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Agenda
• What are these models and why

• Sequential consistency model

• Relaxed consistency models
– Total store order
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What are these models and why?
• A parallel program can have multiple 

possible outputs
T0: x=1; T1: y=x; print y;

What does T1 print if the initial value of x is 0?

• Coherence protocol is not enough to 
completely specify the output(s) of a 
parallel program
– Coherence protocol only provides the 

foundation to reason about the legal outcomes 
of accesses to the same memory location

– Memory consistency models tell us the 
possible outcomes arising from legal ordering 
of accesses to all memory locations 3



What are these models and why?
• Without any specified ordering 

constraints, all possible outputs could be 
legal
T0: A=1; print B; T1: B=1; print A;

What do T0 and T1 print if the initial values of 
A and B are zero?

• Given a memory consistency model, only a 
subset of outcomes is possible and it is 
important for a programmer to know this 
subset
– A shared memory machine advertises the 

supported memory consistency model; it is a 
“contract” with the writers of parallel 
applications and system software
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What are these models and why?
• Usually, the programmer wants one 

specific output from a correct program
– Suppose the programmer wants T1 to print 1 

in the following program

T0: x=1; T1: y=x; print y;

– It may seem that synchronization can 
guarantee such an output (flag=0 initially)

T0: x=1; flag=1; T1: while(!flag); y=x; print y;

– What if flag=1 is made visible to other 
processes before x=1 becomes visible?
• Either by compiler re-ordering or hardware re-

ordering (latter must still honor precise exception)

– This is quite possible given that the two 
stores are going to two different addresses5



Memory consistency models
• A memory consistency model is a set of 

rules that specify the set of allowed 
orderings between all memory accesses

• A multiprocessor normally advertises the 
supported memory consistency model

– This essentially tells the programmer what 
the possible correct outcome(s) of a program 
could be when run on that machine

– A multiprocessor is said to implement a 
memory consistency model when it adheres to 
the set of ordering rules specified by that 
model
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Sequential consistency
• Many memory consistency models exist

– Each model represents a unique point in the 
three-dimensional space spanned by ease of 
programming, implementation complexity, and 
performance/energy

– Sequential consistency (SC) is the most 
intuitive one and we will focus on it first

• Legal SC orders
– Achieved by interleaving accesses from 

different processors

– The accesses from the same processor are 
presented to the memory system in program 
order 7



Sequential consistency
• A legal SC ordering is equivalent to the 

total order obtained by a randomly moving 
switch connecting the processors to 
memory
– Picks the next access from a randomly chosen 

processor

P0 P3P2P1

MEMORY

read A
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Sequential consistency
• A legal SC ordering is equivalent to the 

total order obtained by a randomly moving 
switch connecting the processors to 
memory
– Picks the next access from a randomly chosen 

processor

P0 P3P2P1

MEMORY

write X
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Sequential consistency
• A legal SC ordering is equivalent to the 

total order obtained by a randomly moving 
switch connecting the processors to 
memory
– Picks the next access from a randomly chosen 

processor

P0 P3P2P1

MEMORY

read Y
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Sequential consistency
• A legal SC ordering is equivalent to the 

total order obtained by a randomly moving 
switch connecting the processors to 
memory
– Picks the next access from a randomly chosen 

processor

P0 P3P2P1

MEMORY

Total order: read A, write X, read Y, write A

write A
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Sequential consistency

• Lamport’s definition of SC
– A multiprocessor is sequentially consistent if 

the result of any execution is the same as if 
the operations of all the processors were 
executed in some sequential order, and the 
operations of each individual processor appear 
in this sequence in the order specified by its 
program
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What is program order?
• Any legal re-ordering is allowed

• The program order is the order of 
instructions from a sequential piece of 
code where programmer’s intuition is 
preserved
– The order must produce the result a 

programmer expects

• Can out-of-order execution violate 
program order?
– No. All microprocessors commit instructions 

in-order and that is where the state becomes 
visible

– For modern microprocessors the program 
order is really the commit order
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Example
P0: x=8; u=y; v=9;

P1: r=5; y=4; t=v;

Total order: x=8; u=y; r=5; y=4; t=v; v=9;

Another legal total order:

x=8; r=5; y=4; u=y; v=9; t=v;

