Cache Coherence

(Architectural Supports for
Efficient Shared Memory)

Mainak Chaudhuri
mainakc@cse.iitk.ac.in

Agenda

Setting
- Software: shared address space
- Hardware: shared memory multiprocessors

Cache coherence
Invariants and implementation
Cache coherence protocols: MST, MEST

Formal definitions

Shared address space

* Part of the address space is shared
between multiple threads or processes

- Achieved by declaring shared variables as
global for sharing among threads within a
process (POSIX thread model)

- Achieved by allocating memory through
specialized system calls for sharing among
different processes (UNIX shmget/shmat)

- Variables in the shared address space can be
read from and written to by multiple
different threads/processes (load/store ins)

- A mode of communication between 3
threads/processes for exchanging results

Shared memory multiprocessors

* Platform to schedule in parallel multiple
threads or processes that share memory

» Many different designs exist

- We will assume that each processor has a
hierarchy of caches (possibly shared)

- Shared cache: popular in chip-
multiprocessors (CMPs)

- Private cache: found in some CMPs,
symmetric multi-processors (SMPs), and
multi-node servers

- Distributed shared memory: popular in
medium to large-scale multi-node servers$

Shared cache

Single chnp

ﬁ&&ﬁ

INTERCONNECT

J

k

/

DRAM

Private cache
May or may not be a single chip

-

INTERCONNECT
\ /

DRAM

Distributed shared memory

DRAM DRAM DRAM DRAM

[INTERCONNECT

Distributed-skared-memory

DRAM DRAM DRAM DRAM

[INTERCONNECT J

_.Pass explicit messages between nodes for data exchange
ebonr (Will not be discussed in this session) 8

Cache coherence

* Processors employ private caching of
data to improve performance

- Private copies of shared data must be
“coherent”

* Roughly speaking, all copies must have the same
value (enough if this holds eventually)
- For sequential programs, a memory location
must return the latest value written to it

- For parallel programs, we expect the same
provided "“latest” is well-defined

* For now, latest value of a location is the latest
value “committed" by any thread/process

* A cache coherence protocol is a set of actions
that ensure that a load to address A returnssthe
"last committed” value to A

Cache coherence: Example
+ Assume 3Ps with write-through caches

- PO: reads x from memory, puts it in its
cache, and gets the value 5

- P1: reads x from memory, puts it in its cache,
and gets the value 5

- P1: writes x=7, updates its cached value and
memory value

- PO: reads x from its cache and gets the value
5

- P2: reads x from memory, puts it in its
cache, and gets the value 7 (how the system
is completely incoherent)

- P2: writes x=10, updates its cached value and
memory value

Cache coherence: Example
» Consider the same example for writeback
caches

- PO has a cached value 5, P1 has 7, P2 has 10,

memory has 5 (since caches are not write
through)

- The state of the line in P1 and P2 is M while
the line in PO is clean

- Eviction of the line from P1 and P2 will issue
writebacks while eviction of the line from PO
will not issue a writeback (clean lines do not
heed writeback)

- Suppose P2 evicts the line first, and then P1

- Final memory value is 7: we lost the storg
x=10 from P2

What went wrong?
* For write through cache

- The memory value may be correct if the
writes are correctly ordered

- But the system allowed a store to proceed
when there is already a cached copy

- Lesson learned: must invalidate all cached
copies before allowing a store to proceed

- Writeback cache

- Problem is even more complicated: stores are
no longer visible to memory immediately

- Writeback order is important

) - Lesson learned: do not allow more than one
&) copy of a cache line in M state 12

Implementations

* Must invalidate all cached copies before
allowing a store to proceed

- Need to know where the cached copies are

- Solutionl: Just tell everyone that you are
going to do a store
* Leads to broadcast snoopy protocols
* Popular with small-scale machines

- Typically, the interconnect is a shared bus; AMD
Opteron implements it on a distributed network
(the Hammer protocol)

- Solution2: Keep track of the sharers and
invalidate them when needed
* Where and how is this information stored?
* Leads to directory-based scalable protocolst

Implementations
* Directory-based protocols

- Maintain one directory entry per memory
block

- Each directory entry contains a sharer
bitvector and state bits

14

Distributed shared memory

DRAM DRAM DRAM DRAM

[INTERCONNECT

Where and how would you place the directory?

