A. 0

B. 1

C. 2

D. 4

E. Unknown: We 
need more info



Wake-up test again:
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int bootcamp(int* a, int N)

{

int i;

int sum = 0;

for(i = 0; i < N; i++)

{

sum += a[i];

}

return sum;

}

Accessed 

Bytes

A 4

B 16

C 64

D 256

If N = 16, how many bytes does the loop access of a?



Performance
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• Average Memory Access Time (AMAT)

• Hit Time + Miss Rate * Miss Penalty 

• Try to improve Hit Time (programmer can’t do much)

• Improve Miss Rate (Yes, you can)

• Miss Penalty (Yes, a bit tricky)



The 3Cs
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• Cold (compulsory) miss
• Cold misses occur because the cache starts empty and this is 

the first reference

• Capacity miss
• Occurs when the set of active cache blocks (working set) is 

larger than the cache.

• Conflict miss



The 3Rs
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• Reduce: Misses

• Rearrange: Layout

• Reuse: Exploit spatial and temporal locality



Performance
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• Huge difference between a hit and a miss
• Could be 100x, if just L1 and main memory

• Would you believe 99% hits is twice as good as 97%?
• Consider this simplified example: 

cache hit time of 1 cycle

miss penalty of 100 cycles

• Average access time:

97% hits:  1 cycle + 0.03 x 100 cycles = 4 cycles

99% hits:  1 cycle + 0.01 x 100 cycles = 2 cycles

• This is why “miss rate” is used instead of “hit rate”



Memory Mountain
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