
World of Predictors:
Branch/Value Predictors
CASS ‘18

Biswa@CSE-IITK
image courtesy: stan’s world

Basics First

I1:
I2:

I3:
I4:

I5:

t1 t2 t3 t4 t5 t6 t7 t8Time:
Inst

I6:

IR IR

IF (Fetch) ID (Decode) EX (ALU)

IR IR

MEM WB

BEQ R4,R3,25

SUB R1,R9,R8

AND R6,R5,R4

I1:
I2:

I3:

Sample Program

(ISA w/o branch

delay slot)
IF ID

IF

EX

ID

IF

MEM WB
EX stage

computes if
branch is

taken
If branch is taken, these
instructions MUST NOT

complete!

I-Cache

Welcome to Branch Prediction

I1:
I2:

I3:
I4:
I5:

t1 t2 t3 t4 t5 t6 t7 t8Time:
Inst

I6:

IR IR

IF (Fetch) ID (Decode) EX (ALU)

IR IR

MEM WB

IF ID

IF

EX

ID

IF

MEM WB
EX stage

computes
if branch is

taken
If we predicted incorrectly,

these instructions MUST NOT
complete!

We update the PC based on the outputs of the
branch predictor. If it is perfect, pipe stays full!
Dynamic Predictors: a cache of branch history

I-Cache

A control

instr?

Taken

or Not

Taken?

If taken,

where to?

What PC?

Branch

Predictor

Predictions

Branch Prediction

◼ Idea: Predict the next fetch address (to be used in the next cycle)

◼ Requires three things to be predicted at fetch stage:

❑ Whether the fetched instruction is a branch

❑ (Conditional) branch direction

❑ Branch target address (if taken)

◼ Observation: Target address remains the same for a conditional direct branch across
dynamic instances

❑ Idea: Store the target address from previous instance and access it with the PC

❑ Called Branch Target Buffer (BTB) or Branch Target Address Cache

Static Branch Prediction

◼ Always not-taken

❑ Simple to implement: no need for BTB, no direction prediction

❑ Low accuracy: ~30-40%

◼ Always taken

❑ No direction prediction

❑ Better accuracy: ~60-70%

◼ Backward branches (i.e. loop branches) are usually taken

◼ Backward taken, forward not taken (BTFN)

❑ Predict backward (loop) branches as taken, others not-taken

Static Branch Prediction

◼ Profile-based

❑ Idea: Compiler determines likely direction for each branch using profile run. Encodes
that direction as a hint bit in the branch instruction format.

+ Per branch prediction → accurate if profile is representative!

-- Requires hint bits in the branch instruction format

-- Accuracy depends on dynamic branch behavior:

TTTTTTTTTTNNNNNNNNNN → 50% accuracy

TNTNTNTNTNTNTNTNTNTN → 50% accuracy

-- Accuracy depends on the representativeness of profile input set

Dynamic Branch Prediction

◼ Idea: Predict branches based on dynamic information (collected at run-time)

◼ Advantages

+ Prediction based on history of the execution of branches

+ It can adapt to dynamic changes in branch behavior

+ No need for static profiling: input set representativeness problem goes away

◼ Disadvantages

-- More complex (requires additional hardware)

Simplest One: Last-Time Predictor

◼ Last time predictor

❑ Indicates which direction branch went last time it executed

TTTTTTTTTTNNNNNNNNNN → 90% accuracy

◼ Always mis-predicts the last iteration and the first iteration of a loop branch

❑ Accuracy for a loop with N iterations = (N-2)/N

+ Loop branches for loops with large number of iterations

-- Loop branches for loops will small number of iterations

TNTNTNTNTNTNTNTNTNTN → 0% accuracy

Last-time predictor CPI = [1 + (0.20*0.15) * 2] = 1.06 (Assuming 85% accuracy)

Last-Time

predict
taken

predict
not

taken

actually
not taken

actually
taken

actually
taken

actually
not taken

Last-time Predictor: The hardware

K bits of branch
instruction address

Index

Branch history table of 2K entries,
1 bit per entry

Use this entry to predict

0: predict not taken
1: predict taken

When branch direction resolved, go back into the table and
update entry: 0 if not taken, 1 if taken

①

②

③

Example: Predict!!

