World of Predictors:

Branch/Value Predictors
CASS ‘18

Biswa@CcCSE-IITK

Basics First

R < je
IF (Fetch) ID (Decode) i EX(ALU) MEM : WB
< 0x4
+< IR >ILR >LR >R |—
<oy
Safiple Program Time: tl t2 t3 t4 t5 t6 t7 t8
(ISA w/o branch Inst - EX stage
delay slot) Il: IE i? @ MEM WB computes if
I1: BEQ R4,R3,25 ‘@ IF branch is
I2: AND R6,R5,R4 . taken
I3: SUB R1,R9,RS8 I4: If branch is taken, these
ig instructions MUST NOT

complete!

Welcome to Branch Prediction

IF (Fetch)

D (Decode) TCEXALUYTTTMEM WB~

>LR >R >TR[—

F*:::::g4u4
_ i

I e
PC

Addr Datph

Branch
Predictor

Predlctlons

A control
instr?
Take If taken

or Not where to?
Taken? What PC-?

We update the PC based on the outputs of the

branch predictor. If it is perfect, pipe stays full!
Dynamic Predictors: a cache of branch history

Time: t1 t2 t3 t4 t5 t6 +t7 t8
Inst - — EX stage

IF ID @ MEM WB computes

if branch is
I
taken
If we predicted incorrectly,
these instructions MUST NOT

complete!

Branch Prediction

= |ldea: Predict the next fetch address (to be used in the next cycle)

= Requires three things to be predicted at fetch stage:
Whether the fetched instruction is a branch
(Conditional) branch direction
Branch target address (if taken)

= Observation: Target address remains the same for a conditional direct branch across

dynamic instances
ldea: Store the target address from previous instance and access it with the PC

Called Branch Target Buffer (BTB) or Branch Target Address Cache

Static Branch Prediction

= Always not-taken
Simple to implement: no need for BTB, no direction prediction
Low accuracy: ~30-40%

= Always taken
No direction prediction
Better accuracy: ~60-70%
m Backward branches (i.e. loop branches) are usually taken

= Backward taken, forward not taken (BTFN)
Predict backward (loop) branches as taken, others not-taken

Static Branch Prediction

m Profile-based

Idea: Compiler determines likely direction for each branch using profile run. Encodes
that direction as a hint bit in the branch instruction format.

+ Per branch prediction = accurate if profile is representative!

-- Requires hint bits in the branch instruction format

-- Accuracy depends on dynamic branch behavior:
TTTTTTTTTTNNNNNNNNNN = 50% accuracy

TNTNTNTNTNTNTNTNTNTN = 50% accuracy

-- Accuracy depends on the representativeness of profile input set

Dynamic Branch Prediction

= Idea: Predict branches based on dynamic information (collected at run-time)

= Advantages
+ Prediction based on history of the execution of branches
+ It can adapt to dynamic changes in branch behavior

+ No need for static profiling: input set representativeness problem goes away

Disadvantages

-- More complex (requires additional hardware)

Simplest One: Last-Time Predictor

= Last time predictor
Indicates which direction branch went last time it executed
TTTTTTTTTTNNNNNNNNNN = 90% accuracy

= Always mis-predicts the last iteration and the first iteration of a loop branch

Accuracy for a loop with N iterations = (N-2)/N
+ Loop branches for loops with large number of iterations

-- Loop branches for loops will small number of iterations
TNTNTNTNTNTNTNTNTNTN = 0% accuracy

Last-time predictor CPI =[1 + (0.20*0.15) *2] =1.06 (Assuming 85% accuracy)

Last-Time

actually
taken
actually actually
not taken taken
actually

not taken

Last-time Predictor: The hardware

K bits of branch Branch history table of 2K entries,
instruction address 1 bit per entry

@
Use this entry to predict
\ Index - @ : Yy P

0: predict not taken
1: predict taken

®

When branch direction resolved, go back into the table and
update entry: O if not taken, 1 if taken

Example: Predict!!

o . 99.998%
OxDCO08: for(i=0; i < 100000; i++) prediction
{ cf Rate
OxDC44: if((i% 100)==0)
ick(');
OxDC50: if((i &1)==1)

odd();

Change Predictor after 2 Mistakes

actually actually “weakly
taken r ltaken taken”
“strongly pred pred
taken” taken
actually
actually taken afti?Hy
Itaken
taken actually “strongly
ltaken ltaken”
“weakly actually
ltaken” actually ltaken

taken

s This Enough

* Control flow instructions (branches) are frequent
e 15-25% of all instructions

 Problem: Next fetch address after a control-flow instruction is not determined after N
cycles in a pipelined processor

* N cycles: (minimum) branch resolution latency
e Stalling on a branch wastes instruction processing bandwidth (i.e. reduces IPC)

* How do we keep the pipeline full after a branch?

