
Lecture-4
(Cache organization: 10K feet view)
CS422-Spring 2019

Biswa@CSE-IITK

10,000 Feet View on Caches

2

0.0

0.1

1.0

10.0

100.0

1,000.0

10,000.0

1,00,000.0

10,00,000.0

1,00,00,000.0

10,00,00,000.0

1985 1990 1995 2000 2003 2005 2010 2015

T
im

e
 (

n
s

)

Year

Disk seek time

SSD access time

DRAM access time

SRAM access time

CPU cycle time

Effective CPU cycle time

$$: Cache
Speculation technique

Speculation works
because of locality

Locality

3

• Temporal locality:
• Recently referenced items are likely

to be referenced again

• Spatial locality:
• Items with nearby addresses tend

to be referenced again

Access Patterns

Donald J. Hatfield, Jeanette Gerald: Program Restructuring for Virtual

Memory. IBM Systems Journal 10(3): 168-192 (1971)

Time

M
e

m
o

ry
 A

d
d

re
ss

 (
o

n
e

 d
o

t
p

e
r

ac
ce

ss
)

Examples

Address

Time

Instruction
fetches

Stack
accesses

Data
accesses

n loop iterations

subroutine
call

subroutine
return

argument access

scalar accesses

Locality of Reference

• Temporal Locality: If a location is referenced it is likely to be referenced
again in the near future.

• Spatial Locality: If a location is referenced it is likely that locations near
it will be referenced in the near future.

Again

Time

M
e

m
o

ry
 A

d
d

re
ss

 (
o

n
e

 d
o

t
p

e
r

ac
ce

ss
)

Spatial
Locality

Temporal
Locality

Locality: Example

8

• Data references
• Reference array elements in succession

(stride-1 reference pattern).
• Reference variable sum each iteration.

sum = 0;

for (i = 0; i < n; i++)

sum += a[i];

return sum;

Spatial/Temporal
Locality?

temporal

spatial

Wake-up Test: Improve Spatial Locality

9

int sum_array_3d(int a[M][N][N])

{

int i, j, k, sum = 0;

for (i = 0; i < N; i++)

for (j = 0; j < N; j++)

for (k = 0; k < M; k++)

sum += a[k][i][j];

return sum;

}

Cache and DRAM

10

0 1 2 3
4 5 6 7
8 9 10 11

12 13 14 15

8 9 14 3

Cache

DRAM

4

4

4

10

10

10

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

8 9 14 3

Request: 14

14

Block b is in
cache: Hit!

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

8 9 14 3

Request: 12Block b is not
in cache:Miss!

Block b is fetched from
Memory (replacement)

Request: 12

12

12

12

Look Like This

11

Intel Sandy Bridge Processor Die

L1: 32KB Instruction + 32KB Data
L2: 256KB
L3: 3–20MB

Cache Mapping

12

OFFSETSET INDEXTAG

6 0

SET 0

SET 1

SET 2

SET 3

B0

B1

B2

B3

Direct Mapped: One block=One set

13

S = 2s sets

t bits 0…01 100

Address of int:

0 1 2 7tagv 3 654

0 1 2 7tagv 3 654

0 1 2 7tagv 3 654

0 1 2 7tagv 3 654

find set

Set Associative

14

W = 2w blocks per set

S = 2s sets

set

line

0 1 2 B-1tagv

B = 2b bytes per cache block (the data)

Cache size:
= S x W x B data bytes

valid bit

Set Associative in Action:

15

Way = 2: Two lines per set
Assume: cache block size B=8 bytes

t bits 0…01 100

Address of short int:

0 1 2 7tagv 3 654 0 1 2 7tagv 3 654

compare both

valid? + match: yes (= hit)

block offset

tag

Wake-up test again: #ints inside a block?

16

18 bits 10 bits 4 bits

031

Tag Set index Block offset

Address:

of int in block

A. 0

B. 1

C. 2

D. 4

E. Unknown: We
need more info

Wake-up test again:

17

int bootcamp(int* a, int N)

{

int i;

int sum = 0;

for(i = 0; i < N; i++)

{

sum += a[i];

}

return sum;

}

Accessed

Bytes

A 4

B 16

C 64

D 256

If N = 16, how many bytes does the loop access of a?

Performance

18

• Average Memory Access Time (AMAT)

• Hit Time + Miss Rate * Miss Penalty

• Try to improve Hit Time (programmer can’t do much)

• Improve Miss Rate (Yes, you can)

• Miss Penalty (Yes, a bit tricky)

The 3Cs

19

• Cold (compulsory) miss
• Cold misses occur because the cache starts empty and this is

the first reference

• Capacity miss
• Occurs when the set of active cache blocks (working set) is

larger than the cache.

• Conflict miss

The 3Rs

20

• Reduce: Misses

• Rearrange: Layout

• Reuse: Exploit spatial and temporal locality

Performance

21

• Huge difference between a hit and a miss
• Could be 100x, if just L1 and main memory

• Would you believe 99% hits is twice as good as 97%?
• Consider this simplified example:

cache hit time of 1 cycle

miss penalty of 100 cycles

• Average access time:

97% hits: 1 cycle + 0.03 x 100 cycles = 4 cycles

99% hits: 1 cycle + 0.01 x 100 cycles = 2 cycles

• This is why “miss rate” is used instead of “hit rate”

Memory Mountain

22

128m

32m

8m
2m

512k
128k

32k
0

2000

4000

6000

8000

10000

12000

14000

16000

s1
s3

s5
s7

s9

s11

Size (bytes)

R
e
a

d
 t

h
ro

u
g

h
p

u
t

(M
B

/s
)

Stride (x8 bytes)

Aggressive
prefetching

Ridges
of temporal
locality

L1

Mem

L2

L3
Slopes
of spatial
locality

Core i7 Haswell

2.1 GHz
32 KB L1 d-cache

256 KB L2 cache

8 MB L3 cache

64 B block size