0xDC08: for(i=0; i < 100000; i++)
{

0xDC44: if((i % 100) == 0)
tick();

0xDC50: if((i & 1) == 1)
odd();

}

T

N

99.998%
Prediction

Rate

98.0%

0.0%

Change Predictor after 2 Mistakes

pred
taken

pred
taken

pred
!taken

pred
!taken

actually
taken

actually
taken actually

!taken

actually
!taken

actually
!taken

actually
!taken

actually
taken

actually
taken

“weakly
taken”

“strongly
taken”

“weakly
!taken”

“strongly
!taken”

Is This Enough
• Control flow instructions (branches) are frequent

• 15-25% of all instructions

• Problem: Next fetch address after a control-flow instruction is not determined after N
cycles in a pipelined processor

• N cycles: (minimum) branch resolution latency

• Stalling on a branch wastes instruction processing bandwidth (i.e. reduces IPC)

• How do we keep the pipeline full after a branch?

• Problem: Need to determine the next fetch address when the branch is fetched (to avoid a
pipeline bubble)

Is This Enough?

• Assume a pipeline with 20-cycle branch resolution latency

• How long does it take to fetch 100 5-instruction blocks (500 instructions)?

• Assume 1 out of 5 instructions is a branch, fetch width of 5, each 5 instruction block
ends in a branch

• 100% accuracy : 100 cycles (all instructions fetched on the correct path)

• No wasted work

• 99% accuracy: 100 (correct path) + 20 (wrong path) = 120 cycles

• 20% extra instructions fetched

• 98% accuracy: 100 (correct path) + 20 * 2 (wrong path) = 140 cycles

• 40% extra instructions fetched

• 95% accuracy: 100 (correct path) + 20 * 5 (wrong path) = 200 cycles

• 100% extra instructions fetched

Fetch Stage with BTB and Direction Prediction

target address

Direction predictor (2-bit counters)

Cache of Target Addresses (BTB: Branch Target Buffer)

Program
Counter

PC + inst size

taken?

Next Fetch
Address

hit?

Address of the
current branch

BTB (Why 30-bit Tag?)

0b0110[...]01001000

2 state

bits

Branch

History Table

(BHT)target address

Branch Target Buffer (BTB)

PC + 4 + Loop

30-bit address tag

0b0110[...]0010

Address of branch instruction

Drawn
as fully associative

to focus
on the essentials.

In real designs, always
direct-mapped.

At EX stage,
update BTB/BHT,
kill instructions,

if necessary,

Branch instruction

BNEZ R1 Loop

“Taken” or“Not Taken”“Taken” Address

30 bits

=

=

=

=

“Hit”

4096
entries ...

No History based Branch Predictor

k bit

2p

(PC >> 2) & (2p -1)

Bimodal predictor: Good for biased branches

Local History & Global History

• Local Behavior

What is the predicted direction of Branch A given the outcomes of previous instances of
Branch A?

• Global Behavior

What is the predicted direction of Branch Z given the outcomes of all* previous branches
A, B, …, X and Y?

* Number of previous branches tracked limited by the history length

Two Level Global Branch Prediction [MICRO ‘91]

◼ First level: Global branch history register (N bits)

❑ The direction of last N branches

◼ Second level: Table of saturating counters for each history entry

❑ The direction the branch took the last time the same history was seen

1 1 ….. 1 0

GHR

(global history register)

00 …. 00

00 …. 01

00 …. 10

11 …. 11

0 1

2 3

index

Pattern History Table (PHT)

previous one

• Table of saturating counters

GHR

PHT

1 1 ….. 1 0

00 …. 00

00 …. 01

00 …. 10

11 …. 11

m bit

k bit

2m

GHR per Branch (Gain/Loss?)

1 1 ….. 1 0

00 …. 00

00 …. 01

00 …. 10

11 …. 11

m bit k bit

2m2p

(PC >> 2) & (2p -1)

How large: k ?

BHT PHT

Mostly K=2, m =12, how large m?

Set of Branches – One Register

1 1 ….. 1 0

m bit

2p

(PC % 2p)

BHT

What if One Branch -> One History -> One PHT ?