* Problem: Need to determine the next fetch address when the branch is fetched (to avoid a
pipeline bubble)

s This Enough?

* Assume a pipeline with 20-cycle branch resolution latency

* How long does it take to fetch 100 5-instruction blocks (500 instructions)?

 Assume 1 out of 5 instructions is a branch, fetch width of 5, each 5 instruction block
ends in a branch

e 100% accuracy : 100 cycles (all instructions fetched on the correct path)
* No wasted work
* 99% accuracy: 100 (correct path) + 20 (wrong path) = 120 cycles
e 20% extra instructions fetched
* 98% accuracy: 100 (correct path) + 20 * 2 (wrong path) = 140 cycles
* 40% extra instructions fetched
* 95% accuracy: 100 (correct path) + 20 * 5 (wrong path) = 200 cycles
* 100% extra instructions fetched

Fetch Stage with BTB and Direction Prediction

Direction predictor (2-bit counters)

2
R — taken: N
>J l
PC + inst size— NE}(t Fetch
Program , Address
hit?

Address of the
current branch

\

target address

Cache of Target Addresses (BTB: Branch Target Buffer)

BTB (Why 30-bit Tag?)

Address of branch instruction Branch instruction
0b0110[...]01001000 BNEZ R1 Loop
30 bi
| s | - BranCh Drawn
igfr?es Branch Target Buffer (BTB) HISt?g% Iable as fully associative
"+ 30-bit address tag target address () to focus
®_ on the essentials.
®_ In real designs, always
direct-mapped.
@ 0b0110[...]0010 | PC + 4 + Loop 2bS_ttate
S 1TSS

At EX stage,

update BTB/BHT,
- m y kill instructions,
it Taken” Address ! “Taken”lor“Not Taken” if necessary,

No History based Branch Predictor

kbit

(PC >> 2) &(2P-1}
2p

Bimodal predictor: Good for biased branches

Local History & Global History

e |Local Behavior

What is the predicted direction of Branch A given the outcomes of previous instances of
Branch A?

e Global Behavior

What is the predicted direction of Branch Z given the outcomes of all* previous branches
A B, .. XandY?

* Number of previous branches tracked limited by the history length

Two Level Global Branch Prediction [MICRO ‘91]

m First level: Global branch history register (N bits)
0 The direction of last N branches
m Second level: Table of saturating counters for each history entry
o The direction the branch took the last time the same history was seen

Pattern History Table (PHT)
0000
0001

previous on 00....10

GHR |
(global history register) index g -

1M1 ... 1

PHT

* Table of saturating counters

GHR

00
— 00

00

11 ...

00
01
10

11

k bit

A

v

Zm

GHR per Branch (Gain/Loss?)

m bit ~ khbit
V 0000
— 00 01
00....10

SIS) .

1M1 11
| BHT PHT

(PC>>2) & (2P-1)

How large: k ? Mostly K=2, m =12, how large m?

Set of Branches — One Register

m bit

2P
ol

BHT

(PC% 2P)

What if One Branch -> One History -> One PHT ?

bt kbit
' 00...00 | 14
—00...01 |
00...10 |
2 11 ... 1! -
1. 11
| " BHT PHT

(PC>>2) & (2P-1)

Interference in Tables

* Sharing the PHTs between histories/branches leads to interference
 Different branches map to the same PHT entry and modify it
* Interference can be positive, negative, or neutral

* Interference can be eliminated by dedicating a PHT per branch
-- Too much hardware cost

Instruction Stream

L] L]
* How else can you eliminate .
[]
d : t f ? [] Pattern History Table (PHT))
or reauce interrerencer Branch A’s lndex R . .
L 0000 0011 2-bit counter
P 2_bit counter e .
Branch A 2-bit counter
Prediction of Branch B
® [] may be altered due to
the outcome of Branch A
L J
@
Branch B’s Index
® 0000 0011
Branch B
[]
@
[]

Figure 2: Interference in a two-level predictor.

00
00

m bit
11.... 1
— 00
PC >>2 & 2m-1

For a given history and for a given branch (PC) counters are trained

11 ...

