
Out of Order Processing
Manu Awasthi

July 3rd 2018

Computer Architecture Summer School 2018

Slide deck acknowledgements : Rajeev Balasubramonian (University of Utah),
Computer Architecture: A Quantitative Approach; John Hennessy, David A.

Patterson (Book)

A Simple Pipeline

• Assumptions?
• All stages take a the exact same amount of time

• Advantages?
• Not all instructions same amount of time; simpler ones can finish faster

• Disadvantages
• Later instructions can finish earlier

IF D/R ALU DM RW

Multi Cycle Instructions
• Multiple parallel pipelines – each pipeline can have a different number of

stages

• Instructions can now complete out of order – must make sure that writes
to a register happen in the correct order

Effects of Multicycle Instructions

• Potentially multiple writes to the register file

• Frequent RAW hazards

• WAW hazards also possible

• WAR/RAR?

• Imprecise exception support

Recap Multicycle Instructions

Dealing With Effects of Multicycle Instructions

• Multiple Writes to the register file (structural hazard)
• Increase number of ports

• Stall one of the writers during its decode (ID) stage

• WAW hazards
• Detect hazards during ID; stall later instruction

• Imprecise Exceptions
• Buffer results for instructions completing early (ROB) – need to make sure to

return to the same state where it was left

Exceptions

• “Exceptional circumstances” where normal instruction execution order is
changed

• Causes
• I/O device request
• OS service from user program
• Integer/FP arithmetic overflow
• Misaligned memory access
• Page fault
• Hardware/power failure

• Interrupt/Fault/Exception used interchangeably

Dealing with Exceptions

An Out-of-Order Processor Implementation

Branch prediction
and instr fetch

R1  R1+R2
R2  R1+R3

BEQZ R2
R3  R1+R2
R1  R3+R2

Instr Fetch Queue

Decode &
Rename

Instr 1
Instr 2
Instr 3
Instr 4
Instr 5
Instr 6

T1
T2
T3
T4
T5
T6

Reorder Buffer (ROB)

T1  R1+R2
T2  T1+R3

BEQZ T2
T4  T1+T2
T5  T4+T2

Issue Queue (IQ)

ALU ALU ALU

Register File
R1-R32

Results written to
ROB and tags

broadcast to IQ

Design Details

• Instructions enter the pipeline in order

• No need for branch delay slots if prediction happens in time

• Instructions leave the pipeline in order – all instructions that enter also get
placed in the ROB – the process of an instruction leaving the ROB (in order)
is called commit – an instruction commits only if it and all instructions
before it have completed successfully (without an exception)

• A result is written into the register file only when the instruction commits –
until then, the result is saved in a temporary register in the ROB

Design Details

• Instructions get renamed and placed in the issue queue – some operands are
available (T1-T6; R1-R32), while others are being produced by instructions in
flight (T1-T6)

• As instructions finish, they write results into the ROB (T1-T6) and broadcast the
operand tag (T1-T6) to the issue queue – instructions now know if their operands
are ready

• When a ready instruction issues, it reads its operands from T1-T6 and R1-R32 and
executes (out-of-order execution)

• Can you have WAW or WAR hazards? By using more names (T1-T6), name
dependences can be avoided

Design Details

• If instr-3 raises an exception, wait until it reaches the top of the ROB –
at this point, R1-R32 contain results for all instructions up to instr-3 –
save registers, save PC of instr-3, and service the exception

• If branch is a mispredict, flush all instructions after the branch and
start on the correct path – mispredicted instructions will not have
updated registers (the branch cannot commit until it has completed
and the flush happens as soon as the branch completes)

• Potential problems: ?

Recap – OoO, Register Renaming

Branch prediction
and instr fetch

R1  R1+R2
R2  R1+R3

BEQZ R2
R3  R1+R2
R1  R3+R2

Instr Fetch Queue

Decode &
Rename

Instr 1
Instr 2
Instr 3
Instr 4
Instr 5
Instr 6

T1
T2
T3
T4
T5
T6

Reorder Buffer (ROB)

T1  R1+R2
T2  T1+R3

BEQZ T2
T4  T1+T2
T5  T4+T2

Issue Queue (IQ)

ALU ALU ALU

Register File
R1-R32

Results written to
ROB and tags

broadcast to IQ

Out of Order Implementation

Branch prediction
and instr fetch

R1  R1+R2
R2  R1+R3

BEQZ R2
R3  R1+R2
R1  R3+R2

Instr Fetch Queue

Decode &
Rename

Instr 1
Instr 2
Instr 3
Instr 4
Instr 5
Instr 6

T1
T2
T3
T4
T5
T6

Reorder Buffer (ROB)

T1  R1+R2
T2  T1+R3

BEQZ T2
T4  T1+T2
T5  T4+T2

Issue Queue (IQ)

ALU ALU ALU

Register File
R1-R32

Results written to
ROB and tags

broadcast to IQ

Logical /Architected Registers

Rename Registers

Managing Register Names

Logical
Registers
R1-R32

Physical
Registers
P1-P64

R1  R1+R2
R2  R1+R3

BEQZ R2
R3  R1+R2

P33  P1+P2
P34  P33+P3

BEQZ P34
P35  P33+P34

At the start, R1-R32 can be found in P1-P32
Instructions stop entering the pipeline when P64 is assigned

What happens on commit?

