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Agenda
• Setting

– Software: shared address space

– Hardware: shared memory multiprocessors

• Cache coherence

• Invariants and implementation

• Cache coherence protocols: MSI, MESI

• Formal definitions
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Shared address space
• Part of the address space is shared 

between multiple threads or processes

– Achieved by declaring shared variables as 
global for sharing among threads within a 
process (POSIX thread model)

– Achieved by allocating memory through 
specialized system calls for sharing among 
different processes (UNIX shmget/shmat)

– Variables in the shared address space can be 
read from and written to by multiple 
different threads/processes (load/store ins)

– A mode of communication between 
threads/processes for exchanging results
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Shared memory multiprocessors
• Platform to schedule in parallel multiple 

threads or processes that share memory

• Many different designs exist

– We will assume that each processor has a 
hierarchy of caches (possibly shared)

– Shared cache: popular in chip-
multiprocessors (CMPs)

– Private cache: found in some CMPs, 
symmetric multi-processors (SMPs), and 
multi-node servers

– Distributed shared memory: popular in 
medium to large-scale multi-node servers4



Shared cache

P0 P1 P2 P3

CACHE CACHE CACHE CACHE

INTERCONNECT

DRAM

SHARED CACHE

Single chip
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Private cache

P0 P1 P2 P3

CACHE CACHE CACHE CACHE

INTERCONNECT

DRAM
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May or may not be a single chip



Distributed shared memory

P0 P1 P2 P3

CACHE CACHE CACHE CACHE

INTERCONNECT

DRAM DRAM DRAM DRAM
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Distributed shared memory

P0 P1 P2 P3

CACHE CACHE CACHE CACHE

INTERCONNECT

DRAM DRAM DRAM DRAM
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Pass explicit messages between nodes for data exchange
(Will not be discussed in this session)



Cache coherence
• Processors employ private caching of 

data to improve performance
– Private copies of shared data must be 

“coherent”
• Roughly speaking, all copies must have the same 

value (enough if this holds eventually)

– For sequential programs, a memory location 
must return the latest value written to it

– For parallel programs, we expect the same 
provided “latest” is well-defined
• For now, latest value of a location is the latest 

value “committed” by any thread/process

• A cache coherence protocol is a set of actions 
that ensure that a load to address A returns the 
“last committed” value to A
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Cache coherence: Example
• Assume 3Ps with write-through caches

– P0: reads x from memory, puts it in its 
cache, and gets the value 5

– P1: reads x from memory, puts it in its cache, 
and gets the value 5

– P1: writes x=7, updates its cached value and 
memory value

– P0: reads x from its cache and gets the value 
5

– P2: reads x from memory, puts it in its 
cache, and gets the value 7 (now the system 
is completely incoherent)

– P2: writes x=10, updates its cached value and 
memory value
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Cache coherence: Example
• Consider the same example for writeback 

caches
– P0 has a cached value 5, P1 has 7, P2 has 10, 

memory has 5 (since caches are not write 
through)

– The state of the line in P1 and P2 is M while 
the line in P0 is clean

– Eviction of the line from P1 and P2 will issue 
writebacks while eviction of the line from P0 
will not issue a writeback (clean lines do not 
need writeback)

– Suppose P2 evicts the line first, and then P1

– Final memory value is 7: we lost the store 
x=10 from P2
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What went wrong?
• For write through cache 

– The memory value may be correct if the 
writes are correctly ordered

– But the system allowed a store to proceed 
when there is already a cached copy

– Lesson learned: must invalidate all cached 
copies before allowing a store to proceed

• Writeback cache
– Problem is even more complicated: stores are 

no longer visible to memory immediately

– Writeback order is important

– Lesson learned: do not allow more than one 
copy of a cache line in M state 12



Implementations
• Must invalidate all cached copies before 

allowing a store to proceed
– Need to know where the cached copies are

– Solution1: Just tell everyone that you are 
going to do a store
• Leads to broadcast snoopy protocols

• Popular with small-scale machines

• Typically, the interconnect is a shared bus; AMD 
Opteron implements it on a distributed network 
(the Hammer protocol)

– Solution2: Keep track of the sharers and 
invalidate them when needed
• Where and how is this information stored?