1 1 ….. 1 0

00 …. 00

00 …. 01

00 …. 10

11 …. 11

m bit k bit

2p

(PC >> 2) & (2p -1)

BHT PHT

2m

Interference in Tables

• Sharing the PHTs between histories/branches leads to interference

• Different branches map to the same PHT entry and modify it

• Interference can be positive, negative, or neutral

• Interference can be eliminated by dedicating a PHT per branch

-- Too much hardware cost

• How else can you eliminate

or reduce interference?

GShare

1 1 ….. 1 0

00 …. 00

00 …. 01

00 …. 10

11 …. 11

m bit

k bit

2m

PC >>2 & 2m -1

For a given history and for a given branch (PC) counters are trained

Y & P Classification [MICRO 91]

GBHR

GPHT

GAg
GPHT

PABHR

PAg (SAg?)

PAPHT
PABHR

PAp

• GAg: Global History Register, Global History Table
• PAg: Per-Address History Register, Global History Table
• PAp: Per-Address History Register, Per-Address History Table

Tournament Predictor

Pred0 Pred1

Meta-

Predictor

Final Prediction

table of 2-/3-bit

counters

If meta-counter MSB = 0,

use pred0 else use pred1

State-of-the-Art

Spectre and Meltdown

https://meltdownattack.com/

What about Values? And Why Values?

What is value prediction?

1. Generate a speculative value (predict)

2. Consume speculative value (execute)

3. Verify speculative value (compare/recover)

Goal: performance, i.e. expose more ILP

A B

C

ILP = 1.3

D

A B C

Predict

D

Verify

ILP = 4

Branch vs Value
• Predict result values of executing instruction

• Comparison to Branch Prediction

• Branch Prediction

• Single bit prediction (taken or not-taken)

• Speed-up by solving control dependencies

• Small penalty when prediction fails

• Value Prediction

• Multi-bit (32 or 64) prediction

• Speed-up by solving data-dependencies

• Large penalty when prediction fails

Branch vs Value

• Most branch predictors are history-based

• Simple predictors (e.g. last two values) have high hit-ratio.

• SOTA predictor shows very high hit-ratio.

• Value prediction is much difficult

• Locality of result values exists but far less than that of branch

• About 50% executed instructions output last values and 80%
instructions output one of 16 latest results [Lipasti+,96]

• Much lower hit-ratio than branch predictors

Branch vs Value

• Miss penalty

• Latency of normal instruction < branch instruction

• Number of canceled instruction is much larger than
that in branch prediction

Branch
prediction

Value
prediction

<<

• Some of the slides are adapted and modified from Joel Emer, Arvind,
Yale Patt, John Kubiatowicz, Onur Mutlu, Krste Asanovic, Mattan Erez,
Rajeev Balasubramonian, and Mainak Chaudhuri, Mikko Lipasti, and
Kei Hiraki

ACKS

CASH @CASS ‘18:

Biswa@CSE-IITK
image courtesy: India Today

CACHES
@CASS ‘18:

Biswa@CSE-IITK
image courtesy: Intel

CACHES: WHERE ARE THEY

Interconnect

L3

Core 0 Core 1 Core 2 Core 3

L1
L2

L1
L2

L1
L2

L1
L2

Memory Wall Problem

Time

µProc 60%/year

DRAM
7%/year

1

10

100

1000
1

9
8

0

1
9

8
1

1
9

8
3

1
9

8
4

1
9

8
5

1
9

8
6

1
9

8
7

1
9

8
8

1
9

8
9

1
9

9
0

1
9

9
1

1
9

9
2

1
9

9
3

1
9

9
4

1
9

9
5

1
9

9
6

1
9

9
7

1
9

9
8

1
9

9
9

2
0

0
0

DRAM

CPU

1
9

8
2

Processor-Memory
Performance Gap:
(growing 50%/yr)

Pe
rf

o
rm

an
ce

WHY ARE THEY?

L3

L1 L2
4 Cycles

12 Cycles
30 Cycles D

R
A

M
 C

o
n

tr
.