15
New concept: home node

Shared cache

Where cmd how would you place the directory?

&&&ﬁ

INTERCONNECT J

/

DRAM 16

Single chnp

Sparse%c’rory

Implementations
* Do not allow more than one copy of a
cache line in M state

- Need some form of access control
mechanism

- Before a processor does a store it must take
“permission” from the current “"owner” (if
any)

- Need to know who the current owner is

» Either a processor or main memory
- Solutionl and Solution2 apply here also
» Tell everybody or tell the owner

17

Implementations
* Latest value must be propagated to the

requester
- Notion of “latest" is very fuzzy
- Once we know the owner, this is easy

- Solutionl and Solution2 apply here also
» Tell everybody or tell the owner

18

Implementations

» Invariant: if a cache block is not in M
state in any processor, memory must
provide the block to the requester

- Memory must be updated when a block
transitions from M state to S state

- Note that a transition from M to I always
updates memory in systems with writeback
caches (these are normal writeback
operations)

* Most of the implementations of a
coherence protocol deals with uncommon
cases and races 19

Invalidation vs. Update
» Two main classes of protocols:

- Dictates what action should be taken on a
store

- Invalidation-based protocols invalidate
sharers when a store miss appears

- Update-based protocols update the sharer
caches with new value on a store

- Advantage of update-based protocols:
sharers continue to hit in the cache while in
invalidation-based protocols sharers will miss
next time they try to access the line

- Advantage of invalidation-based protocols:
only store misses go on bus and subsequent
stores to the same line are cache hits

Sharing patterns

Producer-consumer

- One thread produces a value and other
threads consume it

- Example (flag is zero initially):
+ T1: x=y; flag=1;
+ T2-Tk: while(!flag); use x;
Migratory

- Each thread reads and writes to a shared
variable in sequence

- Example (1<=i<=k) flag is one initially:
» Ti: while(flag |= i); x = f(x); flag++;
- Migratory hand-off? 21

Migratory hand-off
* Needs a memory writeback on every
hand-of f
- r0O, w0, r1,wl, r2, w2, r3, w3, r4, w4, ..
- How to avoid these unnecessary writebacks?
- Saves memory bandwidth

- Solution: add an owner state (different from
M) in caches

- Only owner can write a line back on eviction
- Ownership shifts along the migratory chain

22

States of a cache line
» Invalid (I), Shared (S), Modified or dirty
(M), Clean exclusive (E), Owned (O)

- Every processor does not support all five
states

- E state is equivalent to M in the sense that
the line has permission to write, but in E
state the line is not yet modified and the
copy in memory is the same as in cache; if
someone else requests the line the memory
will provide the line after querying the E
state holder

- O state: memory is not responsible for
servicing requests to the line; the owner
must supply the line (just as in M state),.no
write permission

Stores

* Look at stores a little more closely

- There are three situations at the time a store
iIssues: the line is not in the cache, the line is
in the cache in S state, the line is in the cache
in one of M, E and O states

- If the line is in I state, the store generates a
read-exclusive request on the bus and gets
the line in M state

- If the line is in S or O state, that means the
processor only has read permission for that
line; the store generates an upgrade request
on the bus and the upgrade acknowledgment
gives it the write permission (this is a data-
less transaction) 24

MSI protocol

- Forms the foundation of invalidation-
based writeback protocols

- Assumes only three supported cache line
states: I, S,and M

- There may be multiple processors caching a
line in S state

- There must be exactly one processor caching
a line in M state and it is the owner of the line

- If none of the caches have the line, memory
must have the most up-to-date copy of the
line

