
Indian Institute of Science (IISc), Bangalore, India

www.csa.iisc.ac.in

Virtual Memory
Arkaprava Basu

Dept . o f Computer Sc i ence and Automat i o n

Ind i a n Inst i t u t e o f Sc i ence

www.c sa . i i s c .ac . i n /~ark ap ra vab /

Indian Institute of Science (IISc), Bangalore, India

Memory is virtual !

▪ Application software sees virtual address
‣ int * p = malloc(64);

‣ Load, store instructions carries virtual addresses

7/12/2018 2

Virtual address

Indian Institute of Science (IISc), Bangalore, India

Memory is virtual !

▪ Application software sees virtual address
‣ int * p = malloc(64);

‣ Load, store instructions carries virtual addresses

▪Hardware uses (real) physical address
‣ e.g., to find data, lookup caches etc.

▪When an application executes (a.k.a process)
virtual addresses are translated to physical
addresses, at runtime

7/12/2018 2

Virtual address

Indian Institute of Science (IISc), Bangalore, India

Bird’s view of virtual memory

7/12/2018 3

Physical Memory (e.g., DRAM)
Picture credit: Nima Honarmand, Stony Brook university

Indian Institute of Science (IISc), Bangalore, India

Bird’s view of virtual memory

7/12/2018 3

Physical Memory (e.g., DRAM)

Process 1

Picture credit: Nima Honarmand, Stony Brook university

Indian Institute of Science (IISc), Bangalore, India

Bird’s view of virtual memory

7/12/2018 3

Physical Memory (e.g., DRAM)

Process 1

// Program expects (*x)

// to always be at

// address 0x1000

int *x = 0x1000;

Picture credit: Nima Honarmand, Stony Brook university

Indian Institute of Science (IISc), Bangalore, India

Bird’s view of virtual memory

7/12/2018 3

Physical Memory (e.g., DRAM)

Process 1 Process 2

// Program expects (*x)

// to always be at

// address 0x1000

int *x = 0x1000;

Picture credit: Nima Honarmand, Stony Brook university

Indian Institute of Science (IISc), Bangalore, India

Bird’s view of virtual memory

7/12/2018 3

Physical Memory (e.g., DRAM)0x1000

Process 1 Process 2

// Program expects (*x)

// to always be at

// address 0x1000

int *x = 0x1000;

Only one physical
address 0x1000!!

Picture credit: Nima Honarmand, Stony Brook university

Indian Institute of Science (IISc), Bangalore, India

Bird’s view of virtual memory

7/12/2018 4

Physical Memory (e.g., DRAM)0x1000

Process 1

App’s view of memory

Process 2

App’s view of memory

0x10000x1000

Indian Institute of Science (IISc), Bangalore, India

Bird’s view of virtual memory

7/12/2018 4

Physical Memory (e.g., DRAM)0x1000

Process 1

App’s view of memory

Process 2

App’s view of memory

0x1000

V
ir

tu
al

 a
d

d
re

ss

0x1000

Indian Institute of Science (IISc), Bangalore, India

Bird’s view of virtual memory

7/12/2018 4

Physical Memory (e.g., DRAM)0x1000

Process 1

App’s view of memory

Process 2

App’s view of memory

0x1000

V
ir

tu
al

 a
d

d
re

ss

0x1000

Indian Institute of Science (IISc), Bangalore, India

Bird’s view of virtual memory

7/12/2018 4

Physical Memory (e.g., DRAM)0x1000

Process 1

App’s view of memory

Process 2

App’s view of memory

0x1000

V
ir

tu
al

 a
d

d
re

ss

0x1000

Virtual memory is a layer of indirection between
s/w’s view of memory and h/w’s view

Indian Institute of Science (IISc), Bangalore, India

Roles of software and hardware

7/12/2018 5

Physical Memory (e.g., DRAM)0x1000

Process 1

App’s view of memory

Process 2

App’s view of memory

0x1000

V
ir

tu
al

 a
d

d
re

ss

0x1000

Virtual memory is a layer of indirection between
s/w’s view of memory and h/w’s view

1. Operating system creates and manages
Virtual to physical address mappings.

2. (Typically) Hardware performs the VA to
PA translation at runtime.

Indian Institute of Science (IISc), Bangalore, India

Virtual memory terminology

7/12/2018 6

Process 1

Virtual address space

Process 2

Virtual address space

0x1000

V
ir

tu
al

 a
d

d
re

ss

0x1000

Indian Institute of Science (IISc), Bangalore, India

Virtual memory terminology

7/12/2018 6

Process 1

Virtual address space

Process 2

Virtual address space

0x1000

V
ir

tu
al

 a
d

d
re

ss

0x1000

Physical address space

Indian Institute of Science (IISc), Bangalore, India

Virtual memory terminology

7/12/2018 6

Process 1

Virtual address space

Process 2

Virtual address space

0x1000

V
ir

tu
al

 a
d

d
re

ss

0x1000

Physical address space

Memory Management Unit (MMU)

Indian Institute of Science (IISc), Bangalore, India

Why virtual memory?

7/12/2018 7

Indian Institute of Science (IISc), Bangalore, India

Why virtual memory?

▪ Relocation: Ease of programming by providing
application contiguous view of memory
‣ But actual physical memory can be scattered

7/12/2018 7

Indian Institute of Science (IISc), Bangalore, India

Why virtual memory?

▪ Relocation: Ease of programming by providing
application contiguous view of memory
‣ But actual physical memory can be scattered

▪ Resource management: Application writer can assume
there is enough memory
‣ But, system can manage physical memory across concurrent

processes

▪ Isolation: Bug in one process should not corrupt
memory of another
‣ Provide each process with separate virtual address space

▪ Protection: Enforce rules on what memory a process
can or cannot access

7/12/2018 7

Indian Institute of Science (IISc), Bangalore, India

Agenda

7/12/2018 8

What is virtual memory?

Hardware implementations of virtual memory

Research opportunity in virtual memory

Software management of virtual memory

Indian Institute of Science (IISc), Bangalore, India

Agenda

7/12/2018 8

What is virtual memory?