• All such total orders are allowed by 
sequential consistency

– A multiprocessor implementing sequential 
consistency can produce an output conforming 
to any of these total orders

– All these possible outputs are correct for a 
sequentially consistent multiprocessor
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OOO and SC
• Can out-of-order (OOO) execution violate 

SC?
– Yes. Need extra logic to support SC on top of 

OOO

• Consider a simple example (all variables 
are zero initially)
P0: x=w+1; r=y+1;

P1: y=2; w=y+1;

– Instructions commit in order with x=4, r=1, 
y=2, w=3

– How is that possible?
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OOO and SC
P0: x=w+1; r=y+1;

P1: y=2; w=y+1;

– Instructions commit in order with x=4, r=1, 
y=2, w=3

• Suppose the load that reads w takes a 
miss and so w is not ready for a long time; 
therefore, x=w+1 cannot complete 
immediately; w returns with value 3

• Inside the microprocessor r=y+1 completes 
(but does not commit) before x=w+1 and 
gets the old value of y (possibly from 
cache); eventually instructions commit in 
order with x=4, r=1, y=2, w=3 16



OOO and SC
P0: x=w+1; r=y+1;

P1: y=2; w=y+1;

– Instructions commit in order with x=4, r=1, 
y=2, w=3

• Proving that this is not legal under SC
–We have the following partial orders

P0: x=w+1 < r=y+1 and P1: y=2 < w=y+1

Cross-thread: w=y+1 < x=w+1 and r=y+1 < y=2

– Combine these to get a contradictory total 
order

x=w+1 < r=y+1 < y=2 < w=y+1 < x=w+1

Need special support to guarantee SC in the 
presence of OOO instruction execution

Note that the system is still coherent
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SC example
• Consider the following example

P0: A=1; print B;

P1: B=1; print A;

• Possible outcomes for an SC machine
– (pA, pB) = (0,1); interleaving: B=1; print A; A=1; 

print B

– (pA, pB) = (1,0); interleaving: A=1; print B; B=1; 
print A

– (pA, pB) = (1,1); interleaving: A=1; B=1; print A; 
print B  OR A=1; B=1; print B; print A

– (pA, pB) = (0,0) is impossible
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Implementing SC
• Two basic requirements

– Memory operations issued by a processor must 
become visible to others in program order

– Need to make sure that all processors see the 
same total order of memory operations: in the 
previous example for the (0,1) case both P0 
and P1 should see the same interleaving: B=1; 
print A; A=1; print B
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Implementing SC
• The tricky part is to make sure that 

writes become visible in the same order to 
all processors

– Write atomicity: as if each write is an atomic 
operation

– Otherwise, two processors may end up using 
different values (which may still be correct 
from the viewpoint of cache coherence, but 
will violate SC)
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Write atomicity
• Example (A=0, B=0 initially)

P0: A=1; P1: while (!A); B=1;

P2: while (!B); print A;

• A correct execution on an SC machine 
should print A=1
– A=0 will be printed only if write to A is not 

visible to P2, but clearly it is visible to P1 
since it came out of the loop

– Thus A=0 is possible if P1 sees the order A=1 < 
B=1 and P2 sees the order B=1 < A=1 i.e. from 
the viewpoint of the whole system the write 
A=1 was not “atomic”

– Without write atomicity P2 may proceed to 
print 0 with a stale value from its cache 21



Summary of SC
• Program order from each processor 

creates a partial order among memory 
operations

• Interleaving of these partial orders 
defines a total order

• Sequential consistency: one of many total 
orders

• A multiprocessor is said to be SC if all 
executions on this machine are SC 
compliant
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Implementation of SC
• MIPS R10000 implements SC

– OOO execution is allowed, and a proper 
recovery mechanism is invoked when a 
potential violation of total order is detected
• The approach is somewhat conservative because 

the detection mechanism is far from ideal

– A violation in the total order manifests 
through “wrong” values supplied by loads
• Loads execute potentially long before they commit

• The value supplied by a load when it executes may 
get changed by some other thread before the load 
commits

• If the load is allowed to commit the “old” value, 
this may violate SC (note that this is still coherent)

– We have already seen an example
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Implementation of SC
• MIPS R10000 implements SC

– How to detect such loads?