C
o

re

Latency wall

Bandwidth wall

100s of Cycles

SILICON VIEW

CORE COUNT

BASICS FIRST: Size Affects Latency

Small
Memory

CPU

Big Memory

CPU

▪ Signals have further to travel
▪ Fan out to more locations

Memory Hierarchy

Small,
Fast Memory

(RF, SRAM)

• capacity: Register << SRAM << DRAM
• latency: Register << SRAM << DRAM
• bandwidth: on-chip >> off-chip

On a data access:
if data fast memory low latency access (SRAM)
if data fast memory high latency access (DRAM)

CPU
Big, Slow Memory

(DRAM)

A B

holds frequently used data

Access Patterns

Donald J. Hatfield, Jeanette Gerald: Program Restructuring for Virtual

Memory. IBM Systems Journal 10(3): 168-192 (1971)

Time

M
e

m
o

ry
 A

d
d

re
ss

 (
o

n
e

 d
o

t
p

e
r

ac
ce

ss
)

Examples

Address

Time

Instruction
fetches

Stack
accesses

Data
accesses

n loop iterations

subroutine
call

subroutine
return

argument access

scalar accesses

Locality of Reference

• Temporal Locality: If a location is referenced it is likely to be referenced
again in the near future.

• Spatial Locality: If a location is referenced it is likely that locations near
it will be referenced in the near future.

Again

Time

M
e

m
o

ry
 A

d
d

re
ss

 (
o

n
e

 d
o

t
p

e
r

ac
ce

ss
)

Spatial
Locality

Temporal
Locality

Inside a Cache

CACHEProcessor Main
Memory

Address Address

DataData

Address
Tag

Data Block

Data
Byte

Data
Byte

Data
Byte

100

304

6848

copy of main
memory
location 100

copy of main
memory
location 101

416

Placement Policy

0 1 2 3 4 5 6 70 1 2 3Set Number

Cache

Fully (2-way) Set Direct
Associative Associative Mapped
anywhere anywhere in only into

set 0 block 4
(12 mod 4) (12 mod 8)

0 1 2 3 4 5 6 7 8 9

1 1 1 1 1 1 1 1 1 1
0 1 2 3 4 5 6 7 8 9

2 2 2 2 2 2 2 2 2 2
0 1 2 3 4 5 6 7 8 9

3 3
0 1

Memory

Block Number

block 12
can be placed

Direct Mapped

Tag Data BlockV

=

Block
Offset

Tag Index

t
k b

t

HIT Data Word or Byte

2k

lines

In reality, tag-store is placed
separately

An Example

:

0x50

Valid Bit

:

Cache Tag

Byte 32

0

1

2

3

:

Cache Data

Byte 0Byte 1Byte 31 :

Byte 33Byte 63 :

Byte 992Byte 1023 : 31

Ex: 0x50 Ex: 0x00

Cache Index

0431

Cache Tag Byte Select

9

Ex: 0x01

High bits or Low bits

Tag Data BlockV

=

Block
Offset

Index

tk

b

t

HIT Data Word or Byte

2k

lines

Tag

Set-Associative

Tag Data BlockV

=

Block
Offset

Tag Index

t
k

b

HIT

Tag Data BlockV

Data
Word
or Byte

=

t

An Example

Cache Index

0431

Cache Tag Byte Select

8

Cache Data

Cache Block 0

Cache TagValid

:: :

Cache Data

Cache Block 0

Cache Tag Valid

: ::

Mux 01Sel1 Sel0

OR

Hit

Compare Compare

Cache Block

Fully-associative

Tag Data BlockV

=

B
lo

ck
O

ff
se

t
Ta

g

t

b

HIT

Data
Word
or Byte

=

=

t

An Example

:

Cache Data

Byte 0Byte 1Byte 31 :

Byte 32Byte 33Byte 63 :

Valid Bit

::

Cache Tag

04

Cache Tag (27 bits long) Byte Select

31

=

=

=

=

=

Ex: 0x01

What’s in Tag Store?

• Valid bit

• Tag

• Replacement policy bits

• Dirty bit?
• Write back vs. write through caches

Valid/Dirty/LRU Bit

::

Cache Tag

:

Cache Data

Byte 0Byte 1Byte 31 :

Byte 32Byte 33Byte 63 :

Block (line) Size ?

Word3Word0 Word1 Word2

Larger block size has distinct hardware advantages
• less tag overhead
• exploit fast burst transfers from DRAM
• exploit fast burst transfers over wide busses

What are the disadvantages of increasing block size?

block address offsetb

2b = block size a.k.a line size (in bytes)

Split CPU
address

b bits32-b bits

Tag 4 word block, b=2

Fewer blocks => more conflicts. Can waste bandwidth.