Hardware implementations of virtual memory

Research opportunity in virtual memory

Software management of virtual memory

Indian Institute of Science (IISc), Bangalore, India

Implementing virtual memory

▪Many ways to implement virtual memory
‣ Base and bound register

‣ Segmentation

‣ Paging

7/12/2018 9

C
o

m
p

le
xi

ty
 U

sefu
l/versatile

Indian Institute of Science (IISc), Bangalore, India

Base and bound registers

7/12/2018 10

Process 1

Virtual address space

Process 2

Virtual address space

Indian Institute of Science (IISc), Bangalore, India

Base and bound registers

7/12/2018 10

Process 1

Virtual address space

Process 2

Virtual address space

Indian Institute of Science (IISc), Bangalore, India

Base and bound registers

7/12/2018 10

Process 1

Virtual address space

Process 2

Virtual address space

Base Bound

Indian Institute of Science (IISc), Bangalore, India

Base and bound registers

7/12/2018 10

Process 1

Virtual address space

Process 2

Virtual address space

Base Bound Base Bound

Indian Institute of Science (IISc), Bangalore, India

Base and bound registers

▪ How it works?
‣ Each CPU core has base and bound registers
‣ Each process has own values for base and bound
‣ Base and bound values are assigned by OS
‣ On a context switch, a process’s base and bound registers are

saved/restored by the OS

7/12/2018 11

Indian Institute of Science (IISc), Bangalore, India

Base and bound registers

▪ How it works?
‣ Each CPU core has base and bound registers
‣ Each process has own values for base and bound
‣ Base and bound values are assigned by OS
‣ On a context switch, a process’s base and bound registers are

saved/restored by the OS

▪ Example: Cray-1 (very old system)
▪ Advantage

‣ Simple

7/12/2018 11

Indian Institute of Science (IISc), Bangalore, India

Base and bound registers

▪ How it works?
‣ Each CPU core has base and bound registers
‣ Each process has own values for base and bound
‣ Base and bound values are assigned by OS
‣ On a context switch, a process’s base and bound registers are

saved/restored by the OS

▪ Example: Cray-1 (very old system)
▪ Advantage

‣ Simple

▪ Disadvantage
‣ Needs contiguous physical memory
‣ Deallocation of memory is possible only on the edge
‣ Cannot allocate more memory is no free memory at the edge

7/12/2018 11

Indian Institute of Science (IISc), Bangalore, India

Segmentation

7/12/2018 12

Process 1

Virtual address space

Process 2

Virtual address space

Indian Institute of Science (IISc), Bangalore, India

Segmentation

7/12/2018 12

Process 1

Virtual address space

Process 2

Virtual address space

Indian Institute of Science (IISc), Bangalore, India

Segmentation

7/12/2018 12

Process 1

Virtual address space

Process 2

Virtual address space

Indian Institute of Science (IISc), Bangalore, India

Segmentation

7/12/2018 12

Process 1 Process 2

Virtual address spaceCode Data Stack

Semantics of typical
segments

Indian Institute of Science (IISc), Bangalore, India

Segmentation: How it works?

7/12/2018 13

Virtual address Prot Base Length

Seg Id Offset R 0x30000 1024

Segment table

CS 128 SS

CS

DS R/W 0x40100 16384

R/W 0x0100 1024

Indian Institute of Science (IISc), Bangalore, India

Segmentation: How it works?

7/12/2018 13

Virtual address Prot Base Length

Seg Id Offset R 0x30000 1024

Segment table

CS 128 SS

CS

DS R/W 0x40100 16384

R/W 0x0100 1024

Indian Institute of Science (IISc), Bangalore, India

Segmentation: How it works?

7/12/2018 13

Virtual address Prot Base Length

Seg Id Offset R 0x30000 1024

Segment table

CS 128 SS

CS

DS R/W 0x40100 16384

R/W 0x0100 1024

Protection and bound check

Indian Institute of Science (IISc), Bangalore, India

Segmentation: How it works?

7/12/2018 13

Virtual address Prot Base Length

Seg Id Offset R 0x30000 1024

Segment table

CS 128 SS

CS

DS R/W 0x40100 16384

R/W 0x0100 1024

Protection and bound check

Indian Institute of Science (IISc), Bangalore, India

Segmentation: How it works?

▪How to select segmentation ID?
‣ In most cases, the compiler can infer

• For example, x86-32 bit has CS, SS, DS, ES, FS, GS

▪ Advantages segmentation:
‣ Multiple memory regions with different protections

‣ No need to have all segments in memory all the time

‣ Ability to share segments across processes

7/12/2018 14

Compiler
selected

Programmer
selected

Indian Institute of Science (IISc), Bangalore, India

Disadvantages of Segmentation

7/12/2018 15

Process 1

Virtual address space

Process 2

Virtual address space

Indian Institute of Science (IISc), Bangalore, India

Disadvantages of Segmentation

7/12/2018 15

Process 1

Virtual address space

Process 2

Virtual address space
Process 3

Virtual address space

Indian Institute of Science (IISc), Bangalore, India

Disadvantages of Segmentation

7/12/2018 15

Process 1

Virtual address space

Process 2

Virtual address space
Process 3

Virtual address space

Cannot be used although total
free size is more than requested

Indian Institute of Science (IISc), Bangalore, India

Disadvantages of Segmentation

▪ External fragmentation: Inability to use free
memory as it is non-contiguous (fragmentation)
‣ Allocating different sized segments leaves free memory

fragmented

▪ A segment of size n bytes requires n bytes long
contiguous physical memory

▪Not completely transparent to applications

7/12/2018 16

Indian Institute of Science (IISc), Bangalore, India

Paging

▪ Idea: Allocate/de-allocate memory in same size
chunks (pages)
‣ No external fragmentation (Why?)

‣ Page sizes are typically small, e.g., 4KB

7/12/2018 17

Indian Institute of Science (IISc), Bangalore, India

Paging

7/12/2018 18

Process 1

Virtual address space

Process 2

Virtual address space

Indian Institute of Science (IISc), Bangalore, India

Paging

7/12/2018 18

Process 1

Virtual address space

Process 2

Virtual address space

Indian Institute of Science (IISc), Bangalore, India

Paging

7/12/2018 18

Process 1

Virtual address space

Process 2

Virtual address space

Physical page frames

Pages

Indian Institute of Science (IISc), Bangalore, India

Advantages of paging

▪No external fragmentation !

▪ Simplifies allocation, deallocation

▪ Provides application a contiguous view of memory
‣ But, physical memory backing it could very scattered

7/12/2018 19

Indian Institute of Science (IISc), Bangalore, India

Advantages of paging

▪No external fragmentation !

▪ Simplifies allocation, deallocation

▪ Provides application a contiguous view of memory
‣ But, physical memory backing it could very scattered

7/12/2018 19

Almost all processors today employs paging

Indian Institute of Science (IISc), Bangalore, India

Disadvantages of paging

▪ Internal fragmentation: Memory wastage due to
allocation only in page sizes (e.g., 4KB)
‣ e.g., for an allocation 128 bytes a 4KB page will be

allocated

‣ Potentially waste (4KB – 128) bytes.

