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Memory is virtual !

▪ Application software sees virtual address 
‣ int * p = malloc(64);

‣ Load, store instructions carries virtual addresses
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Memory is virtual !

▪ Application software sees virtual address 
‣ int * p = malloc(64);

‣ Load, store instructions carries virtual addresses

▪Hardware uses (real) physical address
‣ e.g., to find data, lookup caches etc. 

▪When an application executes (a.k.a process) 
virtual addresses are translated to physical 
addresses, at runtime 
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Bird’s view of virtual memory
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Physical Memory (e.g., DRAM)
Picture credit:  Nima Honarmand, Stony Brook university
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Physical Memory (e.g., DRAM)

Process 1

Picture credit:  Nima Honarmand, Stony Brook university
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Bird’s view of virtual memory
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Physical Memory (e.g., DRAM)

Process 1

// Program expects (*x) 

//  to always be at 

//  address 0x1000

int *x = 0x1000; 

Picture credit:  Nima Honarmand, Stony Brook university



Indian Institute of Science (IISc), Bangalore, India

Bird’s view of virtual memory

7/12/2018 3

Physical Memory (e.g., DRAM)

Process 1 Process 2

// Program expects (*x) 

//  to always be at 

//  address 0x1000

int *x = 0x1000; 

Picture credit:  Nima Honarmand, Stony Brook university
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Bird’s view of virtual memory

7/12/2018 3

Physical Memory (e.g., DRAM)0x1000

Process 1 Process 2

// Program expects (*x) 

//  to always be at 

//  address 0x1000

int *x = 0x1000; 

Only one physical 
address 0x1000!!

Picture credit:  Nima Honarmand, Stony Brook university
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Bird’s view of virtual memory
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Physical Memory (e.g., DRAM)0x1000

Process 1

App’s view of memory

Process 2

App’s view of memory

0x10000x1000
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Bird’s view of virtual memory
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Virtual memory is a layer of indirection between 
s/w’s view of memory and h/w’s view
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Roles of software and hardware
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Virtual memory is a layer of indirection between 
s/w’s view of memory and h/w’s view

1. Operating system creates and manages 
Virtual to physical address  mappings.

2. (Typically) Hardware performs the VA to 
PA translation at runtime.
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Virtual memory terminology
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Virtual memory terminology
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Virtual memory terminology
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Process 1

Virtual address space
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Memory Management Unit (MMU)
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Why virtual memory?
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Why virtual memory?

▪ Relocation: Ease of programming by providing 
application contiguous view of memory
‣ But actual physical memory can be scattered
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Why virtual memory?

▪ Relocation: Ease of programming by providing 
application contiguous view of memory
‣ But actual physical memory can be scattered

▪ Resource management: Application writer can assume 
there is enough memory
‣ But, system can manage physical memory across concurrent 

processes 

▪ Isolation: Bug in one process should not corrupt 
memory of another
‣ Provide each process with separate virtual address space

▪ Protection: Enforce rules on what memory a process 
can or cannot access
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Agenda
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What is virtual memory?

Hardware implementations of virtual memory

Research opportunity in virtual memory

Software management of virtual memory  
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Implementing virtual memory

▪Many ways to implement virtual memory
‣ Base and bound register 

‣ Segmentation

‣ Paging 
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Base and bound registers
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Process 1

Virtual address space

Process 2

Virtual address space
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Base and bound registers
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Process 1

Virtual address space

Process 2

Virtual address space

Base Bound Base Bound
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Base and bound registers

▪ How it works?
‣ Each CPU core has base and bound registers 
‣ Each process has own values for base and bound
‣ Base and bound values are assigned by OS
‣ On a context switch, a process’s base and bound registers are 

saved/restored by the OS
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Base and bound registers

▪ How it works?
‣ Each CPU core has base and bound registers 
‣ Each process has own values for base and bound
‣ Base and bound values are assigned by OS
‣ On a context switch, a process’s base and bound registers are 

saved/restored by the OS

▪ Example: Cray-1 (very old system)
▪ Advantage

‣ Simple

▪ Disadvantage
‣ Needs contiguous physical memory
‣ Deallocation of memory is possible only on the edge
‣ Cannot allocate more memory is no free memory at the edge
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Segmentation 
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Segmentation 
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Process 1 Process 2

Virtual address spaceCode        Data  Stack   

Semantics of typical 
segments
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Segmentation: How it works?
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Virtual address Prot Base Length

Seg Id      Offset R         0x30000 1024

Segment table

CS         128 SS

CS

DS R/W     0x40100 16384

R/W     0x0100 1024
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Segmentation: How it works?