00
01
10

11

k bit

A

v

2m

Y & P Classification [MICRO 91]

munill

GBHR

GPHT

GAg

* PAg: Per-Address History Register, Global History Table

PABHR

GPHT

PABHR

PAg (SAg?)

* GAg: Global History Register, Global History Table

* PAp: Per-Address History Register, Per-Address History Table

N

PAp

PAPHT

Tournament Predictor

Program Clobal History
Counter |:|
— T table of 2-/3-bit
d -
predicl 112 Meta counters
Predictor
4,096 [*
x
2 bits
| N
Clobal
Prediction Prediction
Final Prediction
Final Prediction
If meta-counter MSB = 0,
use pred, else use pred,
Meta
Pr Pr
edo ed, Update
x X .
x v Inc
v x Dec
v’ v -

State-of-the-Art
State of the art: Neural vs. TAGE

1970: Flynn
1972: Riseman/Foster

* Neural: AMD, Samsung
* TAGE: Intel?, ARM?

1991: Two-level prediction e S|m||a nty

1993: Eshare, tournament

1996: Confidence estimation — Ma ny sources or "features"
1996: Vary history length

1998: Cache exceptions e Key difference: how to combine them

1979: Smith Predictor

2001: Neural predictor — TAGE: Override via partial match
2004: PPM

— Neural: integrate + threshold
2006: TAGE

* Every CBP is a cage match

— Andre Seznec vs. Daniel Jimenez
2016: Still TAGE vs Neural

Spectre and Meltdown

https://meltdownattack.com/

What about Values? And Why Values?
ILP = 1.3

IL

What is value prediction?
1. Generate a speculative value (predict)
2. Consume speculative value (execute)
3. Verify speculative value (compare/recover)

Goal: performance, i.e. expose more ILP

Branch vs Value

* Predict result values of executing instruction

 Comparison to Branch Prediction
* Branch Prediction
* Single bit prediction (taken or not-taken)
* Speed-up by solving control dependencies
* Small penalty when prediction fails

* Value Prediction
* Multi-bit (32 or 64) prediction
e Speed-up by solving data-dependencies
* Large penalty when prediction fails

Branch vs Value

-

* Most branch predictors are history-based
* Simple predictors (e.g. last two values) have high hit-ratio.
* SOTA predictor shows very high hit-ratio.

* Value prediction is much difficult
* Locality of result values exists but far less than that of branch

* About 50% executed instructions output last values and 80%
instructions output one of 16 latest results [Lipasti+,96]

* Much lower hit-ratio than branch predictors

Branch vs Value

* Miss penalty

Branch << Value
prediction prediction

* Latency of normal instruction < branch instruction

* Number of canceled instruction is much larger than
that in branch prediction

ACKS

* Some of the slides are adapted and modified from Joel Emer, Arvind,
Yale Patt, John Kubiatowicz, Onur Mutlu, Krste Asanovic, Mattan Erez,
Rajeev Balasubramonian, and Mainak Chaudhuri, Mikko Lipasti, and
Kei Hiraki

CASH @CASS “18:

Biswa@CSE-IITK

image courtesy: India Today

y Controter FH i Ekaiag
W BE pren gpse ‘ '

CACHES
@CASS “18:

Biswa@CSE-IITK

image courtesy: Intel

CACHES: WHERE ARE THEY

4 #A\ N Youl D N (E- N O ﬁ

., L2

~

/

Memory Wall Problem

UProc 60%/year

CPU

S
>. S§
o - < >
may <o

O < C o
v X O R
S 33 ™
 C /V
O:'TC oo
n.& c

7

v.o 3

= 0O
O.Qrbr

| W

oo 2

DRAM

1000

) o
o —
—

9JUeWw.lo)iad

000¢

| 6661
| 8661
1661
9661

5661

| v66T

€661

| 2661
| 1661
| 0661
6861 ;
8861

L861

| 9861
| G861
| 86T

€861

| 2861

1861
0861

Time

WHY ARE THEY?

SHNE NNTE T il LS M,..l ...uf M. MM I W
O yn N) Qs

43U0) INVHA

12 Cycles
30 Cycles

4 Cycles

100s of Cycles

Latency wall

Bandwidth wall

SILICON VIEW

I e

.
.

Il
e

e

CORE COUNT

40 Years of Microprocessor Trend Data

107

; ' : ’ Transistors
10° : i 5 A Sa 4 (thousands)
A S H ST W S -
: , A
: : : Ati : .
10° b B W - Single-Thread
: = PP ' o Performance

.....................................