7/12/2018 20

Indian Institute of Science (IISc), Bangalore, India

Paging: How it works (simplistic)?

7/12/2018 21

Virtual address

Virtual
Page
Number
(VPN)

0x0001bbf 21f

Page
Offset

Indian Institute of Science (IISc), Bangalore, India

Paging: How it works (simplistic)?

7/12/2018 21

Virtual address Prot PFN

Virtual
Page
Number
(VPN)

-- ------------

Page table

0x0001bbf 21f

R/W 0x40100

Page
Offset

R/W 0x60000

R 0x30000

-- ------------

In
 m

e
m

o
ry d

ata stru
ctu

re

m
ain

tain
e

d
 b

y th
e

 O
S

Indian Institute of Science (IISc), Bangalore, India

Paging: How it works (simplistic)?

7/12/2018 21

Virtual address Prot PFN

Virtual
Page
Number
(VPN)

-- ------------

Page table

0x0001bbf 21f

R/W 0x40100

Page
Offset

R/W 0x60000

R 0x30000

-- ------------

In
 m

e
m

o
ry d

ata stru
ctu

re

m
ain

tain
e

d
 b

y th
e

 O
S

Indian Institute of Science (IISc), Bangalore, India

Paging: How it works (simplistic)?

7/12/2018 21

Virtual address Prot PFN

Virtual
Page
Number
(VPN)

-- ------------

Page table

0x0001bbf 21f

R/W 0x40100

Page
Offset

R/W 0x60000

R 0x30000

-- ------------

In
 m

e
m

o
ry d

ata stru
ctu

re

m
ain

tain
e

d
 b

y th
e

 O
S

Indian Institute of Science (IISc), Bangalore, India

Paging: How it works (simplistic)?

7/12/2018 21

Virtual address Prot PFN

Virtual
Page
Number
(VPN)

-- ------------

Page table

0x0001bbf 21f

R/W 0x40100

Page
Offset

R/W 0x60000

R 0x30000

-- ------------

In
 m

e
m

o
ry d

ata stru
ctu

re

m
ain

tain
e

d
 b

y th
e

 O
S

Physical page frames

Indian Institute of Science (IISc), Bangalore, India

Paging: How it really works?

▪ Single level page table adds too much overhead
‣ Consider a typical 48-bit virtual address space, 4KB page

size and 8 byte long page table entry (PTE)

‣ Each page table will be 512GB

‣ There could be many processes many page tables

▪Often virtual address space is sparsely allocated
‣ Entire address is not allocated

7/12/2018 22

Indian Institute of Science (IISc), Bangalore, India

Paging: How it really works?

▪ Single level page table adds too much overhead
‣ Consider a typical 48-bit virtual address space, 4KB page

size and 8 byte long page table entry (PTE)

‣ Each page table will be 512GB

‣ There could be many processes many page tables

▪Often virtual address space is sparsely allocated
‣ Entire address is not allocated

▪ Solution: Multilevel radix tree for page table

7/12/2018 22

Indian Institute of Science (IISc), Bangalore, India

Paging: 64bit x86* page table

7/12/2018 23

4 level 512-ary radix tree indexed by virtual page number

Up to 512 children

Contains PFN
* i.e., Intel or AMD processors

Unallocated VA regions

Indian Institute of Science (IISc), Bangalore, India

Paging: 64bit x86 page table

▪Operating system maintains one page table per
process (a.k.a., per virtual address space)

▪Operating system creates, updates, deletes page
table entries (PTEs)

7/12/2018 24

Indian Institute of Science (IISc), Bangalore, India

Paging: 64bit x86 page table

▪Operating system maintains one page table per
process (a.k.a., per virtual address space)

▪Operating system creates, updates, deletes page
table entries (PTEs)

▪ Page table structure is part of agreement between
the OS and the hardware  page table structure
ISA specific

7/12/2018 24

Indian Institute of Science (IISc), Bangalore, India

Paging: 64bit x86 page walk

7/12/2018 25

cr3

4
7

 3
9

 3
8

 3
0

 2
9

 2
1

 2
0

 1
2

 1
1

 0

Page o
ffset

V
irtu

al p
age n

u
m

b
er

Indian Institute of Science (IISc), Bangalore, India

Paging: 64bit x86 page walk

7/12/2018 25

cr3

4
7

 3
9

 3
8

 3
0

 2
9

 2
1

 2
0

 1
2

 1
1

 0

Page o
ffset

Indian Institute of Science (IISc), Bangalore, India

Paging: 64bit x86 page walk

7/12/2018 25

cr3

4
7

 3
9

 3
8

 3
0

 2
9

 2
1

 2
0

 1
2

 1
1

 0

Page o
ffset

Indian Institute of Science (IISc), Bangalore, India

Paging: 64bit x86 page walk

7/12/2018 25

cr3

4
7

 3
9

 3
8

 3
0

 2
9

 2
1

 2
0

 1
2

 1
1

 0

Page o
ffset

Indian Institute of Science (IISc), Bangalore, India

Paging: 64bit x86 page walk

7/12/2018 25

cr3

4
7

 3
9

 3
8

 3
0

 2
9

 2
1

 2
0

 1
2

 1
1

 0

Page o
ffset

Indian Institute of Science (IISc), Bangalore, India

Paging: 64bit x86 page walk

7/12/2018 25
Physical page frame number

cr3

4
7

 3
9

 3
8

 3
0

 2
9

 2
1

 2
0

 1
2

 1
1

 0

Page o
ffset

Indian Institute of Science (IISc), Bangalore, India

Who walks the page table?

▪ A hardware page table walker (PTW) walks the page
table
‣ Input: Root of page table (cr3) and VPN
‣ Output: Physical page frame number or fault
‣ A hardware fine-state-automata in each CPU core

7/12/2018 26

Indian Institute of Science (IISc), Bangalore, India

Who walks the page table?

▪ A hardware page table walker (PTW) walks the page
table
‣ Input: Root of page table (cr3) and VPN
‣ Output: Physical page frame number or fault
‣ A hardware fine-state-automata in each CPU core
‣ Generates load-like “instructions” to access page table
‣ Typical in x86 and ARM processors

7/12/2018 26

Indian Institute of Science (IISc), Bangalore, India

Who walks the page table?

