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Overview 

 Introduction 

 Parallel Architecture 

 Parallelization Steps 

 Example  
Shared Address Space 

Distributed Address Space 
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Introduction 

Parallel Machine: a computer system with  

More than one processor 

Processors interacting with each other 

Typically solving a single problem  

 

 Multiprocessors 

 Multicores  

 Clusters  

 Network of Workstations  



Parallel Architecture: Shared Memory 
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UMA Architecture 
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NUMA Architecture   
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Distributed Memory Architecture 
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Distributed Memory Architecture 
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Hybrid Architecture 
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Parallel Architecture:  
Interconnection Network 

 Indirect interconnects: nodes are connected 

to interconnection medium, not directly to 

each other 

Shared bus, multiple bus, crossbar, MIN 

 Direct interconnects: nodes are connected 

directly to each other 

Topology: linear, ring, star, mesh, torus, 

hypercube 

Routing techniques: how the route taken by the 

message from source to destination is decided 
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Indirect Interconnects 
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Direct Interconnect Topologies 
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Space of Parallel Computing 

Programming Models 
 What programmer 

uses in coding applns. 

 Specifies synch. And 
communication. 

 Programming Models: 
 Shared address 

space, e.g., OpenMP 

 Message passing, 
e.g., MPI 

Parallel Architecture 
 Shared Memory 

 Centralized shared 
memory (UMA) 

 Distributed Shared 
Memory (NUMA) 

 Distributed Memory  
 A.k.a. Message 

passing 

 E.g., Clusters 
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Parallel Programming 

 Shared, global,  address space, hence 
called Shared Address Space 

 Any processor can directly reference any 
memory location 

Communication occurs implicitly as result of 
loads and stores 

 Message Passing Architecture 
Memory is private to each node  
 Processes communicate by messages 
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Definitions 

 

 Speedup =   
𝐸𝑥𝑒𝑐. 𝑇𝑖𝑚𝑒  𝑖𝑛  𝑈𝑛𝑖𝑃𝑟𝑜𝑐𝑒𝑠𝑜𝑟 

𝐸𝑥𝑒𝑐.𝑇𝑖𝑚𝑒 𝑖𝑛 𝒏 𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑜𝑟𝑠 
  

 

 Efficiency =  
𝑆𝑝𝑒𝑒𝑑𝑢𝑝 

𝒏
 

 

 Amdahl’s Law: 
For a program with s part sequential 

execution, speedup is limited by 1/s . 
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Understanding Amdahl’s Law 

Example: 2-phase calculation 
sweep over n x n grid and do some independent 

computation 
sweep again and add each value to global sum 
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Understanding Amdahl’s Law 

Execution time:  
Time for first phase = n2/p 
Second phase serialized at global variable = n2;  
Speedup = (2n2/(n2 + n2/p)) or at most 2 

 
Localize the sum in p procs and then do serial sum. 
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Definitions 

 Task 
Arbitrary piece of work in parallel computation 

Executed sequentially; concurrency is only across 
tasks 

Fine-grained versus coarse-grained tasks 

 Process (thread) 
Abstract entity that performs the tasks  

Communicate and synchronize to perform the tasks 

 Processor:   
Physical engine on which process executes 
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Tasks involved in Parallelizaton  

 

Identify work that can be done in parallel 
work includes computation, data access and I/O 

Partition work and perhaps data among 
processes 

Manage data access, communication and 
synchronization 
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Parallelizing Computation vs. Data 

 Computation is decomposed and assigned 
(partitioned) – task decomposition  
 Task graphs, synchronization among tasks 

 Partitioning Data is often a natural view 
too – data or domain decomposition 
Computation follows data: owner computes 

Grid example; data mining;  

 21 



Domain Decomposition: Example 

 Some computation 
performed on all elts. of 
the array 

 

   for i=1 to m 

  for  j= 1 to n 

     a[i,j] = a[i,j] + v[i] 

 22 



Steps in Creating a Parallel Program 

 Decomposition of computation into tasks 

 Assignment of tasks to processes 

 Orchestration of data access, communication, 
and synchronization. 

 Mapping processes to processors 
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Steps in Creating a Parallel Program 
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Decomposition 

 Identify concurrency  

 Break up computation into tasks to be divided among 
processes 
Tasks may become available dynamically 

No. of available tasks may vary with time 

 Goal:  Expose available parallelism  enough tasks to 
keep processes busy  
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Assignment 

 Specifies how to group tasks together for a process 
Balance workload, reduce communication and 

management cost 

 Structured approaches usually work well 
Code inspection (parallel loops) or understanding of 

application 
Static versus dynamic assignment 

 Both decomposition and assignment are usually 
independent of architecture or prog model 

But cost and complexity of using primitives may 
affect decisions 
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Orchestration 

 Goals 
Reduce cost of communication and synch.  

