
Cache Coherence

(Architectural Supports for
Efficient Shared Memory)

Mainak Chaudhuri
mainakc@cse.iitk.ac.in

1

Agenda
• Setting

– Software: shared address space

– Hardware: shared memory multiprocessors

• Cache coherence

• Invariants and implementation

• Cache coherence protocols: MSI, MESI

• Formal definitions

2

Shared address space
• Part of the address space is shared

between multiple threads or processes

– Achieved by declaring shared variables as
global for sharing among threads within a
process (POSIX thread model)

– Achieved by allocating memory through
specialized system calls for sharing among
different processes (UNIX shmget/shmat)

– Variables in the shared address space can be
read from and written to by multiple
different threads/processes (load/store ins)

– A mode of communication between
threads/processes for exchanging results

3

Shared memory multiprocessors
• Platform to schedule in parallel multiple

threads or processes that share memory

• Many different designs exist

– We will assume that each processor has a
hierarchy of caches (possibly shared)

– Shared cache: popular in chip-
multiprocessors (CMPs)

– Private cache: found in some CMPs,
symmetric multi-processors (SMPs), and
multi-node servers

– Distributed shared memory: popular in
medium to large-scale multi-node servers4

Shared cache

P0 P1 P2 P3

CACHE CACHE CACHE CACHE

INTERCONNECT

DRAM

SHARED CACHE

Single chip

5

Private cache

P0 P1 P2 P3

CACHE CACHE CACHE CACHE

INTERCONNECT

DRAM

6

May or may not be a single chip

Distributed shared memory

P0 P1 P2 P3

CACHE CACHE CACHE CACHE

INTERCONNECT

DRAM DRAM DRAM DRAM

7

Distributed shared memory

P0 P1 P2 P3

CACHE CACHE CACHE CACHE

INTERCONNECT

DRAM DRAM DRAM DRAM

8

Pass explicit messages between nodes for data exchange
(Will not be discussed in this session)

Cache coherence
• Processors employ private caching of

data to improve performance
– Private copies of shared data must be

“coherent”
• Roughly speaking, all copies must have the same

value (enough if this holds eventually)

– For sequential programs, a memory location
must return the latest value written to it

– For parallel programs, we expect the same
provided “latest” is well-defined
• For now, latest value of a location is the latest

value “committed” by any thread/process

• A cache coherence protocol is a set of actions
that ensure that a load to address A returns the
“last committed” value to A

9

Cache coherence: Example
• Assume 3Ps with write-through caches

– P0: reads x from memory, puts it in its
cache, and gets the value 5

– P1: reads x from memory, puts it in its cache,
and gets the value 5

– P1: writes x=7, updates its cached value and
memory value

– P0: reads x from its cache and gets the value
5

– P2: reads x from memory, puts it in its
cache, and gets the value 7 (now the system
is completely incoherent)

– P2: writes x=10, updates its cached value and
memory value

10

Cache coherence: Example
• Consider the same example for writeback

caches
– P0 has a cached value 5, P1 has 7, P2 has 10,

memory has 5 (since caches are not write
through)

– The state of the line in P1 and P2 is M while
the line in P0 is clean

– Eviction of the line from P1 and P2 will issue
writebacks while eviction of the line from P0
will not issue a writeback (clean lines do not
need writeback)

– Suppose P2 evicts the line first, and then P1

– Final memory value is 7: we lost the store
x=10 from P2

11

What went wrong?
• For write through cache

– The memory value may be correct if the
writes are correctly ordered

– But the system allowed a store to proceed
when there is already a cached copy

– Lesson learned: must invalidate all cached
copies before allowing a store to proceed

• Writeback cache
– Problem is even more complicated: stores are

no longer visible to memory immediately

– Writeback order is important

– Lesson learned: do not allow more than one
copy of a cache line in M state 12

Implementations
• Must invalidate all cached copies before

allowing a store to proceed
– Need to know where the cached copies are

– Solution1: Just tell everyone that you are
going to do a store
• Leads to broadcast snoopy protocols

• Popular with small-scale machines

• Typically, the interconnect is a shared bus; AMD
Opteron implements it on a distributed network
(the Hammer protocol)

– Solution2: Keep track of the sharers and
invalidate them when needed
• Where and how is this information stored?