Block Size?

◼ Block size is the data that is associated with an address tag

❑ not necessarily the unit of transfer between hierarchies

◼ Too small blocks

❑ don’t exploit spatial locality well

❑ have larger tag overhead

◼ Too large blocks

❑ too few total # of blocks

◼ likely-useless data transferred

◼ Extra bandwidth/energy consumed

hit rate

block

size

Cache Size

◼ Cache size: total data (not including tag) capacity

❑ bigger can exploit temporal locality better

❑ not ALWAYS better

◼ Too large a cache adversely affects hit and miss latency

❑ smaller is faster => bigger is slower

❑ access time may degrade critical path

◼ Too small a cache

❑ doesn’t exploit temporal locality well

❑ useful data replaced often

◼ Working set: the whole set of data
the executing application references

❑ Within a time interval

hit rate

cache size

“working set”
size

Associativity

◼ How many blocks can map to the same index (or set)?

◼ Larger associativity

❑ lower miss rate, less variation among programs

❑ diminishing returns, higher hit latency

◼ Smaller associativity

❑ lower cost

❑ lower hit latency

◼ Especially important for L1 caches

◼ Power of 2 associativity? associativity

hit rate

Let’s Pause!!

CPU – Cache Interaction

PC addr inst

Instruction
Cache

0x4
Add

IR

D

bubble

hit?

PCen

Decode,
Register
Fetch

wdata

R

addr

wdata

rdata
Primary
Data
Cache

we
A

B

YYALU

MD1 MD2

Cache Refill Data from Lower Levels of
Memory Hierarchy

hit?

Stall entire
CPU on data
cache miss

To Memory Control

M
E

Design Issues: Unified vs Split
• Unified:

+ Dynamic sharing of cache space: no overprovisioning

-- Instructions and data can thrash each other

-- I and D are accessed in different places in the pipeline.

• First level caches are almost always split

• for the reasons above

• Second and higher levels are almost always unified

Reads are not Writes

• If a write enters the cache, what happens if

• There is a cache miss

• Does the cache need to bring in the cache line?

• There is a cache hit

• Does the cache need to write back to memory?

Write Policies

• Cache hit:

• write through: write both cache & memory

• Generally higher traffic but simpler pipeline & cache design

• write back: write cache only, memory is written only when the entry is evicted

• A dirty bit per line further reduces write-back traffic

• Must handle 0, 1, or 2 accesses to memory for each load/store

• Cache miss:

• no write allocate: only write to main memory

• write allocate (aka fetch on write): fetch into cache

• Common combinations:

• write through and no write allocate

• write back with write allocate

Write Buffers

Processor is not stalled on writes, and read misses can go ahead of write to main memory

Problem: Write buffer may hold updated value of location needed by a read miss

Simple solution: on a read miss, wait for the write buffer to go empty

Faster solution: Check write buffer addresses against read miss addresses, if no match,
allow read miss to go ahead of writes, else, return value in write buffer

Data Cache
Unified
L2 Cache

RF

CPU

Write
buffer

Evicted dirty lines for writeback cache
OR
All writes in writethrough cache

Performance: AMAT

Average memory access time (AMAT) = Hit time + Miss rate x Miss penalty

Average memory access time (AMAT) = Hit time + Miss rate1 x Miss penalty1

+ Miss rate2 x Miss penalty2

Improving Cache Performance

Average memory access time (AMAT) =
Hit time + Miss rate x Miss penalty

To improve performance:
• reduce the hit time
• reduce the miss rate
• reduce the miss penalty

Biggest cache that doesn’t increase hit time past 1 cycle
(approx 8-32KB in modern technology)

[design issues more complex with deeper pipelines and/or out-of-
order superscalar processors]

Cache Optimizations: Refer H&P

Non-blocking Cache

• Enable cache access when there is a pending miss

• Enable multiple misses in parallel
• Memory-level parallelism (MLP)

• generating and servicing multiple memory accesses in parallel

• Why generate multiple misses?