Preserve locality of data reference 

Schedule tasks to satisfy dependences early 

Reduce overhead of parallelism management 

 Choices depend on Programming Model, 
Communication abstraction, and efficiency of 
primitives  

 Architecture should provide appropriate 
primitives efficiently 
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Mapping 

 Two aspects: 
Which process runs on which particular processor? 

Will multiple processes run on same processor? 

 Space-sharing 
Machine divided into subsets, only one app at a time in a 

subset 

Processes can be pinned to processors, or left to OS 

 System allocation 

 Real world 
User specifies some aspects, system handles some 
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High-level Goals 

Table 2.1 Steps in the Parallelization Process and Their Goals

Step
Architecture-
Dependent? Major Perf ormance Goals

Decomposition Mostly  no Expose enough concurrency  but not too much

Assignment Mostly  no Balance workload

Reduce communication v olume

Orchestration Yes Reduce noninherent communication v ia data 

locality

Reduce communication and sy nchronization cost 

as seen by  the processor

Reduce serialization at shared resources

Schedule tasks to satisf y  dependences early

Mapping Yes Put related processes on the same processor if  

necessary

Exploit locality  in network topology

 29 



Example: Grid Solver 

 Gauss-Seidel (near-neighbor) sweeps to 
convergence 
interior n-by-n points of (n+2)-by-(n+2) updated in 

each sweep 
difference from previous value computed 
accumulate partial diffs into global diff at end of 

every sweep 
check  if it has converged   

 to within a tolerance parameter 

updates array and iterate 
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for i = 1 to n 

   for j = 1 to n 

   {   

      B[i,j] = 0.2 * (A[i,j] +     
 A[i-1,j] + A[i+1,j]+ 
 A[i,j-1] + A[i,j+1]); 

       diff += abs(B[i,j] – A[i,j]); 

    } 
for i = 1 to n 

   for j = 1 to n 

        A[i,j] = B[i,j] ; 

Grid solver (Simple Version) 

 31 



for i = 1 to n 

   for j = 1 to n 

   {   

      B[i,j] = 0.2 * (A[i,j] +     
 A[i-1,j] + A[i+1,j]+ 
 A[i,j-1] + A[i,j+1]); 

       diff += abs(B[i,j] – A[i,j]); 

    } 
for i = 1 to n 

   for j = 1 to n 

        A[i,j] = B[i,j] ; 

Decomposition & Assignment 

 Decomposition 
 Both i and j loops can be 

parallelized – no data 
dependences 

 Each grid point can be a 
task 

 To compute diff, some 
coordination would be 
required! 

 Assignment  
 Each grid point  

 Each row or column 

 A group of rows or columns  
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for i = 1 to n 

   for j = 1 to n 

   {   

      temp = A[i,j]; 

    A[i,j] = 0.2 * (A[i,j] +     
 A[i-1,j] + A[i+1,j]+ 
 A[i,j-1] + A[i,j+1]); 

       diff += abs(temp – A[i,j]); 

    } 

Grid solver (Update-in-place Version) 
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Decomposition & Assignment  

 Decomposition 
 Dependence on both     

i and j loops   

 Each grid point can be 
a task 

 Need point-to-point 
synchronization  -- 
Very expensive 

 Assignment  
 Grid points along 

diagonal can a task  

 Restructure loop and 
global synchronization 

 Load imbalance  
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Exploiting Application Knowledge 

Reorder grid traversal: red-
black ordering 
Red sweep and black sweep 

are each fully parallel:  
Global synch between them 

(conservative but convenient) 
Different  ordering of 

updates: may converge 
slower 
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Red-Black Parallel Version  

10.   procedure Solve (A)   /*solve the equation system*/ 
11.  float **A;  /*A is an (n + 2)-by-(n + 2) array*/ 
12.  begin 
13.  int i, j, done = 0; 
14.  float diff = 0, temp; 
15.  while (!done) do /*outermost loop over sweeps*/ 
16.       diff = 0;  /*initialize maximum difference to 0*/ 
17.       forall  i  1 to n  step 2 do/*sweep black points of grid*/ 
18.              forall j  2 to n+1 step 2 do 
19.       temp = A[i,j]; /*save old value of element*/ 
20.       A[i,j]  0.2 * (A[i,j] + A[i,j-1] + A[i-1,j] + 
21.    A[i,j+1] + A[i+1,j]); /*compute average*/ 
22.       diff += abs(A[i,j] - temp);    
23.                end forall 
24.       end forall 
24a      /* similarly forall loop for red points of grid */ 
25.       if (diff/(n*n) < TOL) then done = 1;   
26.  end while 
27.  end procedure   

Ensure  
computation for 
all black points 
are complete! 
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Red-Black Parallel Version (contd.) 