• Leads to directory-based scalable protocols13



Implementations
• Directory-based protocols

– Maintain one directory entry per memory 
block

– Each directory entry contains a sharer 
bitvector and state bits
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Distributed shared memory

P0 P1 P2 P3

CACHE CACHE CACHE CACHE

INTERCONNECT

DRAM DRAM DRAM DRAM

15
Where and how would you place the directory?

New concept: home node



Shared cache

P0 P1 P2 P3

CACHE CACHE CACHE CACHE

INTERCONNECT

DRAM

SHARED CACHE

Single chip
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Where and how would you place the directory?

Sparse directory



Implementations
• Do not allow more than one copy of a 

cache line in M state

– Need some form of access control 
mechanism

– Before a processor does a store it must take 
“permission” from the current “owner” (if 
any)

– Need to know who the current owner is

• Either a processor or main memory

– Solution1 and Solution2 apply here also

• Tell everybody or tell the owner
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Implementations
• Latest value must be propagated to the 

requester

– Notion of “latest” is very fuzzy

– Once we know the owner, this is easy

– Solution1 and Solution2 apply here also

• Tell everybody or tell the owner
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Implementations
• Invariant: if a cache block is not in M 

state in any processor, memory must 
provide the block to the requester

– Memory must be updated when a block 
transitions from M state to S state

– Note that a transition from M to I always 
updates memory in systems with writeback 
caches (these are normal writeback 
operations)

• Most of the implementations of a 
coherence protocol deals with uncommon 
cases and races 19



Invalidation vs. Update
• Two main classes of protocols:

– Dictates what action should be taken on a 
store

– Invalidation-based protocols invalidate 
sharers when a store miss appears

– Update-based protocols update the sharer 
caches with new value on a store

– Advantage of update-based protocols: 
sharers continue to hit in the cache while in 
invalidation-based protocols sharers will miss 
next time they try to access the line

– Advantage of invalidation-based protocols: 
only store misses go on bus and subsequent 
stores to the same line are cache hits 20



Sharing patterns
• Producer-consumer

– One thread produces a value and other 
threads consume it

– Example (flag is zero initially):

• T1: x=y; flag=1;

• T2-Tk: while(!flag); use x;

• Migratory

– Each thread reads and writes to a shared 
variable in sequence

– Example (1<=i<=k) flag is one initially:

• Ti: while(flag != i); x = f(x); flag++;

– Migratory hand-off? 21



Migratory hand-off
• Needs a memory writeback on every 

hand-off

– r0, w0, r1, w1, r2, w2, r3, w3, r4, w4, …

– How to avoid these unnecessary writebacks?

– Saves memory bandwidth

– Solution: add an owner state (different from 
M) in caches

– Only owner can write a line back on eviction

– Ownership shifts along the migratory chain

22



States of a cache line
• Invalid (I), Shared (S), Modified or dirty 

(M), Clean exclusive (E), Owned (O)
– Every processor does not support all five 

states

– E state is equivalent to M in the sense that 
the line has permission to write, but in E 
state the line is not yet modified and the 
copy in memory is the same as in cache; if 
someone else requests the line the memory 
will provide the line after querying the E 
state holder

– O state: memory is not responsible for 
servicing requests to the line; the owner 
must supply the line (just as in M state); no 
write permission
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Stores
• Look at stores a little more closely

– There are three situations at the time a store 
issues: the line is not in the cache, the line is 
in the cache in S state, the line is in the cache 
in one of M, E and O states

– If the line is in I state, the store generates a               
read-exclusive request on the bus and gets 
the line in M state

– If the line is in S or O state, that means the 
processor only has read permission for that 
line; the store generates an upgrade request 
on the bus and the upgrade acknowledgment
gives it the write permission (this is a data-
less transaction) 24



MSI protocol
• Forms the foundation of invalidation-

based writeback protocols

– Assumes only three supported cache line 
states: I, S, and M

– There may be multiple processors caching a 
line in S state

– There must be exactly one processor caching 
a line in M state and it is the owner of the line

– If none of the caches have the line, memory 
must have the most up-to-date copy of the 
line
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State transition

