Pipelining and hazards

CASS 2018
Lavanya Ramapantulu



Performance Issues

Longest delay determines clock period
— Critical path: load instruction

— Instruction memory — register file - ALU — data
memory — register file

Not feasible to vary period for different
Instructions

Violates design principle
— Making the common case fast
We will improve performance by pipelining



Pipelining Analogy
* Pipelined laundry: overlapping execution

— Parallelism improves performance

. 6 PM 7 8 9 10 11 12 1 2 AM
Time

Task

" ] m Four loads:

' 80 _ Speed

. .%l ] pee Up

i  [@E =8/3.5=2.3
e 6PM_ 7 8 9 1|0 1|1 1|2 1| 2 ’T‘M [ N on -StO p .
Task h‘ = Speedup

order
A

Sc=M
8o
§0=0
S

=2n/0.5n+15=4
= number of stages

B
Cc
D

3-Jul-18 CASS2018 - Pipeilining and Hazards



RISC-V Pipeline

* Five stages, one step per stage

IF: Instruction fetch from memory

ID: Instruction decode & register read

EX: Execute operation or calculate address
MEM: Access memory operand

Al S

WB: Write result back to register



Pipeline Performance
* Assume time for stages is
— 100ps for register read or write
— 200ps for other stages

 Compare pipelined datapath with single-cycle
datapath

Instr Instr fetch | Register | ALU op Memory | Register | Total time
read access write

Id 200ps 100 ps 200ps 200ps 100 ps

sd 200ps 100 ps 200ps 200ps 700ps

R-format | 200ps 100 ps 200ps 100 ps 600ps

beq 200ps 100 ps 200ps 500ps

3-Jul-18 CASS2018 - Pipeilining and Hazards 5




Pipeline Performance

Single-cycle (T.= 800ps)

Program
execution Time 200 400 600 800 1000 1200 1400 1600 1800

order
(in instructions)

Id x1, 100(x4) een | |Res| ALU | D% | Reg

Id x2, 200(x4) 800 ps lnsftﬁwn Reg| ALU 355225 Reg

Instruction

800 ps fetch

Id x3, 400(x4)

Program
execution . 200 400 600 800 1000 1200 1400
Time . . - - - ' '
order
(in instructions)
Instructi Dat
Id x1, 100(x4) nsf;ltj.:hlon Reg| ALU ac:ezs Reg
Instruction Data
Id x2, 200(x4) 200 ps | feten Reg| ALU | icess |Re9
d X3, 400(xd Instruction Re ALU Data Re
x3, 400(x4) 200 ps | fetch 9 access 9

200 ps 200 ps 200ps 200 ps 200 ps

3-Jul-18 CASS2018 - Pipeilining and Hazards

-— - —



Pipeline Speedup

* |f all stages are balanced
— i.e., all take the same time

— Time between mstructlonspipe,ined
= Time between instructions
Number of stages

* |f not balanced, speedup is less

* Speedup due to increased throughput

— Latency (time for each instruction) does not
decrease

nonpipelined




Pipelining and ISA Design

e RISC-V ISA designed for pipelining

— All instructions are 32-bits
* Easier to fetch and decode in one cycle
 c.f. x86: 1- to 17-byte instructions

— Few and regular instruction formats
* Can decode and read registers in one step

— Load/store addressing

 Can calculate address in 3™ stage, access memory in 4t
stage



Hazards

Situations that prevent starting the next
instruction in the next cycle

Structure hazards
— A required resource is busy

Data hazard

— Need to wait for previous instruction to complete
its data read/write

Control hazard

— Deciding on control action depends on previous
Instruction



Structure Hazards

e Conflict for use of a resource
* |n RISC-V pipeline with a single memory

— Load/store requires data access

— Instruction fetch would have to stall for that cycle
* Would cause a pipeline “bubble”

* Hence, pipelined datapaths require separate
instruction/data memories

— Or separate instruction/data caches



Data Hazards

* An instruction depends on completion of data
access by a previous instruction

—add x19, x0, x1
sub x2, x19, x3

. 200 400 600 800 1000 1200 1400 1600
Time T T T T | T T >

add x19, X0, x1 IF —E ID %—MEM WBE
bubble bubble,) ( bubble bubble,) ( bubble
o @ O O O
bubble bubble/ (" bubble bubble) (" bubble
@ @ @ O O
IF !

