
ISA and RISCV

CASS 2018

Lavanya Ramapantulu

Program

• Program = ??

• Algorithm + Data Structures – Niklaus Wirth

• Program (Abstraction) of processor/hardware
that executes

CASS18 - ISA and RISCV 23-Jul-18

Program Abstractions
• You write programs in high level

programming languages, e.g., C/C++,
Java:

• Compiler translates this into assembly
language statement:

• Assembler translates this statement
into machine language instructions
that the processor can execute:

k = k+1

add x6,x10,x6

0000 0000 0110 0101 0000 0011 0011 0011

CASS18 - ISA and RISCV 33-Jul-18

Program Abstractions – Why ?

• Machine code
– Instructions are represented in binary

– 1000110010100000 is an instruction that tells one computer to add
two numbers

– Hard and tedious for programmer

• Assembly language
– Symbolic version of machine code

– Human readable

– add A, B is equivalent to 1000110010100000

– Assembler translates from assembly language to machine code

• How many assembly instructions should you
write to read two memory locations, and add
them ?

3-Jul-18 CASS18 - ISA and RISCV 4

Instruction Set Architecture

An abstraction on the interface between the
hardware and the low-level software.

CASS18 - ISA and RISCV 5

Instruction Set Architecture

Software
(to be translated to
the instruction set)

Hardware
(implementing the
instruction set)

Does a given ISA have a fixed implementation ?

3-Jul-18
Source acknowledgement: http://www.comp.nus.edu.sg/~cs2100/lect/cs2100-9-MIPS-1-full.pptx

ISA Design Philosophies

• Complex Instruction Set Computer (CISC)
– example: x86-32 (IA32)
– single instruction performs complex operation
– smaller assembly code size

• lesser memory for storing program

• Reduced Instruction Set Computer (RISC)
– example: MIPS, ARM, RISC-V
– multiple instructions to perform complex operation

• Compiler design ?
• Hardware implementation ?

CASS18 - ISA and RISCV 63-Jul-18

Execution flow of a program

• example of the computer components

activated, instructions executed and data flow

during an example code execution

CASS18 - ISA and RISCV

//assume res is 0 initially

for (i = 1; i < 10; i++) {

res = res + i;

}

C-like code
fragment

res  res + i

i  i + 1

if i < 10, repeat

"Assembly" Code

compile to

3-Jul-18
Source acknowledgement: http://www.comp.nus.edu.sg/~cs2100/lect/cs2100-9-MIPS-1-full.pptx

7

Recap: Computer Components

• What are the two major components in a
computer

CASS18 - ISA and RISCV

Processor
Memory

Bus

Perform
computation

Storage of code
and data

Bridge between the two
components

3-Jul-18
Source acknowledgement: http://www.comp.nus.edu.sg/~cs2100/lect/cs2100-9-MIPS-1-full.pptx

8

Recap: Execution flow and Data flow

• The code and data reside in memory

– Transferred into the processor during execution

CASS18 - ISA and RISCV

Processor
Memory

Bus

………

if i < 10,

i  i + 1

………..

………..

0

1i

res

Inst res  res + i

ALU
res+i

res  res + i

3-Jul-18
Source acknowledgement: http://www.comp.nus.edu.sg/~cs2100/lect/cs2100-9-MIPS-1-full.pptx

9

Memory access is slow!
• To avoid frequent access of memory

– Provide temporary storage for values in the
processor (known as registers)

CASS18 - ISA and RISCV

Processor
Memory

Bus

………

if i < 10,

i  i + 1

res  res + i

………..

………..

0

1i

res

Inst

ALU

r0

r1

.. …

3-Jul-18
Source acknowledgement: http://www.comp.nus.edu.sg/~cs2100/lect/cs2100-9-MIPS-1-full.pptx

10

Memory instruction
• Need instruction to move data into registers

– also from registers to memory later

CASS18 - ISA and RISCV

Processor

Memory

Bus

………

if i < 10,

i  i + 1

res  res + i

………..

………..

0

1i

res

Inst r0  load i

ALU

r0 1

r1

.. …

r0  load i

r1  load res

Moving data from memory into a register –
load
Moving data from a register into memory –
store

3-Jul-18
Source acknowledgement: http://www.comp.nus.edu.sg/~cs2100/lect/cs2100-9-MIPS-1-full.pptx

11

Reg-to-Reg Arithmetic
• Arithmetic operation can now work directly on

registers only:

– Much faster!