▪How to select segmentation ID?
‣ In most cases, the compiler can infer

• For example, x86-32 bit has CS, SS, DS, ES, FS, GS

▪ Advantages segmentation:
‣ Multiple memory regions with different protections

‣ No need to have all segments in memory all the time

‣ Ability to share segments across processes

7/12/2018 14

Compiler
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Programmer 
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Disadvantages of Segmentation
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Disadvantages of Segmentation
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Process 1

Virtual address space

Process 2

Virtual address space
Process 3

Virtual address space

Cannot be used although total 
free size is more than requested



Indian Institute of Science (IISc), Bangalore, India

Disadvantages of Segmentation

▪ External fragmentation: Inability to use free 
memory as it is non-contiguous (fragmentation)
‣ Allocating different sized segments leaves free memory 

fragmented

▪ A segment of size n bytes requires n bytes long 
contiguous physical memory

▪Not completely transparent to applications
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Paging

▪ Idea: Allocate/de-allocate memory in same size 
chunks (pages)
‣ No external fragmentation (Why?)

‣ Page sizes are typically small, e.g., 4KB
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Paging
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Paging
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Process 1

Virtual address space

Process 2

Virtual address space

Physical page frames

Pages
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Advantages of paging

▪No external fragmentation !

▪ Simplifies allocation, deallocation

▪ Provides application a contiguous view of memory
‣ But, physical memory backing it could very scattered 

7/12/2018 19



Indian Institute of Science (IISc), Bangalore, India
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▪No external fragmentation !

▪ Simplifies allocation, deallocation

▪ Provides application a contiguous view of memory
‣ But, physical memory backing it could very scattered 
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Almost all processors today employs paging
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Disadvantages of paging

▪ Internal fragmentation: Memory wastage due to 
allocation only in page sizes (e.g., 4KB)
‣ e.g., for an allocation 128 bytes a 4KB page will be 

allocated

‣ Potentially waste (4KB – 128) bytes. 
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Paging: How it works (simplistic)?
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Virtual address

Virtual 
Page 
Number 
(VPN)

0x0001bbf    21f

Page
Offset
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Paging: How it works (simplistic)?
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Paging: How it works (simplistic)?
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Paging: How it really works?

▪ Single level page table adds too much overhead
‣ Consider a typical 48-bit virtual address space, 4KB page 

size and 8 byte long page table entry (PTE)

‣ Each page table will be  512GB

‣ There could be many processes many page tables

▪Often virtual address space is sparsely allocated
‣ Entire address is not allocated
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Paging: How it really works?

▪ Single level page table adds too much overhead
‣ Consider a typical 48-bit virtual address space, 4KB page 

size and 8 byte long page table entry (PTE)

‣ Each page table will be  512GB

‣ There could be many processes many page tables

▪Often virtual address space is sparsely allocated
‣ Entire address is not allocated

▪ Solution: Multilevel radix tree for page table
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Paging: 64bit x86* page table

7/12/2018 23

4 level 512-ary radix tree indexed by virtual page number

Up to 512 children

Contains PFN
* i.e., Intel or AMD processors

Unallocated VA regions
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Paging: 64bit x86 page table

▪Operating system maintains one page table per 
process (a.k.a., per virtual address space)

▪Operating system creates, updates, deletes page 
table entries (PTEs)
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Paging: 64bit x86 page table

▪Operating system maintains one page table per 
process (a.k.a., per virtual address space)

▪Operating system creates, updates, deletes page 
table entries (PTEs)

▪ Page table structure is part of agreement between 
the OS and the hardware  page table structure 
ISA specific
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Paging: 64bit x86 page walk
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Paging: 64bit x86 page walk
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Paging: 64bit x86 page walk
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Physical page frame number
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Who walks the page table?

▪ A hardware page table walker (PTW) walks the page 
table
‣ Input: Root of page table (cr3) and VPN
‣ Output: Physical page frame number or fault
‣ A hardware fine-state-automata in each CPU core
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Who walks the page table?