10% fr T ;
IV g»".,[:. - T

10° - """""""" “‘::&e.;g

(SpecINT x 10°)
Frequency (MHZz)

: | Typical Power
2 [0 Tl R g ;-i‘.-- ------- -v;‘vv}v‘%&‘v‘%{‘% ----------- -1 (Watts)
] “ - = o he 4 y- vyy ,::.'i Number of
107 = = 2 oo A A r JA | Logical Cores
e v v YyV©V v wv : - vt
100 __‘... I ‘ ‘ "d‘.“.mm" —
i 1 I i
1970 1980 1990 2000 2010 2020

Year

Original data up to the year 2010 collected and plotted by M. Horowitz, F. Labonte, O. Shacham, K. Olukotun, L. Hammond, and C. Batten
New plot and data collected for 2010-2015 by K. Rupp

BASICS FIRST: Size Affects Latency

CPU

CPU

mall
emory

g Memory

= Signals have further to travel
= Fan out to more locations

Memory Hierarchy

®

CPU <:>

Small,

Fast Memory («—~

(RF, SRAM)

holds frequently used data

® capacity: Register << SRAM << DRAM
e latency: Register << SRAM << DRAM

e bandwidth: on-chip >> off-chip

On a data access:

Big, Slow Memory
(DRAM)

if data € fast memory = low latency access (SRAM)
if data ¢ fast memory = high latency access (DRAM)

Access Patterns

Memory Address (one dot per access)

8
1
|
i

R .y . - —— B

w
N
-T

’o.-.ul Tapra it - i - y - s

Sme\ 4WI0 WO Mahe !t s o @ERS

=
4
h

w
X
i
t

Rabh . » . g P 0" @ ~< e 13
PRanenniien ‘ll-l'llll "l‘llllllilﬂllu SO E [LD JUSHCIET R
X oS o T e Ty ‘ﬂ"\‘ﬂnw Senviaox
- pb]uL“r.;in "'v» 1Y ."-‘!' .r' 2 R
HE T v NN - . - - -
~¢ V4 ,. . -~ 1 4. -

-~ .. - m— e s

W
o

TR L R T

28 | Gt Ty v T R -- :
Gy R e T G e S

26 ve o . . . ‘ - <o asopmind —«-p—mnm--qmqqca

3 ‘(..,...._
i uﬁm uw:“ ; “‘:’?ﬂ'%'
W diVe

----- - - — - - - . —— 4-.-

4
T
'
|
|

.m.—o--“... - s b s b I i 4 S — -

b o= viu Py ity o a'g & W P —
22.! a : . !_.. » s et — PP P —
LN I S o e S M, s

20°F % ivumn ﬁ?””:?m“‘""' Moy pmzemsne] { .2 el | oo i N

‘ AL R L Al AL L L - - > -
proemt e et arcd e e e "-l-' ‘. ant -" *

- . "] P - . —- - A - ——— e o ‘

" i_tnmmr SRR 0 1195 10 Cht IO HON 11308 WL AR e e :

—*
Donald J. Hatfield, Jeanette Gerald: Program Restructuring for Virtual |1me
Memory. IBM Systems Journal 10(3): 168-192 (1971)

Examples

Address n loop iterations

Instruction
fetches

Stack
accesses

Data
accesses

T~

Qo Qo Qo Qo Qo °
Qo Qo Qo . Qo Qo -TT °
Qo Qo Qo Qo °
® Qo
Qo
subroutine subroutine
call
S s—return
Q Q Q Q Q o] o] (o} (o} (o)
Q Q@
(o) k / o e o (6] (0]
° argument access e © 0 o o

Time

Locality of Reference

* Temporal Locality: If a location is referenced it is likely to be referenced
again in the near future.

 Spatial Locality: If a location is referenced it is likely that locations near
it will be referenced in the near future.

Again

. Y L
36r Seeh A W Paghe --.-.-.’OF-—\WC\ '3

w
N

YO . (s . 0 g . » - # o @ . »
| O e e e L T T T R L LRl e e
S I LT LY YA R Ay P S TR e 20

-

ALk ' kA LTI 3 l’; _ s J._‘é:]

W
o

IR L Rl T o e
- -~

» .
-
i Tagh it arkn i i sy v byl

- .. O ‘.,..',,;;.,_ L R e e

PO g @ - ——— Y S S

ey pod - ‘4.8 W' 4 . .

