
Memory Consistency Models

(Architectural Support for Improved
Understanding of Program Outcome)

Mainak Chaudhuri
mainakc@cse.iitk.ac.in

1

Agenda
• What are these models and why

• Sequential consistency model

• Relaxed consistency models
– Total store order

2

What are these models and why?
• A parallel program can have multiple

possible outputs
T0: x=1; T1: y=x; print y;

What does T1 print if the initial value of x is 0?

• Coherence protocol is not enough to
completely specify the output(s) of a
parallel program
– Coherence protocol only provides the

foundation to reason about the legal outcomes
of accesses to the same memory location

– Memory consistency models tell us the
possible outcomes arising from legal ordering
of accesses to all memory locations 3

What are these models and why?
• Without any specified ordering

constraints, all possible outputs could be
legal
T0: A=1; print B; T1: B=1; print A;

What do T0 and T1 print if the initial values of
A and B are zero?

• Given a memory consistency model, only a
subset of outcomes is possible and it is
important for a programmer to know this
subset
– A shared memory machine advertises the

supported memory consistency model; it is a
“contract” with the writers of parallel
applications and system software

4

What are these models and why?
• Usually, the programmer wants one

specific output from a correct program
– Suppose the programmer wants T1 to print 1

in the following program

T0: x=1; T1: y=x; print y;

– It may seem that synchronization can
guarantee such an output (flag=0 initially)

T0: x=1; flag=1; T1: while(!flag); y=x; print y;

– What if flag=1 is made visible to other
processes before x=1 becomes visible?
• Either by compiler re-ordering or hardware re-

ordering (latter must still honor precise exception)

– This is quite possible given that the two
stores are going to two different addresses5

Memory consistency models
• A memory consistency model is a set of

rules that specify the set of allowed
orderings between all memory accesses

• A multiprocessor normally advertises the
supported memory consistency model

– This essentially tells the programmer what
the possible correct outcome(s) of a program
could be when run on that machine

– A multiprocessor is said to implement a
memory consistency model when it adheres to
the set of ordering rules specified by that
model

6

Sequential consistency
• Many memory consistency models exist

– Each model represents a unique point in the
three-dimensional space spanned by ease of
programming, implementation complexity, and
performance/energy

– Sequential consistency (SC) is the most
intuitive one and we will focus on it first

• Legal SC orders
– Achieved by interleaving accesses from

different processors

– The accesses from the same processor are
presented to the memory system in program
order 7

Sequential consistency
• A legal SC ordering is equivalent to the

total order obtained by a randomly moving
switch connecting the processors to
memory
– Picks the next access from a randomly chosen

processor

P0 P3P2P1

MEMORY

read A

8

Sequential consistency
• A legal SC ordering is equivalent to the

total order obtained by a randomly moving
switch connecting the processors to
memory
– Picks the next access from a randomly chosen

processor

P0 P3P2P1

MEMORY

write X

9

Sequential consistency
• A legal SC ordering is equivalent to the

total order obtained by a randomly moving
switch connecting the processors to
memory
– Picks the next access from a randomly chosen

processor

P0 P3P2P1

MEMORY

read Y

10

Sequential consistency
• A legal SC ordering is equivalent to the

total order obtained by a randomly moving
switch connecting the processors to
memory
– Picks the next access from a randomly chosen

processor

P0 P3P2P1

MEMORY

Total order: read A, write X, read Y, write A

write A

11

Sequential consistency

• Lamport’s definition of SC
– A multiprocessor is sequentially consistent if

the result of any execution is the same as if
the operations of all the processors were
executed in some sequential order, and the
operations of each individual processor appear
in this sequence in the order specified by its
program

12

What is program order?
• Any legal re-ordering is allowed

• The program order is the order of
instructions from a sequential piece of
code where programmer’s intuition is
preserved
– The order must produce the result a

programmer expects

• Can out-of-order execution violate
program order?
– No. All microprocessors commit instructions

in-order and that is where the state becomes
visible

– For modern microprocessors the program
order is really the commit order

13

Example
P0: x=8; u=y; v=9;

P1: r=5; y=4; t=v;

Total order: x=8; u=y; r=5; y=4; t=v; v=9;