▪ A hardware page table walker (PTW) walks the page 
table
‣ Input: Root of page table (cr3) and VPN
‣ Output: Physical page frame number or fault
‣ A hardware fine-state-automata in each CPU core
‣ Generates load-like “instructions” to access page table
‣ Typical in x86 and ARM processors

▪ Alternatives: Software page table walker
‣ A OS handler walks the page table
‣ Advantage: Free to choose page table format
‣ Disadvantage: Slow  Large address translation overhead
‣ Example:  SPARC (Sun/Oracle) machines
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TLB: Making page walks faster

▪Disadvantage: A single address translation can take 
up to 4 memory accesses!
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TLB: Making page walks faster

▪Disadvantage: A single address translation can take 
up to 4 memory accesses!

▪How to make address translation fast?
‣ Translation Lookaside Buffer or TLB to cache recently 

used virtual to physical address mappings

‣ A read-only cache of page table entries

‣ For address translation, TLB is first looked up

‣ On a TLB miss page walk is performed

‣ A TLB hit is fast but page walk is slow
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Where are TLBs & Page table 
walkers?
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Typical TLB hierarchy of 
modern processors

▪ Each core typically has:
‣ 32-64-entry L1 TLB (fully associative/4-8 way set-

associative)

‣ 1500-2500 entry L2 TLB (8-16 way set-associative)

‣ One to two page table walker 
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Putting it all together

▪ Steps of address translation
‣ Load/store instructions carries virtual address
‣ Virtual address divided into virtual page number (VPN) 

and page offset
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Putting it all together

▪ Steps of address translation
‣ Load/store instructions carries virtual address
‣ Virtual address divided into virtual page number (VPN) 

and page offset
‣ TLBs are looked for the desired VPN to page frame 

number mapping (PFN)
‣ On a hit, VPN is concatenated with offset and cache is 

looked up using the physical address
‣ On a miss, PTW starts walking the page table to get 

desired PFN
‣ If found, the address mapping is returned to the TLB
‣ If there exits no entry for the VPN in the page table then 

page fault is raised to the OS
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Miscellaneous paging 
topic
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Superpages: Reducing TLB 
misses

▪ TLB miss are long latency operation
‣ Address translation overhead == ~ TLB miss overhead 

▪ TLB reach = # of TLB entries      page size
‣ Higher TLB reach  (Typically) Lower TLB miss rate
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Superpages: Reducing TLB 
misses

▪ TLB miss are long latency operation
‣ Address translation overhead == ~ TLB miss overhead 

▪ TLB reach = # of TLB entries      page size
‣ Higher TLB reach  (Typically) Lower TLB miss rate

▪How to increase TLB reach?
‣ Increase TLB size. 

• Not always possible due to h/w overhead

‣ Increase page size
• Increases internal fragmentation

‣ Have multiple page sizes 
• Larger page sizes beyond base page size (e.g., 4KB)
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Superpages: Reducing TLB 
misses

▪ Larger page sizes called superpages

▪ Example page sizes in x86-64 (Intel, AMD) machines
‣ 4KB (base page size), 2MB, 1GB (superpages)
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Superpages: Reducing TLB 
misses

▪ Larger page sizes called superpages

▪ Example page sizes in x86-64 (Intel, AMD) machines
‣ 4KB (base page size), 2MB, 1GB (superpages)

▪ Challenge: How to decide which page size to use 
for mapping a given virtual address?
‣ Use of larger pages increase internal fragmentation 

memory bloat
‣ Using smaller page size can increase address translation 

overhead
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Superpages: Reducing TLB 
misses

▪ Larger page sizes called superpages

▪ Example page sizes in x86-64 (Intel, AMD) machines
‣ 4KB (base page size), 2MB, 1GB (superpages)

▪ Challenge: How to decide which page size to use 
for mapping a given virtual address?
‣ Use of larger pages increase internal fragmentation 

memory bloat
‣ Using smaller page size can increase address translation 

overhead
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Contents of a page table entry
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4 level 512-ary radix tree
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Contents of a page table entry

▪ ‘P’ (Present bit): If the address present in memory 

▪ ‘U/S’ (User/Supervisor bit): Is the page accessible in 
supervisor mode (e.g., by OS) only?

▪ ‘R/W’ (Read/Write): Is the page read-only?

▪ A (Access bit):  Is this page has ever been accessed 
(load/stored to)?

▪ D (Dirty bit): Is the page has been written to?