Temporary values are stored in the register file and not the ROB

The Commit Process

• On commit, no copy is required

• The register map table is updated – the “committed” value of R1 is now in P33
and not P1 – on an exception, P33 is copied to memory and not P1

• An instruction in the issue queue need not modify its input operand when the
producer commits

• When instruction-1 commits, we no longer have any use for P1 – it is put in a free
pool and a new instruction can now enter the pipeline → for every instr that
commits, a new instr can enter the pipeline → number of in-flight instrs is a
constant = number of extra (rename) registers

The Alpha 21264 Out-of-Order
Implementation

Branch prediction
and instr fetch

R1  R1+R2
R2  R1+R3

BEQZ R2
R3  R1+R2
R1  R3+R2

Instr Fetch Queue

Decode &
Rename

Instr 1
Instr 2
Instr 3
Instr 4
Instr 5
Instr 6

Reorder Buffer (ROB)

P33  P1+P2
P34  P33+P3

BEQZ P34
P35  P33+P34
P36  P35+P34

Issue Queue (IQ)

ALU ALU

Register File
P1-P64

Results written to
regfile and tags
broadcast to IQ

Speculative
Reg Map
R1→P36
R2→P34

Committed
Reg Map
R1→P1
R2→P2

ALU

More Details
• When does the decode stage stall? When we either run out of registers, or ROB entries, or issue

queue entries

• What type of instructions are present in the ROB?

• When does the ROB stall?

• Issue width: the number of instructions handled by each stage in a cycle. High issue width ➔ high
peak ILP

• Window size: the number of in-flight instructions in the pipeline. Large window size ➔ high ILP

• No more WAR and WAW hazards because of rename registers – must only worry about RAW
hazards

OoO Structures in Intel Processors

https://en.wikichip.org/wiki/intel/microarchitectures/skylake_(client)Intel Skylake (Client)

Waking up Dependent Instructions

• Inorder pipelines – an instruction can leave the decode stage based
on the knowledge of when the input will be available, not when it is
computed

• In OoO pipelines, instruction can leave the issue queue (woken up)
before its inputs are know, based on knowledge of when they will be
available – wakeup is speculative based on expected latency of
producer

Loads and Stores

Ld R1  [R2]

Ld

St

Ld

Ld

R3  [R4]

R5 → [R6]

R7  [R8]

R9[R10]

What if the issue queue also had load/store instructions?
Can we continue executing instructions out-of-order?

Memory Dependence Checking

• The issue queue checks for register
dependences and executes instructions as soon
as registers are ready

• Loads/stores access memory as well – must
check for hazards for memory as well

• Hence, first check for register dependences to
compute effective addresses; then check for
memory dependences

Ld 0x abcdef

Ld

St

Ld

Ld 0x abcdef

St 0x abcd00

Ld 0x abc000

Ld 0x abcd00

Memory Dependence Checking

• Load and store addresses are maintained in
program order in the Load/Store Queue (LSQ)

• Loads can issue if they are guaranteed to not
have true dependences with earlier stores

• Stores can issue only if we are ready to modify
memory (can not recover if an earlier
instruction raises an exception)

Ld 0x abcdef

Ld

St

Ld

Ld 0x abcdef

St 0x abcd00

Ld 0x abc000

Ld 0x abcd00

LSQs Intel Processors

https://www.realworldtech.com/haswell-cpu/5/

The Alpha 21264 Out-of-Order
Implementation

Branch prediction
and instr fetch

R1  R1+R2
R2  R1+R3

BEQZ R2
R3  R1+R2
R1  R3+R2

LD R4  8[R3]
ST R4 → 8[R1]

Instr Fetch Queue

Decode &
Rename

Instr 1
Instr 2
Instr 3
Instr 4
Instr 5
Instr 6
Instr 7

Reorder Buffer (ROB)

P33  P1+P2
P34  P33+P3

BEQZ P34
P35  P33+P34
P36  P35+P34

P37  8[P35]
P37 → 8[P36]

Issue Queue (IQ)

ALU ALU ALU

Register File
P1-P64

Results written to
regfile and tags
broadcast to IQ

P37  [P35 + 8]
P37 → [P36 + 8]

LSQ

ALU

D-Cache

Committed
Reg Map
R1→P1
R2→P2

Speculative
Reg Map
R1→P36
R2→P34