Another legal total order:

x=8; r=5; y=4; u=y; v=9; t=v;

• All such total orders are allowed by
sequential consistency

– A multiprocessor implementing sequential
consistency can produce an output conforming
to any of these total orders

– All these possible outputs are correct for a
sequentially consistent multiprocessor

14

OOO and SC
• Can out-of-order (OOO) execution violate

SC?
– Yes. Need extra logic to support SC on top of

OOO

• Consider a simple example (all variables
are zero initially)
P0: x=w+1; r=y+1;

P1: y=2; w=y+1;

– Instructions commit in order with x=4, r=1,
y=2, w=3

– How is that possible?

15

OOO and SC
P0: x=w+1; r=y+1;

P1: y=2; w=y+1;

– Instructions commit in order with x=4, r=1,
y=2, w=3

• Suppose the load that reads w takes a
miss and so w is not ready for a long time;
therefore, x=w+1 cannot complete
immediately; w returns with value 3

• Inside the microprocessor r=y+1 completes
(but does not commit) before x=w+1 and
gets the old value of y (possibly from
cache); eventually instructions commit in
order with x=4, r=1, y=2, w=3 16

OOO and SC
P0: x=w+1; r=y+1;

P1: y=2; w=y+1;

– Instructions commit in order with x=4, r=1,
y=2, w=3

• Proving that this is not legal under SC
–We have the following partial orders

P0: x=w+1 < r=y+1 and P1: y=2 < w=y+1

Cross-thread: w=y+1 < x=w+1 and r=y+1 < y=2

– Combine these to get a contradictory total
order

x=w+1 < r=y+1 < y=2 < w=y+1 < x=w+1

Need special support to guarantee SC in the
presence of OOO instruction execution

Note that the system is still coherent
17

SC example
• Consider the following example

P0: A=1; print B;

P1: B=1; print A;

• Possible outcomes for an SC machine
– (pA, pB) = (0,1); interleaving: B=1; print A; A=1;

print B

– (pA, pB) = (1,0); interleaving: A=1; print B; B=1;
print A

– (pA, pB) = (1,1); interleaving: A=1; B=1; print A;
print B OR A=1; B=1; print B; print A

– (pA, pB) = (0,0) is impossible

18

Implementing SC
• Two basic requirements

– Memory operations issued by a processor must
become visible to others in program order

– Need to make sure that all processors see the
same total order of memory operations: in the
previous example for the (0,1) case both P0
and P1 should see the same interleaving: B=1;
print A; A=1; print B

19

Implementing SC
• The tricky part is to make sure that

writes become visible in the same order to
all processors

– Write atomicity: as if each write is an atomic
operation

– Otherwise, two processors may end up using
different values (which may still be correct
from the viewpoint of cache coherence, but
will violate SC)

20

Write atomicity
• Example (A=0, B=0 initially)

P0: A=1; P1: while (!A); B=1;

P2: while (!B); print A;

• A correct execution on an SC machine
should print A=1
– A=0 will be printed only if write to A is not

visible to P2, but clearly it is visible to P1
since it came out of the loop

– Thus A=0 is possible if P1 sees the order A=1 <
B=1 and P2 sees the order B=1 < A=1 i.e. from
the viewpoint of the whole system the write
A=1 was not “atomic”

– Without write atomicity P2 may proceed to
print 0 with a stale value from its cache 21

Summary of SC
• Program order from each processor

creates a partial order among memory
operations

• Interleaving of these partial orders
defines a total order

• Sequential consistency: one of many total
orders

• A multiprocessor is said to be SC if all
executions on this machine are SC
compliant

22

Implementation of SC
• MIPS R10000 implements SC

– OOO execution is allowed, and a proper
recovery mechanism is invoked when a
potential violation of total order is detected
• The approach is somewhat conservative because

the detection mechanism is far from ideal

– A violation in the total order manifests
through “wrong” values supplied by loads
• Loads execute potentially long before they commit

• The value supplied by a load when it executes may
get changed by some other thread before the load
commits

• If the load is allowed to commit the “old” value,
this may violate SC (note that this is still coherent)

– We have already seen an example
23

Implementation of SC
• MIPS R10000 implements SC

– How to detect such loads?