▪ X/D (Executable bit): Does the page contains executable?
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Segmentation with paging

▪ 32-bit x86 machines allowed segmentation on top 
of paging
‣ Virtual address is first translated via segment registers 

(CS,DS,ES etc.) to linear address

‣ Linear address is then translated to physical address

‣ Why?
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Segmentation with paging

▪ 32-bit x86 machines allowed segmentation on top 
of paging
‣ Virtual address is first translated via segment registers 

(CS,DS,ES etc.) to linear address

‣ Linear address is then translated to physical address

‣ Why?

▪ 64-bit x86 mostly got rid of segmenation
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Journey so far….Next up
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▪ Virtual memory basics

▪ Address mapping and translation 

▪ Virtual address allocation
▪ Physical memory allocation and page table creation
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Virtual address allocation
▪ “Memory allocation” is actually virtual address allocation

▪ Operating system is responsible for allocating virtual 
address for an application
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Virtual address allocation
▪ “Memory allocation” is actually virtual address allocation

▪ Operating system is responsible for allocating virtual 
address for an application
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Representation of VA (in Linux)
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struct task_struct

Represents a process
In Linux

pid

status

list of 
open files

list of 
signals

ptr to VA 
space

struct mm_struct

Represents a virtual 
address space

ptr to PT root

start/end stack

start/end code

start/end 
mmap

vma_area ptr Starting 
VA

Ending 
VA

Flags/Prot

VM_READ
VM_WRITE
VM_SHARED
…………….

VMAs or VM area: Represent a contiguous 
chunk of allocated virtual address range.
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Dynamically allocating VA

▪User application or library requests VA allocation 
via system calls

void *mmap(void *addr, size_t length, int prot, int
flags, int fd, off_t offset);

Length has to be multiple of 4KB

Prot PROT_NONE, PROT_READ, PROT_WRITE…

FlagsMAP_ANONYMOUS, MAP_SHARED, MAP_PRIVATE, 
MAP_SHARED
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What happens on dynamic 
memory allocation (e.g., mmap())?
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struct task_struct

Represents a process
In Linux

pid

status

list of 
open files

list of 
signals

ptr to VA 
space

struct mm_struct

Represents a virtual 
address space

ptr to PT root

start/end stack

start/end code

start/end 
mmap

vma_area ptr Starting 
VA

Ending 
VA

Flags/Prot

VM_READ
VM_WRITE
VM_SHARED
…………….

VMAs or VM area: Represent a contiguous 
chunk of allocated virtual address range.

vma_cache
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Extending heap memory

▪Heap: Special type of dynamically allocated 
contiguous memory region that grows in upwards

▪ System calls in Linux to extend heap
‣ int sbrk (increment _bytes)

7/12/2018 43



Indian Institute of Science (IISc), Bangalore, India

Extending heap via sbrk
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Represents a process
In Linux

pid
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start/end 
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VMAs or VM area: Represent a contiguous 
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Extending heap via sbrk
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struct task_struct

Represents a process
In Linux

pid

status

list of 
open files

list of 
signals

ptr to VA 
space

struct mm_struct

Represents a virtual 
address space

ptr to PT root

start/end stack

start/end code

start/end 
mmap

vma_area ptr Starting 
VA

Ending 
VA

Flags/Prot

VM_READ
VM_WRITE
VM_SHARED
…………….

vma_cache

VMAs or VM area: Represent a contiguous 
chunk of allocated virtual address range.
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Demand paging

▪Note when “memory” (a.k.a, VA) is allocated no 
physical memory is allocated
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Demand paging

▪Note when “memory” (a.k.a, VA) is allocated no 
physical memory is allocated

▪Why? Virtual address is in abundance; but physical 
memory is scarce resource. 

▪ Allocate physical memory for when the virtual 
address is accessed first time
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Demand paging

▪Note when “memory” (a.k.a, VA) is allocated no 
physical memory is allocated

▪Why? Virtual address is in abundance; but physical 
memory is scarce resource. 