sub x2, x19, x3 —': ID %*MEM WB

3-Jul-18 CASS2018 - Pipeilining and Hazards 11




Forwarding (aka Bypassing)
* Use result when it is computed
— Don’t wait for it to be stored in a register
— Requires extra connections in the datapath

Program

execution _ 200 400 600 800 1000
order Time . T . T .
(in instructions)

add x1, x2, x3 Iz

MEM WB |

sub x4, x1, x5




3-Jul-18

Load-Use Data Hazard

* Can’t always avoid stalls by forwarding
— If value not computed when needed

— Can’t forward backward in time!

Program
execution _ 200 400 600 800 1000 1200 1400
order Time T T T T

(in instructions) —
Id x1, 0(x2) IF —': ID >EX MEM

MEM WB |

sub x4, x1, x5 IF

CASS2018 - Pipeilining and Hazards 13



Code Scheduling to Avoid Stalls

e Reorder code to avoid use of load result in the
next instruction

e Ccodefora = b + e; c=Db + f;

1d x1, 0(x0) 1d
1d (:::) (x0) 1d
. add 3 % 1d

stall

sd x3, 24(x0) ////’add
1 (4 sd

(x4)16(x0 0
i — add x5, add x5, xl,

sd x5, 32(x0) sd x5, 32(x0)

3-Jul-18 CASS2018 - Pipeilining and Hazards 14




Control Hazards

* Branch determines flow of control

— Fetching next instruction depends on branch
outcome

— Pipeline can’t always fetch correct instruction
* Still working on ID stage of branch

* |n RISC-V pipeline

— Need to compare registers and compute target
early in the pipeline

— Add hardware to do it in ID stage



Stall on Branch
 Wait until branch outcome determined before
fetching next instruction

Program
execution Ti 200 400 600 800 1000 1200 1400 -
order Ime I I I | I I I >
(in instructions)

add x4, x5, x6 || |Reg| AU | 0% |Reg

Instruction Data
beq x1, x0, 40 m fetch Reg| ALU access | k€9
bubble buble buble bubble buble
G G G
or X7, X8, x9 < > Instruction Data
\ 400 ps fetch Reg| ALU access | K9

3-Jul-18 CASS2018 - Pipeilining and Hazards 16



Branch Prediction

* Longer pipelines can’t readily determine
branch outcome early

— Stall penalty becomes unacceptable

* Predict outcome of branch
— Only stall if prediction is wrong
* |n RISC-V pipeline
— Can predict branches not taken
— Fetch instruction after branch, with no delay



More-Realistic Branch Prediction

e Static branch prediction
— Based on typical branch behavior
— Example: loop and if-statement branches

* Predict backward branches taken
e Predict forward branches not taken

* Dynamic branch prediction
— Hardware measures actual branch behavior
e e.g., record recent history of each branch

— Assume future behavior will continue the trend

 When wrong, stall while re-fetching, and update history



Pipeline Summary
The BIG Picture

* Pipelining improves performance by increasing
instruction throughput

— Executes multiple instructions in parallel
— Each instruction has the same latency

* Subject to hazards

— Structure, data, control

* |nstruction set design affects complexity of
pipeline implementation



RISC-V Pipelined Datapath

IF: Instruction fetch

ID: Instruction decode/

register file read

EX: Execute/
address calculation

MEM: Memory access

4

Add

Read Read

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Address |
|
|

Instruction

Instruction

register 1 data 1

Read
register 2

Registers
Write Read
register data 2

Write

|
|
|
memory | |
|
|
|

data

Y

A A

Address

Read|

Data
memory

Write
data

data

WB: Write back

CASS2018 - Pipeilining and Hazards

20



Pipeline registers
* Need registers between stages
— To hold information produced in previous cycle

IF/ID ID/IEX EX/MEM MEM/WB

E—
4 —h— Add Sum
Shift
left 1

-

Ly
5
PC » Address 5 _ |Read
2 register 1 Read
— B data 1
= . |Read >
Instructi " |register2 . ALU
> Registers AUl Read
memory e Write 5;5:2 DM result # Address data ™
oy : :
memory
data I 1)(
Wi
d