– How to recover from such a violation?
• Consider a load to address A in thread X

• The load executes at time t1 and gets a value v

• The load is yet to commit and stays in the ROB of
the processor running X

• Another thread Y performs a store to address A
with a new value v’ at time t2

• At this point, an invalidation for A is sent to X

• The invalidation searches the load queue for all
matching loads; if found, all instructions are
cancelled starting from the oldest such load; these
instructions will be refetched and re-executed

24

Implementation of SC
• MIPS R10000 implements SC

– Need to be careful about store commit
• Tempting to remove an in-flight store from the

head of ROB to allow following instructions to
commit

• This may violate SC

T0: A=1; print B;

T1: B=1; print A;

– MIPS R10000 keeps stores in ROB until they
are complete

25

Relaxed models
• Implementing SC requires complex

hardware and verification effort
– But such violations are rare

– Many processors today relax the consistency
model to get rid of complex hardware and
achieve some extra performance at the cost
of making program reasoning complex
T0: A=1; B=1; flag=1; T1: while (!flag); print A; print
B;

• Can re-order the stores to A and B without any
problem

• Cannot compromise on precise exception, however

– SC is too restrictive; relaxing it does not
always violate programmers’ intuition 26

Relaxed models
• Three attributes of a relaxed model

– System specification: which orders are
preserved and which are not; if all program
orders are not preserved what support is
provided (software and hardware) to enforce
a particular order that the programmer
wishes (often SC-compliant order is required)

– Programmer’s interface: set of rules, if
followed, will lead to an execution as expected
by the programmer; specified in terms of
high-level language annotations and labels

– Translation mechanism: how to translate
programmer’s annotations to hardware actions

27

Total store order (TSO)
• One of the many relaxed models

• TSO allows a load to bypass and commit
earlier than an older incomplete store
– A blocked store at the head of the ROB can

be removed (but remains in a FIFO store
buffer) and subsequent instructions are
allowed to commit bypassing the blocked store

– Motivation: can hide latency of store
operations

– This is the only allowed re-ordering
• Only a load can bypass an older store

• A load cannot bypass an older load; a store cannot
bypass an older load; a store cannot bypass an older
store

28

Total store order (TSO)
• TSO allows a load to bypass and commit

earlier than an older incomplete store

– As usual, precise exception must be
guaranteed meaning that a store at the head
of the ROB can unblock the ROB only when it
is guaranteed that the store cannot raise an
exception

• Easy to ascertain because a store can raise only
page fault exceptions

• A store is cleared of page fault exception as soon
as it passes TLB lookup

29

Total store order (TSO)
• TSO allows a load to bypass and commit

earlier than an older incomplete store
– Programmer’s intuition is preserved in most

cases, but not always

– P0: A=1; flag=1; P1: while (!flag); print A;
[same as SC]

– P0: A=1; B=1; P1: print B; print A; [same as SC]

– P0: A=1; P1: while (!A); B=1; P2: while (!B); print
A; [same as SC]

– P0: A=1; print B; P1: B=1; print A; [violates SC]

– Implemented in many Sun (Oracle)
UltraSPARC microprocessors

30

Total store order (TSO)
• How to force an SC-compliant outcome on

a multiprocessor implementing TSO?

– Required when porting a program from, say,
MIPS R10000 to a SPARC processor platform

– Must ensure that a load cannot bypass an
older store

– Microprocessors provide “fence” instructions
for this purpose

– SPARC v9 specification provides MEMBAR
(memory barrier) instruction of different
flavors

– Here we only need to use one of these flavors,
namely, store-to-load fence just before the
load instruction

31

Total store order (TSO)
• How to force an SC-compliant outcome on

a multiprocessor implementing TSO?

P0: A=1; membar #storeload; print B;

P1: B=1; membar #storeload; printA;

– The fence instruction will not allow graduation
of a load until all stores before it graduates

– If a fence instruction is not available,
substituting the load by a read-modify-write
(e.g., ldstub in SPARC) also works; a read-
modify-write contains a store and hence, it
cannot be re-ordered before an older store
(that would violate TSO)

32