▪ Allocate physical memory for when the virtual 
address is accessed first time

▪ Lazily allocating physical memory is called demand 
paging

▪ Advantage: Commits physical memory only if used
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Page fault in demand paging

▪ Page fault: When h/w page walker fails to find 
desired PTE the processor generates a general 
protection fault to the OS
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Page fault in demand paging

▪ Page fault: When h/w page walker fails to find 
desired PTE the processor generates a general 
protection fault to the OS

▪ First access to an allocated memory generates a 
page fault
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Page fault in demand paging

▪ Page fault: When h/w page walker fails to find 
desired PTE the processor generates a general 
protection fault to the OS

▪ First access to an allocated memory generates a 
page fault

▪ Page fault can also happen due to insufficient 
permission (e.g., write access to read-only page) 
protection fault
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Servicing a page fault

▪ Page fault routine is implemented inside the OS

▪ Argument routine are faulting VA and type of 
access (e.g., read or write)
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Servicing a page fault

▪ Page fault routine is implemented inside the OS

▪ Argument routine are faulting VA and type of 
access (e.g., read or write)

▪ Steps of handling a page fault
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Servicing a page fault

▪ Page fault routine is implemented inside the OS

▪ Argument routine are faulting VA and type of 
access (e.g., read or write)

▪ Steps of handling a page fault
‣ Check VMA structures if the VA is allocated
‣ If not allocated or insufficient permission, raise 

segmentation fault to application 
‣ If allocated with correct permission find a physical page 

frame to map the page containing the faulting VA
‣ Update page table to note new VA->PA mapping
‣ Return
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Servicing a page fault

▪ Page fault routine is implemented inside the OS

▪ Argument routine are faulting VA and type of access 
(e.g., read or write)

▪ Steps of handling a page fault
‣ Check VMA structures if the VA is allocated

‣ If not allocated or insufficient permission, raise segmentation 
fault to application 

‣ If allocated with correct permission find a physical page frame 
to map the page containing the faulting VA

‣ Update page table to note new VA->PA mapping

‣ Return

▪ The faulting instruction retries after page fault returns 
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Servicing a page fault

▪ Page fault routine is implemented inside the OS

▪ Argument routine are faulting VA and type of access 
(e.g., read or write)

▪ Steps of handling a page fault
‣ Check VMA structures if the VA is allocated

‣ If not allocated or insufficient permission, raise segmentation 
fault to application 

‣ If allocated with correct permission find a physical page frame 
to map the page containing the faulting VA

‣ Update page table to note new VA->PA mapping

‣ Return

▪ The faulting instruction retries after page fault returns 
7/12/2018 47

Next



Indian Institute of Science (IISc), Bangalore, India

Allocating physical memory

▪ Buddy allocator in Linux: Goal is to keep free 
physical memory as contiguous as possible (why?)

▪ It is a list of free list of contiguous physical pages of 
different sizes (2order x 4KB) 
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Allocating physical memory

▪ Buddy allocator in Linux: Goal is to keep free 
physical memory as contiguous as possible (why?)

▪ It is a list of free list of contiguous physical pages of 
different sizes (2order x 4KB) 
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Buddy allocator operation

▪ Allocate from a free list which is smallest that fits 
the requested allocation size
‣ If no entry in the smallest list, go to next larger list and 

so on…

‣ Put the leftover blocks in the lower order list
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Buddy allocator operation

▪ Allocate from a free list which is smallest that fits 
the requested allocation size
‣ If no entry in the smallest list, go to next larger list and 

so on…

‣ Put the leftover blocks in the lower order list

▪Merge two contiguous blocks of physical memory 
in a free list and add the merged block in next 
higher order free list
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Where does malloc() fits in?

▪ malloc() is function call implemented in a library. It is 
not part of OS.

▪malloc allocates virtual address range (like mmap())
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Where does malloc() fits in?

▪ malloc() is function call implemented in a library. It is 
not part of OS.

▪malloc allocates virtual address range (like mmap())

▪ Then, why malloc()/free()?

▪ Limitation of mmap
‣ Minimum granularity of VA allocation is a page (4KB) 
‣ But applications often allocates in chunks less than 4KB
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Where does malloc() fits in?

▪ malloc() is function call implemented in a library. It is 
not part of OS.

▪malloc allocates virtual address range (like mmap())

▪ Then, why malloc()/free()?

▪ Limitation of mmap
‣ Minimum granularity of VA allocation is a page (4KB) 
‣ But applications often allocates in chunks less than 4KB

▪malloc() maintains free list of small allocations

▪ If free memory is available in malloc()’s free list, no 
need to got to the OS  

▪malloc() with large size (e.g., >32KB) converts to mmap 
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Where does malloc() fits in?