32
\_ﬂﬁhs‘\‘ -
\—\G_ey —




Pipeline Operation

* Cycle-by-cycle flow of instructions through the
pipelined datapath
— “Single-clock-cycle” pipeline diagram
* Shows pipeline usage in a single cycle
* Highlight resources used
— c.f. “multi-clock-cycle” diagram
* Graph of operation over time

 We'll look at “single-clock-cycle” diagrams for
load & store



IF for Load, Store, ...

Id

Instruction fetch

4 —

Address

Instruction
memory

IF/ID

ID/EX

Instruction

/

Add Sum|

EX/MEM

\.

Shift
left 1
. | Read
" | register 1 Read >
data 1
Read
register 2
Registers pgag
Write data 2 > h
register
> Write
data T =
32 Imm 64
Nl S —
- Gen

MEM/WB

Address

Data
memory

Write
data

Read
data

CASS2018 - Pipeilining and Hazards

23




ID for Load, Store, ...

Id
|

! Instruction decode

ID/EX EX/MEM MEM/WB

IF/ID

PC

Address

Instruction
memory

Instruction

Shift
left 1

Read
" | register 1 Read
data 1
Read
register 2
Registers Read
Write data 2
register
N Write
data
32‘ Imm

Y

Gen

Y

Address
Data
memory
Write
data

Read
data

CASS2018 - Pipeilining and Hazards

24




EX for Load

Execution

IF/ID ID/EX EX/MEM MEM/WB

4 AddSum »
Shift
left 1

Y
y

L»-( 0
M
u PC | Address c - Read Read
X 2 register 1 ea > -
—-\ 1 S data 1
=1 _|Read Zero | —
Instruction E] " |register 2 ALU a1y Read
- = . o _ ea
memory > - | write RengtersRead - result — »{ Address data [
" | register data 2 Data
—»-| \Write memory
data s
Write
> > data
32 imm | 64 >
A —1

v\ Gen

3-Jul-18 CASS2018 - Pipeilining and Hazards 25



MEM for Load

3-Jul-18

PC

Add

Address

Instruction
memory

IF/ID

Instruction

| 'd |
| Memory |
ID/EX EX/MEM MEM/WB
Add Sum|

Shift

left 1
Read Read
register 1 ea > >
9 data 1 o o
Read Zero > ——
register 2 ALU

i ALU Read
; Registers Read > result > 9| Address dz?a nal
Write data 2 -
register Data
Write memory
data
_ _ | wiite
v 7| data
32 Imm | 64 >
A b
wr Gen

CASS2018 - Pipeilining and Hazards




WB for Load

rite-back

IF/ID ID/EX EX/MEM MEM/WB

Add > >

Add Sumj >

4 —
Shift
left 1

0
M =
u Address -.g . | Read
X 2 " | register 1 Read > >
1 '2' data 1
£ Ref_,d Zero > >
Instruction o % ALU Ay Read
memory o < > result o @ Address data el
N / Data
——— memory
_ _ | Write
o 7| data
32 Imm 64 >
- ——
A Gen

3-Jul-18 CASS2018 - Pipeilining and Hazards 27




Correcte

d Datapath for Load

3-Jul-18

Address

Instruction
memory

IF/ID

ID/EX EX/MEM MEM/WB
Add Sum
Shift
left 1
c
% Read
z " | register 1 Read >
i data 1
= Read Zero — —
register 2 ALU
J Read

_I_> Registers .. ALLIJt > L @ Address dx:a L |

»-| Write data 2 ress

" | register Data

) Write memory

data
. o | Write
= "] data
32 64 >
L
CASS2018 - Pipeilining and Hazards 28




EX for S

tore

sd |
Execution |
EX/MEM MEM/WB
Add -
4 — AddSum
Shift
left 1
L0
M
u PC Address c Read Read
5 > ° >
1x .‘; register 1 data 1 >
= Read Zero -
- [7) - B
Instruction E‘ register 2 ALU ALU _ Read - 1
memory o | Write RegIStersRead > Clnw result > » Address data M
register data 2 - Data u
Write ) X memory ox
data 1
_ | Write
> ~ | data
32 Imm | 64 >
AN  —
| Gen
CASS2018 - Pipeilining and Hazards 29