▪ A hardware page table walker (PTW) walks the page
table
‣ Input: Root of page table (cr3) and VPN
‣ Output: Physical page frame number or fault
‣ A hardware fine-state-automata in each CPU core
‣ Generates load-like “instructions” to access page table
‣ Typical in x86 and ARM processors

▪ Alternatives: Software page table walker
‣ A OS handler walks the page table

7/12/2018 26

Indian Institute of Science (IISc), Bangalore, India

Who walks the page table?

▪ A hardware page table walker (PTW) walks the page
table
‣ Input: Root of page table (cr3) and VPN
‣ Output: Physical page frame number or fault
‣ A hardware fine-state-automata in each CPU core
‣ Generates load-like “instructions” to access page table
‣ Typical in x86 and ARM processors

▪ Alternatives: Software page table walker
‣ A OS handler walks the page table
‣ Advantage: Free to choose page table format
‣ Disadvantage: Slow  Large address translation overhead
‣ Example: SPARC (Sun/Oracle) machines

7/12/2018 26

Indian Institute of Science (IISc), Bangalore, India

TLB: Making page walks faster

▪Disadvantage: A single address translation can take
up to 4 memory accesses!

7/12/2018 27

Indian Institute of Science (IISc), Bangalore, India

TLB: Making page walks faster

▪Disadvantage: A single address translation can take
up to 4 memory accesses!

▪How to make address translation fast?
‣ Translation Lookaside Buffer or TLB to cache recently

used virtual to physical address mappings

7/12/2018 27

Indian Institute of Science (IISc), Bangalore, India

TLB: Making page walks faster

▪Disadvantage: A single address translation can take
up to 4 memory accesses!

▪How to make address translation fast?
‣ Translation Lookaside Buffer or TLB to cache recently

used virtual to physical address mappings

‣ A read-only cache of page table entries

‣ For address translation, TLB is first looked up

‣ On a TLB miss page walk is performed

‣ A TLB hit is fast but page walk is slow

7/12/2018 27

Indian Institute of Science (IISc), Bangalore, India

Where are TLBs & Page table
walkers?

7/12/2018 28

Interconnect

L3

Core 0 Core 1 Core 2 Core 3
L1 $
L2 $

L1 $
L2 $

L1 $
L2 $

L1 $
L2 $

Page table walker
(PTW)

Indian Institute of Science (IISc), Bangalore, India

Where are TLBs & Page table
walkers?

7/12/2018 28

Interconnect

L3

Core 0 Core 1 Core 2 Core 3
L1 $
L2 $

L1 $
L2 $

L1 $
L2 $

L1 $
L2 $

L1 TLB

Page table walker
(PTW)

Indian Institute of Science (IISc), Bangalore, India

Where are TLBs & Page table
walkers?

7/12/2018 28

Interconnect

L3

Core 0 Core 1 Core 2 Core 3
L1 $
L2 $

L1 $
L2 $

L1 $
L2 $

L1 $
L2 $

L1 TLB

L2 TLB
Page table walker
(PTW)

Indian Institute of Science (IISc), Bangalore, India

Where are TLBs & Page table
walkers?

7/12/2018 28

Interconnect

L3

Core 0 Core 1 Core 2 Core 3
L1 $
L2 $

L1 $
L2 $

L1 $
L2 $

L1 $
L2 $

L1 TLB

L2 TLB
Page table walker
(PTW)

Indian Institute of Science (IISc), Bangalore, India

Typical TLB hierarchy of
modern processors

▪ Each core typically has:
‣ 32-64-entry L1 TLB (fully associative/4-8 way set-

associative)

‣ 1500-2500 entry L2 TLB (8-16 way set-associative)

‣ One to two page table walker

7/12/2018 29

Indian Institute of Science (IISc), Bangalore, India

Putting it all together

▪ Steps of address translation
‣ Load/store instructions carries virtual address
‣ Virtual address divided into virtual page number (VPN)

and page offset

7/12/2018 30

Indian Institute of Science (IISc), Bangalore, India

Putting it all together

▪ Steps of address translation
‣ Load/store instructions carries virtual address
‣ Virtual address divided into virtual page number (VPN)

and page offset
‣ TLBs are looked for the desired VPN to page frame

number mapping (PFN)
‣ On a hit, VPN is concatenated with offset and cache is

looked up using the physical address

7/12/2018 30

Indian Institute of Science (IISc), Bangalore, India

Putting it all together

▪ Steps of address translation
‣ Load/store instructions carries virtual address
‣ Virtual address divided into virtual page number (VPN)

and page offset
‣ TLBs are looked for the desired VPN to page frame

number mapping (PFN)
‣ On a hit, VPN is concatenated with offset and cache is

looked up using the physical address
‣ On a miss, PTW starts walking the page table to get

desired PFN
‣ If found, the address mapping is returned to the TLB

7/12/2018 30

Indian Institute of Science (IISc), Bangalore, India

Putting it all together

▪ Steps of address translation
‣ Load/store instructions carries virtual address
‣ Virtual address divided into virtual page number (VPN)

and page offset
‣ TLBs are looked for the desired VPN to page frame

number mapping (PFN)
‣ On a hit, VPN is concatenated with offset and cache is

looked up using the physical address
‣ On a miss, PTW starts walking the page table to get

desired PFN
‣ If found, the address mapping is returned to the TLB
‣ If there exits no entry for the VPN in the page table then

page fault is raised to the OS

7/12/2018 30

Indian Institute of Science (IISc), Bangalore, India

Miscellaneous paging
topic

7/12/2018 31

Indian Institute of Science (IISc), Bangalore, India

Superpages: Reducing TLB
misses

▪ TLB miss are long latency operation
‣ Address translation overhead == ~ TLB miss overhead

▪ TLB reach = # of TLB entries page size
‣ Higher TLB reach  (Typically) Lower TLB miss rate

7/12/2018 32

Indian Institute of Science (IISc), Bangalore, India

Superpages: Reducing TLB
misses

▪ TLB miss are long latency operation
‣ Address translation overhead == ~ TLB miss overhead

▪ TLB reach = # of TLB entries page size
‣ Higher TLB reach  (Typically) Lower TLB miss rate

▪How to increase TLB reach?
‣ Increase TLB size.

• Not always possible due to h/w overhead

‣ Increase page size
• Increases internal fragmentation

7/12/2018 32

Indian Institute of Science (IISc), Bangalore, India

Superpages: Reducing TLB
misses

▪ TLB miss are long latency operation
‣ Address translation overhead == ~ TLB miss overhead

▪ TLB reach = # of TLB entries page size
‣ Higher TLB reach  (Typically) Lower TLB miss rate

▪How to increase TLB reach?
‣ Increase TLB size.