• Enables latency tolerance: overlaps latency of different misses

• How to generate multiple misses?
• Out-of-order execution, multithreading, prefetching

time

A
C

B

isolated miss parallel miss

Miss-Status Holding Registers

• Also called “miss buffer”

• Keeps track of
• Outstanding cache misses
• Pending load/store accesses that refer to the missing cache

block

• Fields of a single MSHR
• Valid bit
• Cache block address (to match incoming accesses)
• Control/status bits (prefetch, issued to memory, which

subblocks have arrived, etc)
• Data for each subblock
• For each pending load/store

• Valid, type, data size, byte in block, destination register or store buffer
entry address

MSHRs

MSHR in Action

• On a cache miss:
• Search MSHR for a pending access to the same block

• Found: Allocate a load/store entry in the same MSHR entry

• Not found: Allocate a new MSHR

• No free entry: stall

• When a subblock returns from the next level in memory
• Check which loads/stores waiting for it

• Forward data to the load/store unit

• Deallocate load/store entry in the MSHR entry

• Write subblock in cache or MSHR

• If last subblock, dellaocate MSHR (after writing the block in
cache)

The 3Cs

Compulsory:

first reference to a line (a.k.a. cold start misses)
• misses that would occur even with infinite cache

Capacity:

cache is too small to hold all data needed by the
program

• misses that would occur even under perfect
replacement policy

Conflict:

misses that occur because of collisions due to line-
placement strategy

• misses that would not occur with ideal full associativity

Cache Knobs and Performance

• Larger cache size
+ reduces capacity and conflict misses
- hit time will increase

• Higher associativity
+ reduces conflict misses
- may increase hit time

• Larger line size
+ reduces compulsory and capacity (reload) misses
- increases conflict misses and miss penalty

Cache Hierarchy

Core

L1

L2

L3

Designed for bandwidth

Designed for latency

Designed for capacity

Inclusive

B
ack

In
val

L1/L2

LLC

victim

fill

memory

fill

Core request

evict

Non-inclusive

L1/L2

LLC

fill

fill

Core request

victim

memory

Exclusive

L1/L2

LLC

victim

fill

fill

Core request

memory

victim

LLC: Shared or Private?

…

Interconnect

Cache (Private/Shared)

Core 0 Core 1 Core 2 Core 3 Core N-1

Application Behavior

Interconnect

Core 0 Core 1

L1/L2 L1/L2

LLC

Core-Cache Fitting

LLC Fitting/thrashing

Shared LLC

Shared LLC provides a good tradeoff for all kinds of apps.

Space unutilized by one app. can be utilized by other apps.

However bandwidth is an issue

1000 monkeys: one banana

Banked/Sliced NUCA

Core 0

L1

L2

Core 1

L1

L2

Core 2

L1

L2

Core 3

L1

L2

Ring(s)

S0 S1 S2 S3

Intel’s Sandybridge

Cache Replacement-101

◼ Think of each block in a set having a “priority”

❑ Indicating how important it is to keep the block in the cache

◼ Key issue: How do you determine/adjust block priorities?

◼ There are three key decisions in a set:

❑ Insertion, promotion, eviction (replacement)

◼ Insertion: What happens to priorities on a cache fill?
❑ Where to insert the incoming block, whether or not to insert the block

◼ Promotion: What happens to priorities on a cache hit?
❑ Whether and how to change block priority

◼ Eviction/replacement: What happens to priorities on a cache miss?
❑ Which block to evict and how to adjust priorities

Eviction (Replacement) Policy?

◼ Which block in the set to replace on a cache miss?

❑ Any invalid block first

❑ If all are valid, consult the replacement policy

◼ Random

◼ FIFO

◼ Least recently used (how to implement?)

◼ Not most recently used

◼ Least frequently used?

◼ Least costly to re-fetch?

❑ Why would memory accesses have different cost?

◼ Hybrid replacement policies

◼ Optimal replacement policy?

Belady

• Belady’s OPT
• Replace the block that is going to be referenced furthest in the

future by the program
• Belady, “A study of replacement algorithms for a virtual-

storage computer,” IBM Systems Journal, 1966.
• How do we implement this? Simulate?

• Is this optimal for minimizing miss rate?