25

State transition

PrWr/BusRdX

PrWr/BusUpgr

PrRd/BusRd
PrRd/
BusRdy-

{BusRdX, BusUpgr}/-
CachekEvict/-

BusRd/Flush

CacheEvict/Bus\WB

26

MST example
» Take the following example
- PO reads x, P1 reads x, P1 writes x, PO reads x, P2
reads x, P3 writes x

- Assume the state of the cache line containing the
address of x is I in all processors

PO generates BusRd, memory provides line, PO puts line
in S state

P1 generates BusRd, memory provides line, P1 puts line in
S state

P1 generates BusUpgr, PO snoops and invalidates line,
memory does not respond, P1 sets state of line to M

PO generates BusRd, P1 flushes line and goes to S state,
PO puts line in S state, memory writes back

P2 generates BusRd, memory provides line, P2 puts line
in S state

P3 generates BusRdX, PO, P1, P2 snoop and invalidéte,
memorv brovides line. P3 buts line in cache in M state

MEST protocol

» The most popular invalidation-based
protocol e.g., appears in Intel Xeon MP

* Why need E state?

- The MST protocol requires two transactions
to go from I to M even if there is no
intervening requests for the line: BusRd
followed by BusUpgr

- Save one transaction by having memory
controller respond to the first BusRd with E
state if there is no other sharer in the system

- Needs a dedicated control wire that gets
| asserted by a sharer (wired OR)

| ‘ o .28
&2} - Processor can write to a line in E state silently

N v

MESI exam,:le
e

» Take the following examp
- PO reads x, PO writes x, P1 reads x, P1 writes x, ...

PO generates BusRd, memory provides line, PO puts line
in cache in E state

PO does write silently, goes to M state

P1 generates BusRd, PO provides line, P1 puts line in
cache in S state, PO transitions to S state

Rest is identical to MSI
— Consider this example: PO reads x, P1 reads x, ...

PO generates BusRd, memory provides line, PO puts line
in cache in E state

P1 generates BusRd, memory provides line, P1 puts line in
cache in S state, PO transitions to S state (nho cache-
to-cache sharing)

Rest is same as MSI 2

Definitions

* Memory operation: a read (load), a write
(store), or a read-modify-write

- Assumed to take place atomically

* A memory operation is said to issue when
it leaves the issue queue and looks up the
cache

» A memory operation is said to perform
with respect to a processor when a
processor can tell that from other issued
memory operations

30

Definitions

* A read is said to perform with respect to
a processor when subsequent writes issued
by that processor cannot affect the
returned read value

+ A write is said to perform with respect to
a processor when a subsequent read from
that processor to the same address
returns the new value

* A memory operation is said to complete
when it has performed with respect to all
processors in the system

31

Ordering memory op

+ Assume that there is a single shared
memory and no caches

- Memory operations complete in shared
memory when they access the corresponding
memory locations

- Operations from the same processor complete
in program order: this imposes a partial order
among the memory operations

- Operations from different processors are
interleaved in such a way that the program
order is maintained for each processor:
memory imposes some total order (many gge
possible)

Example
PO: x=8; u=y; v=9,

P1: r=5; y=4. t=v;

Total order: x=8; u=y; r=b; y=4: t=v; v=9;

Another legal total order:

x=8; r=5; y=4; u=y; v=9; t=v;

* "Last” means the most recent in some legal
total order

- A system is coherent if

- Reads get the last written value in the total
order

7z, - All processors see writes to a location in the
;.ﬁ__ 5? K. j,- ___.-',;
=7 same order

Cache coherence

- Formal definition

- A memory system is coherent if the values
returned by reads to a memory location
during an execution of a program are such
that all operations to that location can form
a hypothetical total order that is consistent
with the serial order and has the following
two properties:

1. Operations issued by any particular
processor perform according to the issue
order

2. The value returned by a read is the value
written to that location by the last write in
the total order 34

Cache coherence

» Two necessary features that follow from
above:

A. Write propagation: writes must eventually
become visible to all processors

B. Write serialization: Every processor should
see the writes to a location in the same order
(if I see wl before w2, you should not see w2
before wl)

35