• Not always possible due to h/w overhead

‣ Increase page size
• Increases internal fragmentation

‣ Have multiple page sizes
• Larger page sizes beyond base page size (e.g., 4KB)

7/12/2018 32

Indian Institute of Science (IISc), Bangalore, India

Superpages: Reducing TLB
misses

▪ Larger page sizes called superpages

▪ Example page sizes in x86-64 (Intel, AMD) machines
‣ 4KB (base page size), 2MB, 1GB (superpages)

7/12/2018 33

Indian Institute of Science (IISc), Bangalore, India

Superpages: Reducing TLB
misses

▪ Larger page sizes called superpages

▪ Example page sizes in x86-64 (Intel, AMD) machines
‣ 4KB (base page size), 2MB, 1GB (superpages)

▪ Challenge: How to decide which page size to use
for mapping a given virtual address?
‣ Use of larger pages increase internal fragmentation 

memory bloat
‣ Using smaller page size can increase address translation

overhead

7/12/2018 33

Indian Institute of Science (IISc), Bangalore, India

Superpages: Reducing TLB
misses

▪ Larger page sizes called superpages

▪ Example page sizes in x86-64 (Intel, AMD) machines
‣ 4KB (base page size), 2MB, 1GB (superpages)

▪ Challenge: How to decide which page size to use
for mapping a given virtual address?
‣ Use of larger pages increase internal fragmentation 

memory bloat
‣ Using smaller page size can increase address translation

overhead

7/12/2018 33

Will revisit

Indian Institute of Science (IISc), Bangalore, India

Contents of a page table entry

7/12/2018 34

4 level 512-ary radix tree

Indian Institute of Science (IISc), Bangalore, India

Contents of a page table entry

▪ ‘P’ (Present bit): If the address present in memory

▪ ‘U/S’ (User/Supervisor bit): Is the page accessible in
supervisor mode (e.g., by OS) only?

▪ ‘R/W’ (Read/Write): Is the page read-only?

▪ A (Access bit): Is this page has ever been accessed
(load/stored to)?

▪ D (Dirty bit): Is the page has been written to?

▪ X/D (Executable bit): Does the page contains executable?

7/12/2018 35

P

Typical x86-64 PTE

8 bytes

Indian Institute of Science (IISc), Bangalore, India

Segmentation with paging

▪ 32-bit x86 machines allowed segmentation on top
of paging
‣ Virtual address is first translated via segment registers

(CS,DS,ES etc.) to linear address

‣ Linear address is then translated to physical address

‣ Why?

7/12/2018 36

Indian Institute of Science (IISc), Bangalore, India

Segmentation with paging

▪ 32-bit x86 machines allowed segmentation on top
of paging
‣ Virtual address is first translated via segment registers

(CS,DS,ES etc.) to linear address

‣ Linear address is then translated to physical address

‣ Why?

▪ 64-bit x86 mostly got rid of segmenation

7/12/2018 36

Indian Institute of Science (IISc), Bangalore, India

Agenda

7/12/2018 37

What is virtual memory?

Hardware implementations of virtual memory

Research opportunity in virtual memory

Software management of virtual memory

Indian Institute of Science (IISc), Bangalore, India

Agenda

7/12/2018 37

What is virtual memory?

Hardware implementations of virtual memory

Research opportunity in virtual memory

Software management of virtual memory

Indian Institute of Science (IISc), Bangalore, India

Journey so far….Next up

7/12/2018 38

▪ Virtual memory basics

▪ Address mapping and translation

▪ Virtual address allocation
▪ Physical memory allocation and page table creation

M
o

st
ly

 H
/W

M
o

st
ly

 S
/W

Indian Institute of Science (IISc), Bangalore, India

Virtual address allocation
▪ “Memory allocation” is actually virtual address allocation

▪ Operating system is responsible for allocating virtual
address for an application

7/12/2018 39

Indian Institute of Science (IISc), Bangalore, India

Virtual address allocation
▪ “Memory allocation” is actually virtual address allocation

▪ Operating system is responsible for allocating virtual
address for an application

7/12/2018 39

0x00000

0x7ffffffff

Code

Static data

Heap

Stack

Dynamically allocated
memory

V
ir

tu
al

 a
d

d
re

ss
 r

an
ge Typical virtual

address layout
of a process in
Linux

Indian Institute of Science (IISc), Bangalore, India

Representation of VA (in Linux)

7/12/2018 40

struct task_struct

Represents a process
In Linux

pid

status

list of
open files

list of
signals

ptr to VA
space

struct mm_struct

Represents a virtual
address space

ptr to PT root

start/end stack

start/end code

start/end
mmap

vma_area ptr Starting
VA

Ending
VA

Flags/Prot

VM_READ
VM_WRITE
VM_SHARED
…………….

VMAs or VM area: Represent a contiguous
chunk of allocated virtual address range.

Indian Institute of Science (IISc), Bangalore, India

Dynamically allocating VA

▪User application or library requests VA allocation
via system calls

void *mmap(void *addr, size_t length, int prot, int
flags, int fd, off_t offset);

Length has to be multiple of 4KB

Prot PROT_NONE, PROT_READ, PROT_WRITE…

FlagsMAP_ANONYMOUS, MAP_SHARED, MAP_PRIVATE,
MAP_SHARED

7/12/2018 41

Indian Institute of Science (IISc), Bangalore, India

What happens on dynamic
memory allocation (e.g., mmap())?

7/12/2018 42

struct task_struct

Represents a process
In Linux

pid

status

list of
open files

list of
signals

ptr to VA
space

struct mm_struct

Represents a virtual
address space

ptr to PT root

start/end stack

start/end code

start/end
mmap

vma_area ptr Starting
VA

Ending
VA

Flags/Prot

VM_READ
VM_WRITE
VM_SHARED
…………….

VMAs or VM area: Represent a contiguous
chunk of allocated virtual address range.

vma_cache

Indian Institute of Science (IISc), Bangalore, India

Extending heap memory

▪Heap: Special type of dynamically allocated
contiguous memory region that grows in upwards

▪ System calls in Linux to extend heap
‣ int sbrk (increment _bytes)

7/12/2018 43

Indian Institute of Science (IISc), Bangalore, India

Extending heap via sbrk

7/12/2018 447/12/2018 102

struct task_struct

Represents a process
In Linux

pid

status

list of
open files

list of
signals

ptr to VA
space

struct mm_struct

Represents a virtual
address space

ptr to PT root

start/end stack

start/end code

start/end
mmap

vma_area ptr Starting
VA

Ending
VA

Flags/Prot

VM_READ
VM_WRITE
VM_SHARED
…………….

vma_cache

VMAs or VM area: Represent a contiguous
chunk of allocated virtual address range.