CASS18 - ISA and RISCV

Processor

Memory

Bus

………

if r0 < 10,

r0  r0 + 1

r1  r1 + r0

………..

………..

0

1i

res

Inst r1  r1 + r0

ALU
r0 1

r1 1

.. …

r0  load i

r1  load res

3-Jul-18
Source acknowledgement: http://www.comp.nus.edu.sg/~cs2100/lect/cs2100-9-MIPS-1-full.pptx

12

Reg-to-Reg Arithmetic
• Sometimes, arithmetic operation uses a

constant value instead of register value

CASS18 - ISA and RISCV

Processor

Memory

Bus

………

if r0 < 10,

r0  r0 + 1

r1  r1 + r0

………..

………..

0

1i

res

Inst r0  r0 + 1

ALU
r0 2

r1 1

.. …

r0  load i

r1  load res

1

3-Jul-18
Source acknowledgement: http://www.comp.nus.edu.sg/~cs2100/lect/cs2100-9-MIPS-1-full.pptx

13

Execution sequence
• Instruction is executed sequentially by default

– How do we “repeat” or “make a choice”?

CASS18 - ISA and RISCV

Processor

Memory

Bus

………

if r0 < 10,

r0  r0 + 1

r1  r1 + r0

………..

………..

0

1i

res

Inst

ALU
r0

r1

.. …

r0  load i

r1  load res

3-Jul-18
Source acknowledgement: http://www.comp.nus.edu.sg/~cs2100/lect/cs2100-9-MIPS-1-full.pptx

14

Control flow instruction
• We need instruction to change the control flow based on

condition:
– Repetition (loop) and Selection (if-else) can both be supported

CASS18 - ISA and RISCV

Processor

Memory

Bus

………

if r0 < 10,

r0  r0 + 1

r1  r1 + r0

………..

………..

0

1i

res

Inst if r0 < 10, repeat

ALU
r0 2

r1 1

.. …

r0  load i

r1  load res

3-Jul-18
Source acknowledgement: http://www.comp.nus.edu.sg/~cs2100/lect/cs2100-9-MIPS-1-full.pptx

15

Looping!
• Since the condition succeeded, execution will

repeat from the indicated position

CASS18 - ISA and RISCV

Processor

Memory

Bus

………

if r0 < 10,

r0  r0 + 1

r1  r1 + r0

………..

………..

0

1i

res

Inst r1  r1 + r0

ALU
r0 2

r1 3

.. …

r0  load i

r1  load res

3-Jul-18
Source acknowledgement: http://www.comp.nus.edu.sg/~cs2100/lect/cs2100-9-MIPS-1-full.pptx

16

Looping!
• Execution will continue sequentially:

– Until we see another control flow instruction!

CASS18 - ISA and RISCV

Processor

Memory

Bus

………

if r0 < 10,

r0  r0 + 1

r1  r1 + r0

………..

………..

0

1i

res

Inst r0  r0 + 1

ALU
r0 3

r1 3

.. …

r0  load i

r1  load res

1

3-Jul-18
Source acknowledgement: http://www.comp.nus.edu.sg/~cs2100/lect/cs2100-9-MIPS-1-full.pptx

17

Control flow instruction
• The three instructions will be repeated until

the condition fails

CASS18 - ISA and RISCV

Processor

Memory

Bus

………

if r0 < 10,

r0  r0 + 1

r1  r1 + r0

………..

………..

0

1i

res

Inst if r0 < 10, repeat

ALU
r0 10

r1 45

.. …

r0  load i

r1  load res

3-Jul-18
Source acknowledgement: http://www.comp.nus.edu.sg/~cs2100/lect/cs2100-9-MIPS-1-full.pptx

18

Memory instruction
• We can now move back the values from register

to their “home” in memory
– Similarly for the "r1" to "res"

CASS18 - ISA and RISCV

Processor

Memory

Bus

………

istore r0

if r0 < 10,

r0  r0 + 1

r1  r1 + r0

………..

………..