▪ Two key goals of a malloc library:
‣ Reduce memory bloat = additional allocated memory 

than what application asked

‣ Reduce number of system calls to OS (e.g., mmap())

‣ System calls are slow
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Where does malloc() fits in?

▪ Two key goals of a malloc library:
‣ Reduce memory bloat = additional allocated memory 

than what application asked

‣ Reduce number of system calls to OS (e.g., mmap())

‣ System calls are slow

▪Many approaches to create malloc library
‣ Best fit, first fit, worst fit

▪Many malloc() libraries 
‣ glibc-malloc, tc-malloc, dl-malloc

▪ You can write your own!
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Putting everything together

1. Application requests VA allocation via mmap()

2. OS creates/extends VMA regions to allocate VA range

3. OS returns the starting VA of just-allocated VA range
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Putting everything together

1. Application requests VA allocation via mmap()

2. OS creates/extends VMA regions to allocate VA range

3. OS returns the starting VA of just-allocated VA range

4. Application performs load/store on the address in the 
VA range

5. H/W looks up TLB; misses (Why?)

6. H/W page table walker walks the page table
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Putting everything together

1. Application requests VA allocation via mmap()

2. OS creates/extends VMA regions to allocate VA range

3. OS returns the starting VA of just-allocated VA range

4. Application performs load/store on the address in the 
VA range

5. H/W looks up TLB; misses (Why?)

6. H/W page table walker walks the page table

7. Desired entry not found on PTE (why?) 

8. H/W generates a page fault to OS
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Putting everything together

9. OS’a page fault handler checks VMA regions to 
ensure it’s a legal access

10. Page fault handler finds a free physical page frame to 
map the VA page from the buddy allocator

11. Updates page table to note new VA to PA mapping 
and return
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Putting everything together

9. OS’a page fault handler checks VMA regions to 
ensure it’s a legal access

10. Page fault handler finds a free physical page frame to 
map the VA page from the buddy allocator

11. Updates page table to note new VA to PA mapping 
and return

12. Application retries the same instruction

13. This time page table walker finds it in page table and 
loads it into TLB

14. Next time if same page is accessed it may hit in TLB 
( no page walk)
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Miscellaneous related 
topics 
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Swapping

▪Goal: Provide an illusion of larger memory than 
actually available
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Swapping

▪Goal: Provide an illusion of larger memory than 
actually available
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How swapping work?

▪OS attempts to figure out which pages in memory 
are not actively used
‣ Use access bit (“A” bit) in the PTE 

‣ OS periodically unsets “A” bits of pages in memory

‣ After a little while, OS checks H/W has set “A” bit of 
those pages
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How swapping work?

▪OS attempts to figure out which pages in memory 
are not actively used
‣ Use access bit (“A” bit) in the PTE 

‣ OS periodically unsets “A” bits of pages in memory

‣ After a little while, OS checks H/W has set “A” bit of 
those pages

‣ If “A” bit set for a page  actively used page

‣ If “A” bit is unset for a page  not actively used 
candidate for swapped out to storage
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How swapping work?

▪OS attempts to figure out which pages in memory 
are not actively used
‣ Use access bit (“A” bit) in the PTE 

‣ OS periodically unsets “A” bits of pages in memory

‣ After a little while, OS checks H/W has set “A” bit of 
those pages

‣ If “A” bit set for a page  actively used page

‣ If “A” bit is unset for a page  not actively used 
candidate for swapped out to storage

▪OS writes back data of the page to swap file

▪Update PTE to unset present (“p”) bit
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How swapping work?

▪ There will be page fault if an application accesses a 
page that is swapped out
‣ Because “p” bit is unset

▪OS page fault handler figures out the page had 
been swapped out 

▪ Page fault handler brings the page into memory

▪ Application retries the faulting instruction.
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How to utilize of superpages?

▪ Recap: superpages increases TLB reach  decrease 
TLB miss rate
‣ x86-64 page sizes: 4KB (base), 2MB, 1GB( superpages)

▪ Challenge: Which page size to use for mapping a 
given virtual address?

▪ Approach 1: Application writer tells when to use 
superpage
‣ Mmap() syscall has flag MAP_2MB, MAP_1GB
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How to utilize  superpages?

▪ Approach 2: Let OS automatically decide which 
page size to use.
‣ Advantage: No application modification required
‣ Challenge: How should OS decide?
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How to utilize  superpages?