Indian Institute of Science (IISc), Bangalore, India

Extending heap via sbrk

7/12/2018 447/12/2018 103

struct task_struct

Represents a process
In Linux

pid

status

list of
open files

list of
signals

ptr to VA
space

struct mm_struct

Represents a virtual
address space

ptr to PT root

start/end stack

start/end code

start/end
mmap

vma_area ptr Starting
VA

Ending
VA

Flags/Prot

VM_READ
VM_WRITE
VM_SHARED
…………….

vma_cache

VMAs or VM area: Represent a contiguous
chunk of allocated virtual address range.

Indian Institute of Science (IISc), Bangalore, India

Demand paging

▪Note when “memory” (a.k.a, VA) is allocated no
physical memory is allocated

7/12/2018 45

Indian Institute of Science (IISc), Bangalore, India

Demand paging

▪Note when “memory” (a.k.a, VA) is allocated no
physical memory is allocated

▪Why? Virtual address is in abundance; but physical
memory is scarce resource.

▪ Allocate physical memory for when the virtual
address is accessed first time

7/12/2018 45

Indian Institute of Science (IISc), Bangalore, India

Demand paging

▪Note when “memory” (a.k.a, VA) is allocated no
physical memory is allocated

▪Why? Virtual address is in abundance; but physical
memory is scarce resource.

▪ Allocate physical memory for when the virtual
address is accessed first time

▪ Lazily allocating physical memory is called demand
paging

▪ Advantage: Commits physical memory only if used

7/12/2018 45

Indian Institute of Science (IISc), Bangalore, India

Page fault in demand paging

▪ Page fault: When h/w page walker fails to find
desired PTE the processor generates a general
protection fault to the OS

7/12/2018 46

Indian Institute of Science (IISc), Bangalore, India

Page fault in demand paging

▪ Page fault: When h/w page walker fails to find
desired PTE the processor generates a general
protection fault to the OS

▪ First access to an allocated memory generates a
page fault

7/12/2018 46

Indian Institute of Science (IISc), Bangalore, India

Page fault in demand paging

▪ Page fault: When h/w page walker fails to find
desired PTE the processor generates a general
protection fault to the OS

▪ First access to an allocated memory generates a
page fault

▪ Page fault can also happen due to insufficient
permission (e.g., write access to read-only page) 
protection fault

7/12/2018 46

Indian Institute of Science (IISc), Bangalore, India

Servicing a page fault

▪ Page fault routine is implemented inside the OS

▪ Argument routine are faulting VA and type of
access (e.g., read or write)

7/12/2018 47

Indian Institute of Science (IISc), Bangalore, India

Servicing a page fault

▪ Page fault routine is implemented inside the OS

▪ Argument routine are faulting VA and type of
access (e.g., read or write)

▪ Steps of handling a page fault

7/12/2018 47

Indian Institute of Science (IISc), Bangalore, India

Servicing a page fault

▪ Page fault routine is implemented inside the OS

▪ Argument routine are faulting VA and type of
access (e.g., read or write)

▪ Steps of handling a page fault
‣ Check VMA structures if the VA is allocated
‣ If not allocated or insufficient permission, raise

segmentation fault to application
‣ If allocated with correct permission find a physical page

frame to map the page containing the faulting VA
‣ Update page table to note new VA->PA mapping
‣ Return

7/12/2018 47

Indian Institute of Science (IISc), Bangalore, India

Servicing a page fault

▪ Page fault routine is implemented inside the OS

▪ Argument routine are faulting VA and type of access
(e.g., read or write)

▪ Steps of handling a page fault
‣ Check VMA structures if the VA is allocated

‣ If not allocated or insufficient permission, raise segmentation
fault to application

‣ If allocated with correct permission find a physical page frame
to map the page containing the faulting VA

‣ Update page table to note new VA->PA mapping

‣ Return

▪ The faulting instruction retries after page fault returns
7/12/2018 47

Indian Institute of Science (IISc), Bangalore, India

Servicing a page fault

▪ Page fault routine is implemented inside the OS

▪ Argument routine are faulting VA and type of access
(e.g., read or write)

▪ Steps of handling a page fault
‣ Check VMA structures if the VA is allocated

‣ If not allocated or insufficient permission, raise segmentation
fault to application

‣ If allocated with correct permission find a physical page frame
to map the page containing the faulting VA

‣ Update page table to note new VA->PA mapping

‣ Return

▪ The faulting instruction retries after page fault returns
7/12/2018 47

Next

Indian Institute of Science (IISc), Bangalore, India

Allocating physical memory

▪ Buddy allocator in Linux: Goal is to keep free
physical memory as contiguous as possible (why?)

▪ It is a list of free list of contiguous physical pages of
different sizes (2order x 4KB)

7/12/2018 48

Indian Institute of Science (IISc), Bangalore, India

Allocating physical memory

▪ Buddy allocator in Linux: Goal is to keep free
physical memory as contiguous as possible (why?)

▪ It is a list of free list of contiguous physical pages of
different sizes (2order x 4KB)

7/12/2018 48

Order=0

Order=1

Order=2

Order=10

4KB

8KB

16KB

Order=3

Order=4 64KB

Indian Institute of Science (IISc), Bangalore, India

Buddy allocator operation

▪ Allocate from a free list which is smallest that fits
the requested allocation size
‣ If no entry in the smallest list, go to next larger list and

so on…

‣ Put the leftover blocks in the lower order list

7/12/2018 49

Indian Institute of Science (IISc), Bangalore, India

Buddy allocator operation

▪ Allocate from a free list which is smallest that fits
the requested allocation size
‣ If no entry in the smallest list, go to next larger list and

so on…

‣ Put the leftover blocks in the lower order list

▪Merge two contiguous blocks of physical memory
in a free list and add the merged block in next
higher order free list

7/12/2018 49

Indian Institute of Science (IISc), Bangalore, India

Where does malloc() fits in?

▪ malloc() is function call implemented in a library. It is
not part of OS.

▪malloc allocates virtual address range (like mmap())

7/12/2018 50

Indian Institute of Science (IISc), Bangalore, India

Where does malloc() fits in?

▪ malloc() is function call implemented in a library. It is
not part of OS.

▪malloc allocates virtual address range (like mmap())

▪ Then, why malloc()/free()?