0

10i

res

Inst istore r0

ALU
r0 10

r1 45

.. …

r0  load i

r1  load res

3-Jul-18
Source acknowledgement: http://www.comp.nus.edu.sg/~cs2100/lect/cs2100-9-MIPS-1-full.pptx

19

Summary of observations
• The stored-memory concept:

– Both instruction and data are stored in memory

• The load-store model:
– Limit memory operations and relies on registers

for storage during execution

• The major types of assembly instruction:
– Memory: Move values between memory and

registers

– Calculation: Arithmetic and other operations

– Control flow: Change the sequential execution

CASS18 - ISA and RISCV
20

Source acknowledgement: http://www.comp.nus.edu.sg/~cs2100/lect/cs2100-9-MIPS-1-full.pptx
3-Jul-18

ISA Concepts

Concept #1: Data Storage

Concept #2: Memory Addressing Modes

Concept #3: Operations in the Instruction Set

Concept #4: Instruction Formats

Concept #5: Encoding the Instruction Set

Source acknowledgement: http://www.comp.nus.edu.sg/~cs2100/lect/cs2100-13b-ISA.pptx

CASS18 - ISA and RISCV

Concept #1: Data Storage
• Storage Architecture

• General Purpose Register Architecture

Concept #1: Data Storage

Concept #2: Memory Addressing Modes

Concept #3: Operations in the Instruction Set

Concept #4: Instruction Formats

Concept #5: Encoding the Instruction Set

3-Jul-18 22

Source acknowledgement: http://www.comp.nus.edu.sg/~cs2100/lect/cs2100-13b-ISA.pptx

Storage Architecture: Definition

• Under Von Neumann Architecture:
– Data (operands) are stored in memory

• For a processor, storage architecture concerns
with:
– Where do we store the operands so that the

computation can be performed?
– Where do we store the computation result

afterwards?
– How do we specify the operands?

• Major storage architectures in the next slide

CASS18 - ISA and RISCV

Operands may be
implicit or explicit.

C = A + B

operands operator

3-Jul-18 23

Source acknowledgement: http://www.comp.nus.edu.sg/~cs2100/lect/cs2100-13b-ISA.pptx

CASS18 - ISA and RISCV

Storage Architecture: Common Design
▪ Stack architecture:

▪ Operands are implicitly on top of the stack.

▪ Accumulator architecture:
▪ One operand is implicitly in the accumulator (a register). Examples:

IBM 701, DEC PDP-8.

▪ General-purpose register architecture:
▪ Only explicit operands.

▪ Register-memory architecture (one operand in memory). Examples:
Motorola 68000, Intel 80386.

▪ Register-register (or load-store) architecture.

Examples: MIPS, DEC Alpha.

▪ Memory-memory architecture:
▪ All operands in memory. Example: DEC VAX.

3-Jul-18 24

Source acknowledgement: http://www.comp.nus.edu.sg/~cs2100/lect/cs2100-13b-ISA.pptx

CASS18 - ISA and RISCV

Storage Architecture: Example
Stack Accumulator Register (load-store) Memory-Memory

Push A Load A Load R1,A Add C, A, B

Push B Add B Load R2,B

Add Store C Add R3,R1,R2

Pop C Store R3,C

C = A+B

Memory-Memory

3-Jul-18 25

Source acknowledgement: http://www.comp.nus.edu.sg/~cs2100/lect/cs2100-13b-ISA.pptx

Storage Architecture: GPR Architecture
• For modern processors:

– General-Purpose Register (GPR) is the most
common choice for storage design

– RISC computers typically uses Register-Register
(Load/Store) design
• E.g. MIPS, ARM, RISC-V

– CISC computers use a mixture of Register-Register
and Register-Memory
• E.g. IA32

CASS18 - ISA and RISCV3-Jul-18 26

Source acknowledgement: http://www.comp.nus.edu.sg/~cs2100/lect/cs2100-13b-ISA.pptx

CASS18 - ISA and RISCV

Concept #2: Memory & Addressing Mode

• Memory Locations and Addresses

• Addressing Modes

Concept #1: Data Storage

Concept #2: Memory & Addressing Modes

Concept #3: Operations in the Instruction Set

Concept #4: Instruction Formats

Concept #5: Encoding the Instruction Set

3-Jul-18 27

Source acknowledgement: http://www.comp.nus.edu.sg/~cs2100/lect/cs2100-13b-ISA.pptx

CASS18 - ISA and RISCV

Memory Address and Content
▪ Given k-bit address, the address space is of size 2k

▪ Each memory transfer consists of one word of n bits

Address

0

1

2

3

4

5

Processor

Memory
Address
Register

Memory
Data
Register

Memory

:n-bit data bus

Up to 2k

addressable
locations.