– How to recover from such a violation?
• Consider a load to address A in thread X

• The load executes at time t1 and gets a value v

• The load is yet to commit and stays in the ROB of 
the processor running X

• Another thread Y performs a store to address A 
with a new value v’ at time t2

• At this point, an invalidation for A is sent to X

• The invalidation searches the load queue for all 
matching loads; if found, all instructions are 
cancelled starting from the oldest such load; these 
instructions will be refetched and re-executed
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Implementation of SC
• MIPS R10000 implements SC

– Need to be careful about store commit
• Tempting to remove an in-flight store from the 

head of ROB to allow following instructions to 
commit

• This may violate SC

T0: A=1; print B;

T1: B=1; print A;

– MIPS R10000 keeps stores in ROB until they 
are complete
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Relaxed models
• Implementing SC requires complex 

hardware and verification effort
– But such violations are rare

– Many processors today relax the consistency 
model to get rid of complex hardware and 
achieve some extra performance at the cost 
of making program reasoning complex
T0: A=1; B=1; flag=1; T1: while (!flag); print A; print 
B;

• Can re-order the stores to A and B without any 
problem

• Cannot compromise on precise exception, however

– SC is too restrictive; relaxing it does not 
always violate programmers’ intuition 26



Relaxed models
• Three attributes of a relaxed model

– System specification: which orders are 
preserved and which are not; if all program 
orders are not preserved what support is 
provided (software and hardware) to enforce 
a particular order that the programmer 
wishes (often SC-compliant order is required)

– Programmer’s interface: set of rules, if 
followed, will lead to an execution as expected 
by the programmer; specified in terms of 
high-level language annotations and labels

– Translation mechanism: how to translate 
programmer’s annotations to hardware actions
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Total store order (TSO)
• One of the many relaxed models

• TSO allows a load to bypass and commit 
earlier than an older incomplete store
– A blocked store at the head of the ROB can 

be removed (but remains in a FIFO store 
buffer) and subsequent instructions are 
allowed to commit bypassing the blocked store

– Motivation: can hide latency of store 
operations

– This is the only allowed re-ordering
• Only a load can bypass an older store

• A load cannot bypass an older load; a store cannot 
bypass an older load; a store cannot bypass an older 
store
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Total store order (TSO)
• TSO allows a load to bypass and commit 

earlier than an older incomplete store

– As usual, precise exception must be 
guaranteed meaning that a store at the head 
of the ROB can unblock the ROB only when it 
is guaranteed that the store cannot raise an 
exception

• Easy to ascertain because a store can raise only 
page fault exceptions

• A store is cleared of page fault exception as soon 
as it passes TLB lookup
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Total store order (TSO)
• TSO allows a load to bypass and commit 

earlier than an older incomplete store
– Programmer’s intuition is preserved in most 

cases, but not always

– P0: A=1; flag=1; P1: while (!flag); print A;    
[same as SC]

– P0: A=1; B=1; P1: print B; print A; [same as SC]

– P0: A=1; P1: while (!A); B=1; P2: while (!B); print 
A;   [same as SC]

– P0: A=1; print B; P1: B=1; print A; [violates SC]

– Implemented in many Sun (Oracle) 
UltraSPARC microprocessors
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Total store order (TSO)
• How to force an SC-compliant outcome on 

a multiprocessor implementing TSO?

– Required when porting a program from, say, 
MIPS R10000 to a SPARC processor platform

– Must ensure that a load cannot bypass an 
older store

– Microprocessors provide “fence” instructions 
for this purpose

– SPARC v9 specification provides MEMBAR 
(memory barrier) instruction of different 
flavors

– Here we only need to use one of these flavors, 
namely, store-to-load fence just before the 
load instruction
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Total store order (TSO)
• How to force an SC-compliant outcome on 

a multiprocessor implementing TSO?

P0: A=1; membar #storeload; print B;

P1: B=1; membar #storeload; printA;

– The fence instruction will not allow graduation 
of a load until all stores before it graduates

– If a fence instruction is not available, 
substituting the load by a read-modify-write 
(e.g., ldstub in SPARC) also works; a read-
modify-write contains a store and hence, it 
cannot be re-ordered before an older store 
(that would violate TSO)
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