▪ Limitation of mmap
‣ Minimum granularity of VA allocation is a page (4KB)
‣ But applications often allocates in chunks less than 4KB

7/12/2018 50

Indian Institute of Science (IISc), Bangalore, India

Where does malloc() fits in?

▪ malloc() is function call implemented in a library. It is
not part of OS.

▪malloc allocates virtual address range (like mmap())

▪ Then, why malloc()/free()?

▪ Limitation of mmap
‣ Minimum granularity of VA allocation is a page (4KB)
‣ But applications often allocates in chunks less than 4KB

▪malloc() maintains free list of small allocations

▪ If free memory is available in malloc()’s free list, no
need to got to the OS

▪malloc() with large size (e.g., >32KB) converts to mmap

7/12/2018 50

Indian Institute of Science (IISc), Bangalore, India

Where does malloc() fits in?

▪ Two key goals of a malloc library:
‣ Reduce memory bloat = additional allocated memory

than what application asked

‣ Reduce number of system calls to OS (e.g., mmap())

‣ System calls are slow

7/12/2018 51

Indian Institute of Science (IISc), Bangalore, India

Where does malloc() fits in?

▪ Two key goals of a malloc library:
‣ Reduce memory bloat = additional allocated memory

than what application asked

‣ Reduce number of system calls to OS (e.g., mmap())

‣ System calls are slow

▪Many approaches to create malloc library
‣ Best fit, first fit, worst fit

▪Many malloc() libraries
‣ glibc-malloc, tc-malloc, dl-malloc

▪ You can write your own!

7/12/2018 51

Indian Institute of Science (IISc), Bangalore, India

Putting everything together

1. Application requests VA allocation via mmap()

2. OS creates/extends VMA regions to allocate VA range

3. OS returns the starting VA of just-allocated VA range

7/12/2018 52

Indian Institute of Science (IISc), Bangalore, India

Putting everything together

1. Application requests VA allocation via mmap()

2. OS creates/extends VMA regions to allocate VA range

3. OS returns the starting VA of just-allocated VA range

4. Application performs load/store on the address in the
VA range

5. H/W looks up TLB; misses (Why?)

6. H/W page table walker walks the page table

7/12/2018 52

Indian Institute of Science (IISc), Bangalore, India

Putting everything together

1. Application requests VA allocation via mmap()

2. OS creates/extends VMA regions to allocate VA range

3. OS returns the starting VA of just-allocated VA range

4. Application performs load/store on the address in the
VA range

5. H/W looks up TLB; misses (Why?)

6. H/W page table walker walks the page table

7. Desired entry not found on PTE (why?)

8. H/W generates a page fault to OS

7/12/2018 52

Indian Institute of Science (IISc), Bangalore, India

Putting everything together

9. OS’a page fault handler checks VMA regions to
ensure it’s a legal access

10. Page fault handler finds a free physical page frame to
map the VA page from the buddy allocator

11. Updates page table to note new VA to PA mapping
and return

7/12/2018 53

Indian Institute of Science (IISc), Bangalore, India

Putting everything together

9. OS’a page fault handler checks VMA regions to
ensure it’s a legal access

10. Page fault handler finds a free physical page frame to
map the VA page from the buddy allocator

11. Updates page table to note new VA to PA mapping
and return

12. Application retries the same instruction

13. This time page table walker finds it in page table and
loads it into TLB

14. Next time if same page is accessed it may hit in TLB
( no page walk)

7/12/2018 53

Indian Institute of Science (IISc), Bangalore, India

Miscellaneous related
topics

7/12/2018 54

Indian Institute of Science (IISc), Bangalore, India

Swapping

▪Goal: Provide an illusion of larger memory than
actually available

7/12/2018 55

Indian Institute of Science (IISc), Bangalore, India

Swapping

▪Goal: Provide an illusion of larger memory than
actually available

7/12/2018 55

Memory
(DRAM)

Storage

Indian Institute of Science (IISc), Bangalore, India

Swapping

▪Goal: Provide an illusion of larger memory than
actually available

7/12/2018 55

Memory
(DRAM)

Storage

Swap file

Indian Institute of Science (IISc), Bangalore, India

How swapping work?

▪OS attempts to figure out which pages in memory
are not actively used
‣ Use access bit (“A” bit) in the PTE

‣ OS periodically unsets “A” bits of pages in memory

‣ After a little while, OS checks H/W has set “A” bit of
those pages

7/12/2018 56

Indian Institute of Science (IISc), Bangalore, India

How swapping work?

▪OS attempts to figure out which pages in memory
are not actively used
‣ Use access bit (“A” bit) in the PTE

‣ OS periodically unsets “A” bits of pages in memory

‣ After a little while, OS checks H/W has set “A” bit of
those pages

‣ If “A” bit set for a page  actively used page

‣ If “A” bit is unset for a page  not actively used 
candidate for swapped out to storage

7/12/2018 56

Indian Institute of Science (IISc), Bangalore, India

How swapping work?

▪OS attempts to figure out which pages in memory
are not actively used
‣ Use access bit (“A” bit) in the PTE

‣ OS periodically unsets “A” bits of pages in memory

‣ After a little while, OS checks H/W has set “A” bit of
those pages

‣ If “A” bit set for a page  actively used page

‣ If “A” bit is unset for a page  not actively used 
candidate for swapped out to storage

▪OS writes back data of the page to swap file

▪Update PTE to unset present (“p”) bit
7/12/2018 56

Indian Institute of Science (IISc), Bangalore, India

How swapping work?

▪ There will be page fault if an application accesses a
page that is swapped out
‣ Because “p” bit is unset

▪OS page fault handler figures out the page had
been swapped out

▪ Page fault handler brings the page into memory

▪ Application retries the faulting instruction.

7/12/2018 57

Indian Institute of Science (IISc), Bangalore, India

How to utilize of superpages?

▪ Recap: superpages increases TLB reach  decrease
TLB miss rate
‣ x86-64 page sizes: 4KB (base), 2MB, 1GB(superpages)

▪ Challenge: Which page size to use for mapping a
given virtual address?

▪ Approach 1: Application writer tells when to use
superpage
‣ Mmap() syscall has flag MAP_2MB, MAP_1GB

7/12/2018 58

Indian Institute of Science (IISc), Bangalore, India

How to utilize superpages?

▪ Approach 2: Let OS automatically decide which
page size to use.
‣ Advantage: No application modification required
‣ Challenge: How should OS decide?

7/12/2018 59

Indian Institute of Science (IISc), Bangalore, India

How to utilize superpages?

▪ Approach 2: Let OS automatically decide which
page size to use.
‣ Advantage: No application modification required
‣ Challenge: How should OS decide?