. D ' 215D
IR T

6k - ' - RS TS np R e] e gt

T S—
- ¥ .

e —— - [A

1] 5
TR

ddress (one dot per access

A
|
|

—— - - — - T . ——

.,.
i
.

N
N
-

[—E e a e . - e . ' e
.
20' - e] WS PRI AP S A Al N MR AL e s danmr i B . . f

Memory

J FRBATMIN TR LR R S SR TR IS e sy e s pireeenes -
>|0'_. .,-“.-.t-l arcd vt et e ol C'“..O"‘ -l‘.

S TN AR P Attt HUE (il lllllll.llllll'r" !
-

18

Inside a Cache

N\ Address Address
Processor CACHE Main
| Memory
Data .- - Data
copy of mam copy of maln
memory . memory
Iocatio’[).wIOO \ location 101
100 |Bvte |Byte| | | -
// 304 Jove] | [|
Address 6343
Tag 416
[
Q -------- > Data Block

Placement Policy

Block Number0123456789éiééiéé;éé S%ggigé%égf
Memory
Set Number o 1 2 3 01234567
Cache
Fully (2-way) Set Direct
Associative Associative Mapped
anywhere anywhere in only into
block 12 set O block 4

can be placed (12 mod 4) (12 mod 8)

Direct Mapped

Tag

Index

Block
Offset

Tag

Data Block

)
ndi s tniiind
[v
u M

1
-

l'-l'-l'-E'-l'-

am s
") -
'.-l'-l'-l'-l'-.l_ B

et
.l-.l-.l-.l-.l-.l-:-l-.l-.l-ll-ll-l
n

Taran
A

" :_‘-

=
)
wn

HIT

“

Data Word or Byte

In reality, tag-store is placed
separately

An Example

31 9 4 0
Cache Tag A Cache Index Byte Select
Ex: O0x50 Ex: le01 Ex: 0x00
Valid Bit Cache Tag Cache Data
N ... Byte3L).... .1 Byte.l. .1 Bytel0. .1 O
: 050 Byte 63 Byte 33 | Byte 32| i+—
.. 5
3

Byte 1023 -+ Byte992 |31

High bits or Low bits

Index

Tag

Block
Offset

Tag

Data Block

at,
ndi s tniiind
[v
u: "

1
-

l'-l'-l'-E'-l'-

am s
" [
WL [

et
Py Ty T XL T
[

hanign
Ay

" :_‘-

=3
)
wn

HIT

“

Data Word or Byte

Set-Associative

b

Block
Offset

Index

Tag

Data Block

Data
Word

or Byte

/

HIT

V (Tag

Data Block

R

YRR

V |Tag

An Example

31 8 4 0
Cache Tag Cache Index | Byte Select
]
Valid Cache Tag Cache Data Cache Data Cache Tag Valid
Cache Block 0 Cache Block 0
N I R . (P I L 14,
I . R I
|) i |
[= N B I ——————————————————————————————— r ——————— —

> A\ sell l—gux O SeIO/_C

Hit l Cache Block

I
®
Py
PR

Fully-associative

V,Tag , Data Block

Tag

HIT

§ E Data
bt [NLER — Word
£b — or Byte

An Example

31 4 0
Cache Tag (27 bits long) I Byte Select
Ex: 0x01
Cache Tag Valid Bit ~ Cache Data \
—>@<— Byte 311 - - |Bytel |ByteO
> @: Byte 63 Byte 33| Byte 32

What’s in Tag Store?

* Valid bit
* Tag
* Replacement policy bits

 Dirty bit?
* Write back vs. write through caches

Cache Tag Valid/Dirty/LRU Bit
Cache Data
Byte 31 " |Bytel |Byte O
Byte 63 * | Byte 33| Byte 32

Block (line) Size ?

Tag WordO Word1 Word2 Word3 4 word block, b=2
Split CPU block address offset,
address
" VAN J
g Y
32-b bits b bits

2° = block size a.k.a line size (in bytes)

Larger block size has distinct hardware advantages

e |ess tag overhead
e exploit fast burst transfers from DRAM
e exploit fast burst transfers over wide busses

What are the disadvantages of increasing block size?
Fewer blocks => more conflicts. Can waste bandwidth.

Block Size?