▪ Approach 2: Let OS automatically decide which 
page size to use.
‣ Advantage: No application modification required
‣ Challenge: How should OS decide?

▪ Transparent Huge Pages (THP) in Linux
‣ Large allocations (>2MB) mapped with superpage
‣ Periodically scans VA space of processes to find 

contiguous allocations
‣ Periodically compacts physical memory to create 

contiguous physical memory
‣ Map contiguous VA range to contiguous physical 

memory
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Extending virtual memory to 
accelerators
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Extending virtual memory to 
accelerators
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Accl. for massive parallel processing
NVDIA/AMD’s GPU

Accl. For AI
Google’s TPU, NVDIA’s DGX-1 Accl. for database queries

Oracle’s DAX

How  to efficiently extend benefits of 
virtual memory to accelerators?

Accl. for cryptography
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Virtual memory with Non 
volatile memory (NVM)
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Virtual memory with Non 
volatile memory (NVM)

▪ NVM blurring boundary between memory and storage
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Virtual memory with Non 
volatile memory (NVM)

▪ NVM blurring boundary between memory and storage
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How  to incorporate notion on non-
volatility in virtual memory?
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Security implications of virtual 
memory
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Security implications of virtual 
memory

▪ Speculative h/w state accessible to software

▪OS’s VA space attached to user’s VA space 
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Security implications of virtual 
memory

▪ Speculative h/w state accessible to software

▪OS’s VA space attached to user’s VA space 

An user application can read OS’s memory! 
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Security implications of virtual 
memory

▪ Speculative h/w state accessible to software

▪OS’s VA space attached to user’s VA space 

An user application can read OS’s memory! 
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implications of virtual memory



Indian Institute of Science (IISc), Bangalore, India

Conclusion

▪ Virtual memory is a basic component of modern 
computing

▪ An example of true H/W-S/W co-design

▪Many research opportunities!
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Briefing for hands on session

▪High level objectives
‣ Run a simple application (provided) with base pages only 

(4KB) and measure number of TLB misses, running time 

‣ Run the same application with superpages and measure 
TLB misses and running time
• Run with explicit application directed allocation of superpages

• Run with Linux transparent huge pages (THP) that automatically 
uses superpages without application modification or pre-
reservation of superpages

‣ Modify the given program/change its parameters to 
worsen number of TLB misses
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Initial benchmark setup

‣ Download the compressed file from Google drive

‣ Unzip it  [e.g., tar –xzvf microbenchmark.tar.gz]

‣ Go to directory benchmark/strided

‣ run make to compile

‣ Test that you can run the application by following 
command
• ./strided 524288000 NONE STRIDED 256 

• This will take around 10 seconds or more to run

‣ Attached README explanation of the benchmark

‣ Take a look inside the strided benchmark
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▪ Turn off Linux’s transparent huge pages (could be 
on by default)
‣ Switch to root privilege 

• Command “su – “

‣ Command  echo never > 
/sys/kernel/mm/transparent_hugepage/enabled

‣ This will ensure your application will use 4KB base pages 
only

▪ Run the application using following command 
‣ ./strided 524288000 NONE STRIDED 256
‣ Run at least three times and note down the average 

running time printed by the application 
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▪Measure the number of TLB misses using perf tool
‣ perf stat -e dTLB-load-misses  ./strided 524288000 

NONE STRIDED 256

‣ Run at least three times and note down average dTLB
misses (data TLB misses)
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Explicit superpage allocation

▪ In this experiment the we will allocate superpages
explicitly from applications
‣ First, reserve superpages using following command

• echo 2000 > /sys/kernel/mm/hugepages/hugepages-
2048kB/nr_hugepages

▪ Run the application to explicitly request superpages
‣ ./strided 524288000 TLBFS STRIDED 256

‣ Note down the execution time by averaging runtime of 
at least three runs

‣ Measure the TLB misses as in experiment 1
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Using transparent huge pages 
(THP)

▪ Free reserved huge pages
‣ echo 0 > /sys/kernel/mm/hugepages/hugepages-

2048kB/nr_hugepages

▪ Turn on THP by following 
‣ echo always > 

/sys/kernel/mm/transparent_hugepage/enabled

▪Measure the running and TLB misses as before
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How to make TLB miss worse?

▪ Change parameters, modify application to make 
TLB miss worse
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