Control lines

(R/W, etc.)

k-bit address bus

3-Jul-18 28

Source acknowledgement: http://www.comp.nus.edu.sg/~cs2100/lect/cs2100-13b-ISA.pptx

Addressing Modes

• Addressing Mode:
– Ways to specify an operand in an assembly language

• In RISC-V, there are only 4 addressing modes:
– Register:

• Operand is in a register

– Immediate:
• Operand is specified in the instruction directly

– Displacement:
• Operand is in memory with address calculated as Base + Offset

– PC-Relative:
• Operand is in memory with address calculated as PC + Offset

CASS18 - ISA and RISCV3-Jul-18 29

CASS18 - ISA and RISCV

Addressing Modes: Other
Addressing mode Example Meaning

Register Add R4,R3 R4  R4+R3

Immediate Add R4,#3 R4  R4+3

Displacement Add R4,100(R1) R4  R4+Mem[100+R1]

Register indirect Add R4,(R1) R4  R4+Mem[R1]

Indexed / Base Add R3,(R1+R2) R3  R3+Mem[R1+R2]

Direct or absolute Add R1,(1001) R1  R1+Mem[1001]

Memory indirect Add R1,@(R3) R1  R1+Mem[Mem[R3]]

Auto-increment Add R1,(R2)+ R1  R1+Mem[R2]; R2  R2+d

Auto-decrement Add R1,–(R2) R2  R2-d; R1  R1+Mem[R2]

Scaled Add R1,100(R2)[R3] R1  R1+Mem[100+R2+R3*d]

3-Jul-18 30

Source acknowledgement: http://www.comp.nus.edu.sg/~cs2100/lect/cs2100-13b-ISA.pptx

CASS18 - ISA and RISCV

Concept #3: Operations in Instruction Set

• Standard Operations in an Instruction Set

• Frequently Used Instructions

Concept #1: Data Storage

Concept #2: Memory Addressing Modes

Concept #3: Operations in the Instruction Set

Concept #4: Instruction Formats

Concept #5: Encoding the Instruction Set

3-Jul-18 31

Source acknowledgement: http://www.comp.nus.edu.sg/~cs2100/lect/cs2100-13b-ISA.pptx

CASS18 - ISA and RISCV

Standard Operations
Data Movement load (from memory)

store (to memory)
memory-to-memory move
register-to-register move
input (from I/O device)
output (to I/O device)
push, pop (to/from stack)

Arithmetic integer (binary + decimal) or FP
add, subtract, multiply, divide

Logical not, and, or, set, clear

Shift shift left/right, rotate left/right

Control flow Jump (unconditional), Branch (conditional)

Subroutine Linkage call, return

Interrupt trap, return

Synchronization test & set (atomic r-m-w)

String search, move, compare

Graphics pixel and vertex operations,
compression/decompression

3-Jul-18 32

Source acknowledgement: http://www.comp.nus.edu.sg/~cs2100/lect/cs2100-13b-ISA.pptx

CASS18 - ISA and RISCV

Concept #4: Instruction Formats

• Instruction Length

• Instruction Fields

– Type and Size of Operands

Concept #1: Data Storage

Concept #2: Memory Addressing Modes

Concept #3: Operations in the Instruction Set

Concept #4: Instruction Formats

Concept #5: Encoding the Instruction Set

3-Jul-18 33

Source acknowledgement: http://www.comp.nus.edu.sg/~cs2100/lect/cs2100-13b-ISA.pptx

CASS18 - ISA and RISCV

Instruction Length
▪ Variable-length instructions.

▪ Intel 80x86: Instructions vary from 1 to 17
bytes long.

▪ Digital VAX: Instructions vary from 1 to 54
bytes long.

▪ Require multi-step fetch and decode.

▪ Allow for a more flexible (but complex) and
compact instruction set.

▪ Fixed-length instructions.
▪ Used in most RISC (Reduced Instruction Set Computers)

▪ MIPS, PowerPC: Instructions are 4 bytes long.

▪ Allow for easy fetch and decode.

▪ Simplify pipelining and parallelism.

▪ Instruction bits are scarce.

▪ Hybrid instructions: a mix of variable- and fixed-length instructions.