= Block size is the data that is associated with an address tag
not necessarily the unit of transfer between hierarchies

= Too small blocks
don’t exploit spatial locality well hit rate
have larger tag overhead t

= Too large blocks
too few total # of blocks

m likely-useless data transferred

m Extra bandwidth/energy consumed

block
size

Cache Size

m Cache size: total data (not including tag) capacity

bigger can exploit temporal locality better
not ALWAYS better

= Too large a cache adversely affects hit and miss latency
smaller is faster => bigger is slower
access time may degrade critical path

m Too small a cache . hitrate

doesn’ t exploit temporal locality well

useful data replaced often W §
working set

Size
= Working set: the whole set of data
the executing application references

Within a time interval cache s}ze

Associativity

= How many blocks can map to the same index (or set)?

= Larger associativity
lower miss rate, less variation among programs
diminishing returns, higher hit latency
hit rate
= Smaller associativity
lower cost

lower hit latency
m Especially important for L1 caches

»

associativity

m Power of 2 associativity?

Let’s Pausell

CPU — Cache Interaction

0x4 ﬂ

5 addr
Decode, aadr
I bUbble}D—»I—» Register Eg?;aryrdata >
laddr inst Fetch Cache
| hits D » wdata hit? 1
PCen i T
Instruction MD1 MD?2
Cache y
d Stall entire
l CPU on data
| cache mi
To Memory Control /[\Sj\

Cache Refill Data from Lower Levels of
Memory Hierarchy

Design Issues: Unified vs Split

* Unified:
+ Dynamic sharing of cache space: no overprovisioning

-- Instructions and data can thrash each other
-- 1 and D are accessed in different places in the pipeline.

* First level caches are almost always split
 for the reasons above

* Second and higher levels are almost always unified

Reads are not Writes

* If a write enters the cache, what happens if
* There is a cache miss
* Does the cache need to bring in the cache line?
* There is a cache hit
* Does the cache need to write back to memory?

Write Policies

e Cache hit:
* write through: write both cache & memory
* Generally higher traffic but simpler pipeline & cache design
* write back: write cache only, memory is written only when the entry is evicted
* A dirty bit per line further reduces write-back traffic
* Must handle 0, 1, or 2 accesses to memory for each load/store

e Cache miss:
* no write allocate: only write to main memory
» write allocate (aka fetch on write): fetch into cache

e Common combinations:
e write through and no write allocate
e write back with write allocate

Write Buffers

e 7
CPU Unified
ttl Data Cache L2 Cache
Write
RF 1 g buffer —

Evicted dirty lines for writeback cache
OR
All writes in writethrough cache

Processor is not stalled on writes, and read misses can go ahead of write to main memory
Problem: Write buffer may hold updated value of location needed by a read miss
Simple solution: on a read miss, wait for the write buffer to go empty

Faster solution: Check write buffer addresses against read miss addresses, if no match,
allow read miss to go ahead of writes, else, return value in write buffer

Performance: AMAT

Average memory access time (AMAT) = Hit time + Miss rate x Miss penalty

Average memory access time (AMAT) = Hit time + Miss rate, x Miss penalty,
+ Miss rate, x Miss penalty,

Improving Cache Performance

Average memory access time (AMAT) =
Hit time + Miss rate x Miss penalty

To improve performance:
e reduce the hit time
e reduce the miss rate
e reduce the miss penalty

Biggest cache that doesn’t increase hit time past 1 cycle
(approx 8-32KB in modern technology)

[design issues more complex with deeper pipelines and/or out-of-
order superscalar processors]

Cache Optimizations: Refer H&P

Non-blocking Cache

* Enable cache access when there is a pending miss

* Enable multiple misses in parallel

* Memory-level parallelism (MLP)
e generating and servicing multiple memory accesses in parallel

* Why generate multiple misses?

isolated miss parallel miss

N\ C ¥
A N ¢/

, time

* Enables latency tolerance: overlaps latency of different misses

* How to generate multiple misses?
* QOut-of-order execution, multithreading, prefetching

Miss-Status Holding Registers

e Also called “miss buffer”

» Keeps track of
* Qutstanding cache misses
* Pending load/store accesses that refer to the missing cache
block
* Fields of a single MSHR
 Valid bit
e Cache block address (to match incoming accesses)

» Control/status bits (prefetch, issued to memory, which
subblocks have arrived, etc)

e Data for each subblock

* For each pending load/store

* Valid, type, data size, byte in block, destination register or store buffer
entry address