▪ Transparent Huge Pages (THP) in Linux
‣ Large allocations (>2MB) mapped with superpage
‣ Periodically scans VA space of processes to find

contiguous allocations
‣ Periodically compacts physical memory to create

contiguous physical memory
‣ Map contiguous VA range to contiguous physical

memory

7/12/2018 59

Indian Institute of Science (IISc), Bangalore, India

Agenda

7/12/2018 60

What is virtual memory?

Hardware implementations of virtual memory

Research opportunity in virtual memory

Software management of virtual memory

Indian Institute of Science (IISc), Bangalore, India

Agenda

7/12/2018 60

What is virtual memory?

Hardware implementations of virtual memory

Research opportunity in virtual memory

Software management of virtual memory

Indian Institute of Science (IISc), Bangalore, India

Extending virtual memory to
accelerators

7/12/2018 61

Accl. for massive parallel processing
NVDIA/AMD’s GPU

Indian Institute of Science (IISc), Bangalore, India

Extending virtual memory to
accelerators

7/12/2018 61

Accl. for massive parallel processing
NVDIA/AMD’s GPU

Accl. For AI
Google’s TPU, NVDIA’s DGX-1 Accl. for database queries

Oracle’s DAX

Accl. for cryptography

Indian Institute of Science (IISc), Bangalore, India

Extending virtual memory to
accelerators

7/12/2018 61

Accl. for massive parallel processing
NVDIA/AMD’s GPU

Accl. For AI
Google’s TPU, NVDIA’s DGX-1 Accl. for database queries

Oracle’s DAX

How to efficiently extend benefits of
virtual memory to accelerators?

Accl. for cryptography

Indian Institute of Science (IISc), Bangalore, India

Virtual memory with Non
volatile memory (NVM)

7/12/2018

Memory
(DRAM)

Storage

Traditional

Indian Institute of Science (IISc), Bangalore, India

Virtual memory with Non
volatile memory (NVM)

▪ NVM blurring boundary between memory and storage

7/12/2018 62

Memory
(DRAM)

Storage

Traditional

Storage

New!
Non-volatile
Memory

Emerging

Indian Institute of Science (IISc), Bangalore, India

Virtual memory with Non
volatile memory (NVM)

▪ NVM blurring boundary between memory and storage

7/12/2018 62

Memory
(DRAM)

Storage

Traditional

Storage

New!
Non-volatile
Memory

Emerging

How to incorporate notion on non-
volatility in virtual memory?

Indian Institute of Science (IISc), Bangalore, India

Security implications of virtual
memory

7/12/2018 63

Indian Institute of Science (IISc), Bangalore, India

Security implications of virtual
memory

▪ Speculative h/w state accessible to software

▪OS’s VA space attached to user’s VA space

7/12/2018 63

Indian Institute of Science (IISc), Bangalore, India

Security implications of virtual
memory

▪ Speculative h/w state accessible to software

▪OS’s VA space attached to user’s VA space

An user application can read OS’s memory!

7/12/2018 63

Indian Institute of Science (IISc), Bangalore, India

Security implications of virtual
memory

▪ Speculative h/w state accessible to software

▪OS’s VA space attached to user’s VA space

An user application can read OS’s memory!

7/12/2018 63

Understanding and improving security
implications of virtual memory

Indian Institute of Science (IISc), Bangalore, India

Conclusion

▪ Virtual memory is a basic component of modern
computing

▪ An example of true H/W-S/W co-design

▪Many research opportunities!

7/12/2018 64

Indian Institute of Science (IISc), Bangalore, India

Briefing for hands on session

▪High level objectives
‣ Run a simple application (provided) with base pages only

(4KB) and measure number of TLB misses, running time

‣ Run the same application with superpages and measure
TLB misses and running time
• Run with explicit application directed allocation of superpages

• Run with Linux transparent huge pages (THP) that automatically
uses superpages without application modification or pre-
reservation of superpages

‣ Modify the given program/change its parameters to
worsen number of TLB misses

7/12/2018 65

1

2

A

B

3

Indian Institute of Science (IISc), Bangalore, India

Initial benchmark setup

‣ Download the compressed file from Google drive

‣ Unzip it [e.g., tar –xzvf microbenchmark.tar.gz]

‣ Go to directory benchmark/strided

‣ run make to compile

‣ Test that you can run the application by following
command
• ./strided 524288000 NONE STRIDED 256

• This will take around 10 seconds or more to run

‣ Attached README explanation of the benchmark

‣ Take a look inside the strided benchmark

7/12/2018 66

Indian Institute of Science (IISc), Bangalore, India

▪ Turn off Linux’s transparent huge pages (could be
on by default)
‣ Switch to root privilege

• Command “su – “

‣ Command echo never >
/sys/kernel/mm/transparent_hugepage/enabled

‣ This will ensure your application will use 4KB base pages
only

▪ Run the application using following command
‣ ./strided 524288000 NONE STRIDED 256
‣ Run at least three times and note down the average

running time printed by the application

7/12/2018 67

TLB misses with base page (4KB)1

Indian Institute of Science (IISc), Bangalore, India

▪Measure the number of TLB misses using perf tool
‣ perf stat -e dTLB-load-misses ./strided 524288000

NONE STRIDED 256

‣ Run at least three times and note down average dTLB
misses (data TLB misses)

7/12/2018 68

TLB misses with base page (4KB)1

Indian Institute of Science (IISc), Bangalore, India

Explicit superpage allocation

▪ In this experiment the we will allocate superpages
explicitly from applications
‣ First, reserve superpages using following command

• echo 2000 > /sys/kernel/mm/hugepages/hugepages-
2048kB/nr_hugepages

▪ Run the application to explicitly request superpages
‣ ./strided 524288000 TLBFS STRIDED 256

‣ Note down the execution time by averaging runtime of
at least three runs

‣ Measure the TLB misses as in experiment 1

7/12/2018 69

2A

Indian Institute of Science (IISc), Bangalore, India

Using transparent huge pages
(THP)

▪ Free reserved huge pages
‣ echo 0 > /sys/kernel/mm/hugepages/hugepages-

2048kB/nr_hugepages

▪ Turn on THP by following
‣ echo always >

/sys/kernel/mm/transparent_hugepage/enabled

▪Measure the running and TLB misses as before

7/12/2018 70

2B

Indian Institute of Science (IISc), Bangalore, India

How to make TLB miss worse?

▪ Change parameters, modify application to make
TLB miss worse

7/12/2018 71

3