3-Jul-18 34

Source acknowledgement: http://www.comp.nus.edu.sg/~cs2100/lect/cs2100-13b-ISA.pptx

CASS18 - ISA and RISCV

Instruction Fields
▪ An instruction consists of

▪ opcode : unique code to specify the desired operation

▪ operands: zero or more additional information needed for the
operation

▪ The operation designates the type and size of the operands

▪ Typical type and size: Character (8 bits), half-word (eg: 16 bits), word
(eg: 32 bits), single-precision floating point (eg: 1 word), double-
precision floating point (eg: 2 words).

▪ Expectations from any new 32-bit architecture:
▪ Support for 8-, 16- and 32-bit integer and 32-bit and 64-bit floating

point operations. A 64-bit architecture would need to support 64-bit
integers as well.

3-Jul-18 35

Source acknowledgement: http://www.comp.nus.edu.sg/~cs2100/lect/cs2100-13b-ISA.pptx

Frequently Used Instructions

CASS18 - ISA and RISCV

Rank Integer Instructions
Average

Percentage

1 Load 22%

2 Conditional Branch 20%

3 Compare 16%

4 Store 12%

5 Add 8%

6 Bitwise AND 6%

7 Sub 5%

8 Move register to register 4%

9 Procedure call 1%

10 Return 1%

Total 96%

Make these instructions fast!
Amdahl’s law – make the

common case fast!

3-Jul-18 36

Source acknowledgement: http://www.comp.nus.edu.sg/~cs2100/lect/cs2100-13b-ISA.pptx

CASS18 - ISA and RISCV

Concept #5: Encoding the Instruction Set

• Instruction Encoding

• Encoding for Fixed-Length Instructions

Concept #1: Data Storage

Concept #2: Memory Addressing Modes

Concept #3: Operations in the Instruction Set

Concept #4: Instruction Formats

Concept #5: Encoding the Instruction Set

3-Jul-18 37

Source acknowledgement: http://www.comp.nus.edu.sg/~cs2100/lect/cs2100-13b-ISA.pptx

CASS18 - ISA and RISCV

Instruction Encoding: Overview
▪ How are instructions represented in binary format for

execution by the processor?

▪ Issues:
▪ Code size, speed/performance, design complexity.

▪ Things to be decided:
▪ Number of registers

▪ Number of addressing modes

▪ Number of operands in an instruction

▪ The different competing forces:
▪ Have many registers and addressing modes

▪ Reduce code size

▪ Have instruction length that is easy to handle (fixed-length instructions
are easy to handle)

Source acknowledgement: http://www.comp.nus.edu.sg/~cs2100/lect/cs2100-13b-ISA.pptx

3-Jul-18 38

CASS18 - ISA and RISCV

Encoding Choices
▪ Three encoding choices: variable, fixed, hybrid.

Source acknowledgement: http://www.comp.nus.edu.sg/~cs2100/lect/cs2100-13b-ISA.pptx

3-Jul-18 39

Fixed Length Instruction: Encoding (1/4)
• Fixed length instruction presents a much more

interesting challenge:
– Q: How to fit multiple sets of instruction types into

same number of bits?

– A: Work with the most constrained instruction types
first

• Expanding Opcode scheme:
– The opcode has variable lengths for different

instructions.

– A good way to maximizes the instruction bits.

CASS18 - ISA and RISCV

Source acknowledgement: http://www.comp.nus.edu.sg/~cs2100/lect/cs2100-13b-ISA.pptx

3-Jul-18 40

Fixed Length Instruction: Encoding (2/4)
• Example:

– 16-bit fixed length instructions, with 2 types of instructions

– Type-A: 2 operands, each operand is 5-bit

– Type-B: 1 operand of 5-bit

CASS18 - ISA and RISCV

Type-A

Type-B

6 bits 5 bits 5 bits

opcode operand operand

6 bits 5 bits 5 bits

opcode operand unused

Problem:
▪ Wasted bits in Type-

B instruction

▪ Maximum total
number of
instructions is 26 or
64.

First Attempt:
Fixed length Opcode

Source acknowledgement: http://www.comp.nus.edu.sg/~cs2100/lect/cs2100-13b-ISA.pptx

3-Jul-18 41

Fixed Length Instruction: Encoding (3/4)
• Use expanding opcode scheme:

– Extend the opcode for type-B instructions to 11 bits

 No wasted bits and result in a larger instruction set

CASS18 - ISA and RISCV

Type-A

Type-B

6 bits 5 bits 5 bits

opcode operand operand

11 bits 5 bits

opcode operand

 Questions:

 How do we distinguish between Type-A and Type-B?