I S M

PrRd/BusRd

PrWr/BusRdX

PrRd/-
BusRd/-

{BusRdX, BusUpgr}/-
CacheEvict/-

PrWr/BusUpgr

PrRd/-
PrWr/-BusRd/Flush

BusRdX/Flush
CacheEvict/BusWB
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MSI example
• Take the following example

– P0 reads x, P1 reads x, P1 writes x, P0 reads x, P2 
reads x, P3 writes x

– Assume the state of the cache line containing the 
address of x is I in all processors

P0 generates BusRd, memory provides line, P0 puts line 
in S state

P1 generates BusRd, memory provides line, P1 puts line in 
S state

P1 generates BusUpgr, P0 snoops and invalidates line, 
memory does not respond, P1 sets state of line to M

P0 generates BusRd, P1 flushes line and goes to S state, 
P0 puts line in S state, memory writes back

P2 generates BusRd, memory provides line, P2 puts line 
in S state

P3 generates BusRdX, P0, P1, P2 snoop and invalidate, 
memory provides line, P3 puts line in cache in M state 
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MESI protocol
• The most popular invalidation-based 

protocol e.g., appears in Intel Xeon MP

• Why need E state?

– The MSI protocol requires two transactions 
to go from I to M even if there is no 
intervening requests for the line: BusRd 
followed by BusUpgr

– Save one transaction by having memory 
controller respond to the first BusRd with E 
state if there is no other sharer in the system

– Needs a dedicated control wire that gets 
asserted by a sharer (wired OR)

– Processor can write to a line in E state silently
28



MESI example
• Take the following example

– P0 reads x, P0 writes x, P1 reads x, P1 writes x, …

P0 generates BusRd, memory provides line, P0 puts line 
in cache in E state

P0 does write silently, goes to M state

P1 generates BusRd, P0 provides line, P1 puts line in 
cache in S state, P0 transitions to S state

Rest is identical to MSI

– Consider this example: P0 reads x, P1 reads x, …

P0 generates BusRd, memory provides line, P0 puts line 
in cache in E state

P1 generates BusRd, memory provides line, P1 puts line in 
cache in S state, P0 transitions to S state (no cache-
to-cache sharing)

Rest is same as MSI
29



Definitions
• Memory operation: a read (load), a write 

(store), or a read-modify-write
– Assumed to take place atomically

• A memory operation is said to issue when 
it leaves the issue queue and looks up the 
cache

• A memory operation is said to perform
with respect to a processor when a 
processor can tell that from other issued 
memory operations
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Definitions
• A read is said to perform with respect to 

a processor when subsequent writes issued 
by that processor cannot affect the 
returned read value

• A write is said to perform with respect to 
a processor when a subsequent read from 
that processor to the same address 
returns the new value

• A memory operation is said to complete 
when it has performed with respect to all 
processors in the system
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Ordering memory op
• Assume that there is a single shared 

memory and no caches

– Memory operations complete in shared 
memory when they access the corresponding 
memory locations

– Operations from the same processor complete 
in program order: this imposes a partial order
among the memory operations

– Operations from different processors are 
interleaved in such a way that the program 
order is maintained for each processor: 
memory imposes some total order (many are 
possible)
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Example
P0: x=8; u=y; v=9;

P1: r=5; y=4; t=v;

Total order: x=8; u=y; r=5; y=4; t=v; v=9;

Another legal total order:

x=8; r=5; y=4; u=y; v=9; t=v;

• “Last” means the most recent in some legal 
total order

• A system is coherent if

– Reads get the last written value in the total 
order

– All processors see writes to a location in the 
same order
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Cache coherence
• Formal definition

– A memory system is coherent if the values 
returned by reads to a memory location 
during an execution of a program are such 
that all operations to that location can form 
a hypothetical total order that is consistent 
with the serial order and has the following 
two properties:

1. Operations issued by any particular 
processor perform according to the issue 
order

2. The value returned by a read is the value 
written to that location by the last write in 
the total order  34



Cache coherence
• Two necessary features that follow from 

above:
A. Write propagation: writes must eventually 

become visible to all processors

B. Write serialization: Every processor should 
see the writes to a location in the same order 
(if I see w1 before w2, you should not see w2 
before w1) 

35