3-Jul-18




MEM for Store

3-Jul-18

PC

Add

IF/ID

Address

Instruction
memory

Instruction

| 'd |
| Memory |
ID/EX EX/MEM MEM/WB
Add Sum|

Shift

left 1
Read Read
register 1 ea >
9 data 1 o
Read Zero > ——
register 2 ALU

i ALU Read
; Registers Read result > 9| Address dz?a nal
Write data 2
register Data
Write memory
data
_ _ | wiite
v 7| data
32 Imm | 64 >
A b
wr Gen

CASS2018 - Pipeilining and Hazards




WB for Store

sd
Write-back
IF/ID ID/EX EX/IMEM MEM/WB
4 — Add Sum
Shift
left 1
»
- 0
M c
u PC Address _% Read
x 2 register 1 Read >
-\ 1 E data 1
= Read >~ [l
Instruction _ register2 fead
memery - i Registers Read > > -@—»-| Address data = 1
Write data 2 - "
register bata "
Write memory X
™ data 0
> o | Write
o 7| data
32 64 >

3-Jul-18 CASS2018 - Pipeilining and Hazards 31



Multi-Cycle Pipeline Diagram

* Form showing resource usage

Time (in clock cycles) >
CC 1 CC2 CC3 CC4 CC5 CCé6 CC7 CC8 CC9

Program
execution
order

(in instructions) - — —
| = —1
Id x10, 40(x1) IM ~H—Dl|ieg| oM —Ee_g:
b x11, X2, X3 M H R oM —E_‘
SUp X , XZ, X l_eg e_gJ
dd x12, X3, x4 M R | —[DIVI Reg!
a X1Z, X9, X l_eg —[e_g:
Id x13, 48(x1 M H <R DM —E_'
x13, 48(x1) l_eg -[ e_gjl

I~ — 1
add x14, x5, x6 IM |— —E:Regl @ ﬂ—@agi
Y — _




Multi-Cycle Pipeline Diagram

 Traditional form

Program
execution
order

(in instructions)

Id x10, 40(x1)
sub x11, x2, x3
add x12, x3, x4
Id x13, 48(x1)

add x14, x5, x6

3-Jul-18

Time (in clock cycles)

Y

CcC1 CcC2 CC3 CC4 CC5 CC6 cCc7 CCs8 CC9
Instruction | Instruction Execution Data Write-back
fetch decode access
Instruction | Instruction Execution Data Write-back
fetch decode access
Instruction | Instruction Execution Data Write-back
fetch decode access
Instruction | Instruction Execution Data Write-back
fetch decode access
Instruction | Instruction Execution Data Write-back
fetch decode access
33

CASS2018 - Pipeilining and Hazards




Single-Cycle Pipeline Diagram
e State of pipeline in a given cycle

add x14, x5, x6 | Id x13, 48(x1) | add x12, x3, x4 | sub x11, x2, x3 | Id x10, 40(x1) |
Instruction fetch | Instruction decode | Execution | Memory | Write-back |
IF/ID ID/EX EX/MEM MEM/WB
]
Shift
left 1
o
PC [ Address Read
5 register 1 Read >
- k- data 1
%" Read Zero > -
Instruction c register2 ALU
= Registers ALU Read
memory m Wite 5;:‘12 > UM result Address data [ ]
register u / Data
Write X memory
| data 1
Write
data
32 Imm 6’\1 >

3-Jul-18 CASS2018 - Pipeilining and Hazards 34



Virtual-Lab Single cycle MIPS

* Try the below link

* http://csell-
iiith.vlabs.ac.in/SingleCycle/v19.swf

3-Jul-18 CASS2018 - Pipeilining and Hazards

35


http://cse11-iiith.vlabs.ac.in/SingleCycle/v19.swf

References

* Computer Organization and Design RISC-V
Edition, 1st Edition, The Hardware Software

Interface by David Patterson John Hennessy -
Chapter 4