• Is this optimal for minimizing execution time?
• No. Cache miss latency/cost varies from block to block!
• Two reasons: Remote vs. local caches and miss overlapping
• Qureshi et al. “A Case for MLP-Aware Cache

Replacement,“ ISCA 2006.

LRU - 101

Cache Eviction Policy: On a miss (block i), which block to evict
(replace) ?

Cache Insertion Policy: New block i inserted into MRU.

Cache Promotion Policy: On a future hit (block i), promote to MRU

a b c d e f g h

MRU LRU
SET A

i a b c d e f g

MRU LRU
SET A

LRU causes thrashing when working set > cache size

Access Patterns

Recency friendly (a1, a2,….ak, ak-1, ….a2, a1)N

Thrashing (a1, a2,….ak)N [k > cache

size]

Streaming (a1, a2,….a∞)N

Combination of above three

Types of Workloads – 4MB cache

Limitations of LRU

LRU exploits temporal locality

Streaming data (a1, a2, a3,….a∞):
No temporal locality,
No temporal reuse

Thrashing data (a1, a2, a3,….an) [n>c]
Temporal locality exists. However, LRU
fails to capture.

Still Miles to Go

References to non-temporal data (scans) discards frequently referenced
working set

LLCsize

Working set larger than the cache causes thrashing

miss miss miss missmiss

hit hit hit miss hit hitmiss missscan scan scan

Wsize

Still Miles to Go

hit hit hit hit hit m
is

s

m
is

s

m
is

s

m
is

s

m
is

s

Working set larger than the cache ➔
Preserve some of working set in the cache

Recurring scans (bursts of non-temporal data) ➔ Preserve frequently
referenced working set in the cache

hit hit hit hit hitscan scan scanhit hit hit

Wsize

LLCsize

RRIP – ISCA ‘10

h g f e d c b a

MRU position LRU position
RRP head

0 1 2 3 4 5 6 7
LRU chain

position stored
with each cache

block

RRP tail

RRP: Re-reference prediction

RRIP

RRP Head RRP Tail

Re-reference Prediction Value
RRPV (n=2): 3

‘distant’

2

‘far’

1

‘intermediate’

0

‘near-
immediate’

Qualitative Prediction:

h g f e d c b a

Intuition: New cache block will not be re-referenced soon.
Replaces block with distant RRPV.

Insert with RRPV=2, Evict with RRPV=3
promote blocks with RRPV=0.

Static RRIP (Single core) and Thread-Aware Dynamic RRIP
(SRRIP+BRRIP, multi-core, based on SDMs).

DRRIP

0
Imme-
diate

1
Inter-

mediate

2
far

3
distant

re-reference

No
Victim

insertion

re-reference

evictionre-reference

No
Victim

No
Victim

(SRRIP)
Scan-Resistant

insertion

(BRRIP)
Thrash-Resistant

Hardware Prefetching

What?
Latency-hiding technique - Fetches data before the core demands.

Why?
Off-chip DRAM latency has grown up to 400 to 800 cycles.

How?
By observing/predicting the demand access (LOAD/STORE) patterns.

Prefetch Engine

L2

Prefetcher

X+2

X+3

C
o

re X+3

❶

❷

❸

❹

❺
HIT

X+1

X

Prefetch Degree

Prefetch Degree: Number of prefetch requests to issue at a given time.

L2

L3/DRAM

Prefetcher

X

Demand
Access

X+1

X+2

X+1 X+2

X+1 X+3 X+4

Prefetch Distance

Prefetch Distance: How far ahead of the demand access stream are the
prefetch requests issued?

demand
access

Prefetch-distance

X Y

prefetch

Y = X + 4
Y = X + 8
Y = X + 16

Next-line Prefetcher

Next Line: Miss to cache block X , prefetch X+1. Degree=1, Distance=1

Works well for L1 Icache and L1 Dcache.

What About This?

Stride Prefetching

PC effective address

instruction tag previous address stride state

-

+

prefetch address

Bit Detailed

L2 Prefetcher

L3

MSHR Fill QWB Q

DRAM Ctrller

• Some of the slides are adapted and modified from Joel Emer, Arvind,
Yale Patt, John Kubiatowicz, Onur Mutlu, Krste Asanovic, Mattan Erez,
Rajeev Balasubramonian, and Mainak Chaudhuri

ACKS