• Leads to directory-based scalable protocols13

Implementations
• Directory-based protocols

– Maintain one directory entry per memory
block

– Each directory entry contains a sharer
bitvector and state bits

14

Distributed shared memory

P0 P1 P2 P3

CACHE CACHE CACHE CACHE

INTERCONNECT

DRAM DRAM DRAM DRAM

15
Where and how would you place the directory?

New concept: home node

Shared cache

P0 P1 P2 P3

CACHE CACHE CACHE CACHE

INTERCONNECT

DRAM

SHARED CACHE

Single chip

16

Where and how would you place the directory?

Sparse directory

Implementations
• Do not allow more than one copy of a

cache line in M state

– Need some form of access control
mechanism

– Before a processor does a store it must take
“permission” from the current “owner” (if
any)

– Need to know who the current owner is

• Either a processor or main memory

– Solution1 and Solution2 apply here also

• Tell everybody or tell the owner

17

Implementations
• Latest value must be propagated to the

requester

– Notion of “latest” is very fuzzy

– Once we know the owner, this is easy

– Solution1 and Solution2 apply here also

• Tell everybody or tell the owner

18

Implementations
• Invariant: if a cache block is not in M

state in any processor, memory must
provide the block to the requester

– Memory must be updated when a block
transitions from M state to S state

– Note that a transition from M to I always
updates memory in systems with writeback
caches (these are normal writeback
operations)

• Most of the implementations of a
coherence protocol deals with uncommon
cases and races 19

Invalidation vs. Update
• Two main classes of protocols:

– Dictates what action should be taken on a
store

– Invalidation-based protocols invalidate
sharers when a store miss appears

– Update-based protocols update the sharer
caches with new value on a store

– Advantage of update-based protocols:
sharers continue to hit in the cache while in
invalidation-based protocols sharers will miss
next time they try to access the line

– Advantage of invalidation-based protocols:
only store misses go on bus and subsequent
stores to the same line are cache hits 20

Sharing patterns
• Producer-consumer

– One thread produces a value and other
threads consume it

– Example (flag is zero initially):

• T1: x=y; flag=1;

• T2-Tk: while(!flag); use x;

• Migratory

– Each thread reads and writes to a shared
variable in sequence

– Example (1<=i<=k) flag is one initially:

• Ti: while(flag != i); x = f(x); flag++;

– Migratory hand-off? 21

Migratory hand-off
• Needs a memory writeback on every

hand-off

– r0, w0, r1, w1, r2, w2, r3, w3, r4, w4, …

– How to avoid these unnecessary writebacks?

– Saves memory bandwidth

– Solution: add an owner state (different from
M) in caches

– Only owner can write a line back on eviction

– Ownership shifts along the migratory chain

22

States of a cache line
• Invalid (I), Shared (S), Modified or dirty

(M), Clean exclusive (E), Owned (O)
– Every processor does not support all five

states

– E state is equivalent to M in the sense that
the line has permission to write, but in E
state the line is not yet modified and the
copy in memory is the same as in cache; if
someone else requests the line the memory
will provide the line after querying the E
state holder

– O state: memory is not responsible for
servicing requests to the line; the owner
must supply the line (just as in M state); no
write permission

23

Stores
• Look at stores a little more closely

– There are three situations at the time a store
issues: the line is not in the cache, the line is
in the cache in S state, the line is in the cache
in one of M, E and O states

– If the line is in I state, the store generates a
read-exclusive request on the bus and gets
the line in M state

– If the line is in S or O state, that means the
processor only has read permission for that
line; the store generates an upgrade request
on the bus and the upgrade acknowledgment
gives it the write permission (this is a data-
less transaction) 24

MSI protocol
• Forms the foundation of invalidation-

based writeback protocols

– Assumes only three supported cache line
states: I, S, and M

– There may be multiple processors caching a
line in S state

– There must be exactly one processor caching
a line in M state and it is the owner of the line

– If none of the caches have the line, memory
must have the most up-to-date copy of the
line