MSHRS

1 27 1 1 3 5 5
Valid | Block Address (Issued| |Valid| Type | Block Offset | Destination
Valid | Type | Block Offset | Destination
Valid | Type | Block Offset | Destination
Valid | Type | Block Offset | Destination

Load/store 0
Load/store 1

Load/store 2

Load/store 3

MSHR in Action

* On a cache miss:

e Search MSHR for a pending access to the same block
* Found: Allocate a load/store entry in the same MSHR entry
* Not found: Allocate a new MSHR
* No free entry: stall

* When a subblock returns from the next level in memory

* Check which loads/stores waiting for it
* Forward data to the load/store unit
* Deallocate load/store entry in the MSHR entry

 Write subblock in cache or MSHR

* If last subblock, dellaocate MSHR (after writing the block in
cache)

The 3Cs

Compulsory:

first reference to a line (a.k.a. cold start misses)
* misses that would occur even with infinite cache

Capacity:
cache is too small to hold all data needed by the

program

* misses that would occur even under perfect
replacement policy

Conflict:

misses that occur because of collisions due to line-
placement strategy

* misses that would not occur with ideal full associativity

Cache Knobs and Performance

* Larger cache size
+ reduces capacity and conflict misses
- hit time will increase

* Higher associativity
+ reduces conflict misses
- may increase hit time

* Larger line size
+ reduces compulsory and capacity (reload) misses
- increases conflict misses and miss penalty

Cache Hierarchy

{ Designed for bandwidth]

{ Designed for latency]

Inclusive

Core request

memory

L1/L2

victim

evict

[eaupyoeyg

Non-inclusive

Core request

L1/L2

LLC

victim

memory

Exclusive

Core request

fill

victim

memory

LLC: Shared or Private?
C N (£ N

\

J

Interconnect

Cache (Private/Shared)

Application Behavior

COre 0 Corel Core-Cache Fitting

{LLC Fitting/thrashing

LLC

\\\//

Shared LLC

Shared LLC provides a good tradeoff for all kinds of apps.

Space unutilized by one app. can be utilized by other apps.

However bandwidth is an issue ®

|
|
|
|

1000 monkeys: one banana

N~ — -

Banked/Sliced NUCA

Intel’s Sandybridge

Core decodes address

Read miss to get Slice ID

LLC slice O

LLC slice 1

LLC slice 2

LLC slice 3

Address range mapping
(lllustration Only)

} 0-15G

} 16-31G
} ©2-47G

} 48-63G

Cache Replacement-101

= Think of each block in a set having a “priority”

Indicating how important it is to keep the block in the cache
s Key issue: How do you determine/adjust block priorities?
= There are three key decisions in a set:

Insertion, promotion, eviction (replacement)

= Insertion: What happens to priorities on a cache fill?
Where to insert the incoming block, whether or not to insert the block

= Promotion: What happens to priorities on a cache hit?
Whether and how to change block priority
= Eviction/replacement: What happens to priorities on a cache miss?

Which block to evict and how to adjust priorities

Eviction (Replacement) Policy?

s Which block in the set to replace on a cache miss?

Any invalid block first

If all are valid, consult the replacement policy

Random
FIFO
Least recently used (how to implement?)
Not most recently used
Least frequently used?
Least costly to re-fetch?
Why would memory accesses have different cost?
Hybrid replacement policies
Optimal replacement policy?

Belady

* Belady’ s OPT

* Replace the block that is going to be referenced furthest in the
future by the program

* Belady, “A study of replacement algorithms for a virtual-
storage computer,” IBM Systems Journal, 1966.

* How do we implement this? Simulate?

* |s this optimal for minimizing miss rate?

* |s this optimal for minimizing execution time?
* No. Cache miss latency/cost varies from block to block!

* Two reasons: Remote vs. local caches and miss overlapping

e Qureshi et al. “A Case for MLP-Aware Cache
Replacement,” ISCA 2006.

LRU - 101

Cache Eviction Policy: On a miss (block i), which block to evict
(replace) ?