 How many different instructions do we really have?

Second Attempt:
Expanding Opcode

Source acknowledgement: http://www.comp.nus.edu.sg/~cs2100/lect/cs2100-13b-ISA.pptx

3-Jul-18 42

Fixed Length Instruction: Encoding (4/4)
• What is the maximum number of instructions?

CASS18 - ISA and RISCV

 Reasoning:

1. For every 6-bit prefix (front-part) given to Type-B, we get 25 unique
patterns, e.g. [111111]XXXXX

2. So, we should minimize Type-A instruction and give as many 6-bit
prefixes as possible to Type-B

 1 Type-A instruction, 26-1 prefixes for Type-B

Type-A

Type-B

6 bits 5 bits 5 bits

opcode operand operand

11 bits 5 bits

opcode operand

Answer:

1 + (26 –1)  25

= 1 + 6332

= 2017

Source acknowledgement: http://www.comp.nus.edu.sg/~cs2100/lect/cs2100-13b-ISA.pptx

3-Jul-18 43

Why RISC-V

• Open and free

• Not domain-specific

• To keep things simple, flexible and extensible

• No baggage of legacy

3-Jul-18 CASS18 - ISA and RISCV 44

RISC-V ISA manuals

• User level – Volume 1

• Privileged level – Volume 2

3-Jul-18 CASS18 - ISA and RISCV 45

RISC-V ISA Design Principle-1

• Design Principle 1: Simplicity favours regularity

– Regularity makes implementation simpler

– Simplicity enables higher performance at lower
cost

• E.g. All arithmetic operations have same form

– Two sources and one destination

add a, b, c // a gets b + c

3-Jul-18 CASS18 - ISA and RISCV 46

RISC-V ISA Design Principle-2

• Design Principle 2: Smaller is faster
– memory is larger than no. of registers, use register

operands

• E.g. Arithmetic operations use register operands
and not direct memory

• most implementations have decoding the
operands on the critical path so only 32 registers

3-Jul-18 CASS18 - ISA and RISCV 47

RISC-V ISA Design Principle-3

• Design Principle 3: Make the common case
fast

– Small constants are common

– Immediate operand avoids a load instruction

• support for immediate operands,

• e.g. addi x22, x22, 4

3-Jul-18 CASS18 - ISA and RISCV 48

RISC-V ISA Design Principle-4

• Design Principle 4: Good design demands
good compromises
– Different formats complicate decoding, but allow

32-bit instructions uniformly

– Keep formats as similar as possible

• E.g. R-format and I-format, I-format versus S-
format

3-Jul-18 CASS18 - ISA and RISCV 49

Instruction Encoding

• Variable length encoding supported

• Base-ISA: 32-bits

3-Jul-18 CASS18 - ISA and RISCV 50

R-format Instruction

• Instruction fields

– opcode: operation code

– rd: destination register number

– funct3: 3-bit function code (additional opcode)

– rs1: the first source register number

– rs2: the second source register number

– funct7: 7-bit function code (additional opcode)

funct7 rs2 rs1 rdfunct3 opcode

7 bits 7 bits5 bits 5 bits 5 bits3 bits

3-Jul-18 CASS18 - ISA and RISCV 51

R-format Example

0000 0001 0101 1010 0000 0100 1011 0011two =

015A04B316

funct7 rs2 rs1 rdfunct3 opcode

7 bits 7 bits5 bits 5 bits 5 bits3 bits

0 21 20 90 51

0000000 10101 10100 01001000 0110011

3-Jul-18 CASS18 - ISA and RISCV 52

R-format Instructions

• Shift operations (logical and arithmetic)
– SLL, SRL, SRA (why no SLA ?)

• Arithmetic operations
– ADD, SUB

• Logical operations
– XOR, OR, AND (missing NOT ?)

• Compare operations
– SLT, SLTU (what is a good implementation of

SLTU?)

3-Jul-18 CASS18 - ISA and RISCV 53

I-format Instruction

• Immediate arithmetic and load instructions
– rs1: source or base address register number

– immediate: constant operand, or offset added to base address
• 2s-complement, sign extended

immediate rs1 rdfunct3 opcode

12 bits 7 bits5 bits 5 bits3 bits

3-Jul-18 CASS18 - ISA and RISCV 54

I-format Instructions

• Loads: LB, LH, LW, LBU, LHU (why not stores ?)