25

State transition

I S M

PrRd/BusRd

PrWr/BusRdX

PrRd/-
BusRd/-

{BusRdX, BusUpgr}/-
CacheEvict/-

PrWr/BusUpgr

PrRd/-
PrWr/-BusRd/Flush

BusRdX/Flush
CacheEvict/BusWB

26

MSI example
• Take the following example

– P0 reads x, P1 reads x, P1 writes x, P0 reads x, P2
reads x, P3 writes x

– Assume the state of the cache line containing the
address of x is I in all processors

P0 generates BusRd, memory provides line, P0 puts line
in S state

P1 generates BusRd, memory provides line, P1 puts line in
S state

P1 generates BusUpgr, P0 snoops and invalidates line,
memory does not respond, P1 sets state of line to M

P0 generates BusRd, P1 flushes line and goes to S state,
P0 puts line in S state, memory writes back

P2 generates BusRd, memory provides line, P2 puts line
in S state

P3 generates BusRdX, P0, P1, P2 snoop and invalidate,
memory provides line, P3 puts line in cache in M state

27

MESI protocol
• The most popular invalidation-based

protocol e.g., appears in Intel Xeon MP

• Why need E state?

– The MSI protocol requires two transactions
to go from I to M even if there is no
intervening requests for the line: BusRd
followed by BusUpgr

– Save one transaction by having memory
controller respond to the first BusRd with E
state if there is no other sharer in the system

– Needs a dedicated control wire that gets
asserted by a sharer (wired OR)

– Processor can write to a line in E state silently
28

MESI example
• Take the following example

– P0 reads x, P0 writes x, P1 reads x, P1 writes x, …

P0 generates BusRd, memory provides line, P0 puts line
in cache in E state

P0 does write silently, goes to M state

P1 generates BusRd, P0 provides line, P1 puts line in
cache in S state, P0 transitions to S state

Rest is identical to MSI

– Consider this example: P0 reads x, P1 reads x, …

P0 generates BusRd, memory provides line, P0 puts line
in cache in E state

P1 generates BusRd, memory provides line, P1 puts line in
cache in S state, P0 transitions to S state (no cache-
to-cache sharing)

Rest is same as MSI
29

Definitions
• Memory operation: a read (load), a write

(store), or a read-modify-write
– Assumed to take place atomically

• A memory operation is said to issue when
it leaves the issue queue and looks up the
cache

• A memory operation is said to perform
with respect to a processor when a
processor can tell that from other issued
memory operations

30

Definitions
• A read is said to perform with respect to

a processor when subsequent writes issued
by that processor cannot affect the
returned read value

• A write is said to perform with respect to
a processor when a subsequent read from
that processor to the same address
returns the new value

• A memory operation is said to complete
when it has performed with respect to all
processors in the system

31

Ordering memory op
• Assume that there is a single shared

memory and no caches

– Memory operations complete in shared
memory when they access the corresponding
memory locations

– Operations from the same processor complete
in program order: this imposes a partial order
among the memory operations

– Operations from different processors are
interleaved in such a way that the program
order is maintained for each processor:
memory imposes some total order (many are
possible)

32

Example
P0: x=8; u=y; v=9;

P1: r=5; y=4; t=v;

Total order: x=8; u=y; r=5; y=4; t=v; v=9;

Another legal total order:

x=8; r=5; y=4; u=y; v=9; t=v;

• “Last” means the most recent in some legal
total order

• A system is coherent if

– Reads get the last written value in the total
order

– All processors see writes to a location in the
same order

33

Cache coherence
• Formal definition

– A memory system is coherent if the values
returned by reads to a memory location
during an execution of a program are such
that all operations to that location can form
a hypothetical total order that is consistent
with the serial order and has the following
two properties:

1. Operations issued by any particular
processor perform according to the issue
order

2. The value returned by a read is the value
written to that location by the last write in
the total order 34

Cache coherence
• Two necessary features that follow from

above:
A. Write propagation: writes must eventually

become visible to all processors

B. Write serialization: Every processor should
see the writes to a location in the same order
(if I see w1 before w2, you should not see w2
before w1)

35