MRU LRU
SETA [apPlboPlcpPldPlerifPls il
{Cache Insertion Policy: New block i inserted into MRU. }

MRU LRU }

[sm -

{Cache Promotion Policy: On a future hit (block i), promote to MRU }

{LRU causes thrashing when working set > cache size }

Access Patterns

[Recency friendly (a,, a,,....a,, aj_1, «udy, @)V

'I_‘h]rashing (a, 2y, .y)N [k > cache
S1Z¢

Combination of above three

|
|
|
|

[Streaming (a, ay,...a)N

Types of Workloads —4MB cache

100

75

Miss Rate
L
[

0

561 % 9\
Cache Size (MB)

(a) Cache “Friendly” Workloads

I
I
I
|
I
|
X

VYD

| | | | |
VA3 5 61 99N v ks 61 %90 VY3 ks 6 89D
Cache Size (MB) Cache Size (MB) Cache Size (MB)
(b) Cache “Fitting” Workloads (c) Cache “Thrashing” Workloads (d) Streaming Workloads

Limitations of LRU

{LRU exploits temporal locality }

4 . N
Streaming data (a,, a,, a5,....a):
No temporal locality,

_No temporal reuse y

/Thrashing data (a,, a,, a5,....a,) [n>c] h

Temporal locality exists. However, LRU
fails to capture. y

Still Miles to Go

L LCsize M
Wsize

Working set larger than the cache causes thrashing

References to non-temporal data (scans) discards frequently referenced
working set

- -

Still Miles to Go

Working set larger than the cache =»
Preserve some of working set in the cache

M
M

o 00
Wsize
LLCsize

Recurring scans (bursts of non-temporal data) =» Preserve frequently
referenced working set in the cache

WA WA WA

RRIP —ISCA 10

RRP head RRP tail
MRBpositior RY L
v V

hMerlfrelldricrblla
B OXOIOIOXOIOICIO
with each cache
block

[RRP: Re-reference prediction }

RRIP

RRP Head RRP Tail
. hPlgPlfPlePldPcPlbMPaf
Re-reference Prediction Value _ _ _
RRPV (n=2): 0 1 : 2 ¢ 3
Qualitative Prediction: mear- * ‘intermediate’’ ‘far’* ‘distant’
immediate’

Intuition: New cache block will not be re-referenced soon.}
Replaces block with distant RRPV.

Insert with RRPV=2, Evict with RRPV=3 }

. promote blocks with RRPV=0.

N [/~

Static RRIP (Single core) and Thread-Aware Dynamic RRIP
(SRRIP+BRRIP, multi-core, based on SDMs).

DRRIP

(SRRIP) (BRRIP)
Scan-Resistant Thrash-Resistant
insertion insertion

re-reference

0 m \
Imme- _N(_) > Inter- Vi ,(c).
diate Victim w ictim

S/

/
re-reference re-reference

2\ No

far Victim

Hardware Prefetching

- D
What?
Latency-hiding technique - Fetches data before the core demands.
J
P
Why?

-

Off-chip DRAM latency has grown up to 400 to 800 cycles.

/

N

How?

By observing/predicting the demand access (LOAD/STORE) patterns.

Prefetch Engine

==

Prefetch Degree

{ Prefetch Degree: Number of prefetch requests to issue at a given time. J

Prefetch Distance

Prefetch Distance: How far ahead of the demand access stream are the
prefetch requests issued?

demand

0CCess prefetch

X Y ’
[| Y J

Prefetch-distance

Y=X+4

Y=X+8

Y=X+16

Next-line Prefetcher

{ Next Line: Miss to cache block X, prefetch X+1. Degree=1, Distance=1 J

{ Works well for .1 Icache and L1 Dcache. J

What About This?

Y=A+X?

Load RI = [R2] | A+S, X+S,Y+S,A+2S, X+2S5,Y+2S, ...

A, X, Y,
Load R3 = [R4] \J] \/\/ \./\/

(X-A) (X-A) (X-A)
Add R5,R1, R3 ¢

(Y-X) (Y-X)

Store [R6] = R5 &
(A+S-Y) (A+S-Y) (A+S-Y)

Stride Prefetching

PC

effective address

N4

instruction tag

previous address

stride

state

RER

prefetch address

Bit Detailed

Prefetcher

WBQ MSHR Fill Q

. TR Ty i e
L U L O BRI R LR B L T PO S R RN BN RY RS)
-
=¥ ‘ ‘ ‘ i
:: : ‘ W2 049~ DHOEL2sBeRel !
2 € : 3 IR b 1ZSAOEEIN 50 ¥ 5N
£ ¥ ¥ 3 V& WY e e o -] :
*cE § { i oy
i

ACKS

* Some of the slides are adapted and modified from Joel Emer, Arvind,
Yale Patt, John Kubiatowicz, Onur Mutlu, Krste Asanovic, Mattan Erez,
Rajeev Balasubramonian, and Mainak Chaudhuri