• Shifts: SLLI

• Arithmetic: ADDI (why not sub ?)

• Logical: XORI, ORI, ANDI

• Compare: SLTI, SLTIU

• System call and break , Sync threads, Counters

3-Jul-18 CASS18 - ISA and RISCV 55

S-format Instruction

• Different immediate format for store instructions
– rs1: base address register number

– rs2: source operand register number

– immediate: offset added to base address
• Split so that rs1 and rs2 fields always in the same place

• Stores: SB, SH, SW

rs2 rs1 funct3 opcode

7 bits 7 bits5 bits 5 bits 5 bits3 bits

imm[11:5] imm[4:0]

3-Jul-18 CASS18 - ISA and RISCV 56

U-format Instruction

• Why is this separate format needed

• How to load a 32 bit constant into a register ?
– Rd [31:12] == immediate[19:0]

– Rd [11:0] == 12’b0

• Load upper immediate (LUI)

• Add upper immediate to PC (AUIPC)

immediate rd opcode

20 bits 7 bits5 bits

3-Jul-18 CASS18 - ISA and RISCV 57

Other instruction formats

• What is missing ?

• NOP ?

• Is the above list complete ?

• Control flow instructions

3-Jul-18 CASS18 - ISA and RISCV 58

SB-format Instruction

• Why different immediate format for branch instructions

• What about imm[0] ?

• Branches: BEQ, BNE, BLT, BGE, BLTU, BGEU

• What about overflows ?

rs2 rs1 funct3 imm[11]

6 bits 7 bits5 bits 5 bits 4 bits3 bits

imm[10:5] imm[4:1]imm[12] opcode

1 bit1 bit

3-Jul-18 CASS18 - ISA and RISCV 59

UJ-format Instruction

• Why different immediate format for jump ?

• What about imm[0] ?

• JAL – jump and link

• What about JALR (jump and link return ?)
– I-type format, Why ?

imm[19:12] rd opcode

20 bits 7 bits5 bits

imm[11]imm[10:1]imm[20]

3-Jul-18 CASS18 - ISA and RISCV 60

Addressing Modes

3-Jul-18 CASS18 - ISA and RISCV 61

Types of Immediate

3-Jul-18 CASS18 - ISA and RISCV 62

• Most constants are small
– 12-bit immediate is sufficient

• For the occasional 32-bit constant

lui rd, constant
– Copies 20-bit constant to bits [31:12] of rd

– Extends bit 31 to bits [63:32]

– Clears bits [11:0] of rd to 0

0000 0000 0011 1101 00000000 0000 0000 0000

32-bit Constants

lui x19, 976 // 0x003D0

§
2
.1

0
 R

IS
C

-V
 A

d
d
re

s
s
in

g
 fo

r W
id

e
 Im

m
e
d
ia

te
s
 a

n
d
 A

d
d
re

s
s
e
saddi x19,x19,128 // 0x500

0000 0000 0000 0000 0000 0000 0000

0000 0000 0011 1101 00000000 0000 0000 0000 0000 0000 0000 0000 0101 0000 0000

3-Jul-18 CASS18 - ISA and RISCV 63

Branch Addressing
• Branch instructions specify

– Opcode, two registers, target address

• Most branch targets are near branch
– Forward or backward

• SB format:

 PC-relative addressing

 Target address = PC + immediate × 2

rs2 rs1 funct3 opcode
imm

[10:5]
imm
[4:1]

imm[12] imm[11]

3-Jul-18 CASS18 - ISA and RISCV 64

Jump Addressing
• Jump and link (jal) target uses 20-bit

immediate for larger range

• UJ format:

 For long jumps, eg, to 32-bit absolute
address

 lui: load address[31:12] to temp register

 jalr: add address[11:0] and jump to target

rd opcode

7 bits5 bits
imm[11]imm[20]

imm[10:1] imm[19:12]

3-Jul-18 CASS18 - ISA and RISCV 65

References

• RISC-V User-level ISA specification
https://riscv.org/specifications/

• Computer Organization and Design RISC-V
Edition, 1st Edition, The Hardware Software
Interface by David Patterson John Hennessy -
Chapter 2

3-Jul-18 CASS18 - ISA and RISCV 66