 Decomposition into elements: degree of concurrency 
n2/2; 2 global synchronizations per n2 computation  

 forall loop to express the parallelism. 

 Too fine-grain parallelism  group tasks to form a 
process. 

 Decompose into rows?   Computation vs. 
communication overhead? 
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Assignment 

Static assignment: decomposition into rows 
– Block assignment of rows: Rows i*(n/p), *(n/p) +1,  … ,     

(i+1)*(n/p) - 1  are  assigned to process i 

– Cyclic assignment of rows: process i is assigned rows i, 
i+p, ... 

 Dynamic assignment 
 get a row index, work on the row,  get a new row, …   

  Concurrency?  Volume of Communication? 
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Assignment (contd.) 
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Orchestration 

 Different for different programming 
models/architectures 
Shared address space 

 Naming: global addr. Space 
 Synch. through barriers and locks 

Distributed Memory /Message passing 
 Non-shared address space 
 Send-receive messages + barrier for synch. 
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Shared Memory Version 

1.  int n, nprocs; /* matrix: (n + 2-by-n + 2) elts.*/ 

2.  shared float **A, diff = 0; 

2a.  LockDec (diff_lock); 

2b.  BarrierDec (barrier1); 

3.  main() 

4.  begin 

5.   read(n) ;   /*read input parameter: matrix size*/ 

5a.      Read (nprocs);    

6.  A  g_malloc (a 2-d array of (n+2) x (n+2)  doubles); 

6a.     Create (nprocs -1, Solve, A); 

7.   initialize(A);  /*initialize the matrix A somehow*/ 

8.   Solve (A); /*call the routine to solve equation*/ 

8a.  Wait_for_End (nprocs-1); 

9.  end main 
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Shared Memory Version 

10.   procedure Solve (A)   /*solve the equation system*/ 
11.  float **A;  /*A is an (n + 2)-by-(n + 2) array*/ 
12.   begin 
13.  int i, j, pid, done = 0; 
14.  float mydiff, temp; 
14a.  mybegin  = 1 + (n/nprocs)*pid;  
14b.  myend = mybegin + (n/nprocs);    
15.  while (!done) do /*outermost loop over sweeps*/ 
16.            mydiff = diff = 0;  /*initialize local difference to 0*/    
16a.      Barrier (barrier1, nprocs); 
17.       for  i   mybeg to myend do/*sweep for all points of grid*/ 
18.              for j  1 to n do 
19.      temp = A[i,j]; /*save old value of element*/ 
20.      A[i,j]  0.2 * (A[i,j] + A[i,j-1] + A[i-1,j] + 
21.     A[i,j+1] + A[i+1,j]); /*compute average*/ 
22.      mydiff += abs(A[i,j] - temp);    
23.                  end for 
24.         end for 
24a    lock (diff_lock); 
24b.    diff += mydiff; 
24c    unlock (diff_lock); 
24d.        barrier (barrier1, nprocs);  
25.         if (diff/(n*n) < TOL) then done = 1;   
26.  end while 
27.  end procedure    44 

• No red-black, simply ignore 
dependences within sweep 

• Simpler asynchronous version, 
may take longer to converge! 



Shared Memory Version 

10.   procedure Solve (A)   /*solve the equation system*/ 
11.  float **A;  /*A is an (n + 2)-by-(n + 2) array*/ 
12.   begin 
13.  int i, j, pid, done = 0; 
14.  float mydiff, temp; 
14a.  mybegin  = 1 + (n/nprocs)*pid;  
14b.  myend = mybegin + (n/nprocs);    
15.  while (!done) do /*outermost loop over sweeps*/ 
16.            mydiff = diff = 0;  /*initialize local difference to 0*/    
16a.      Barrier (barrier1, nprocs); 
17.       for  i   mybeg to myend do/*sweep for all points of grid*/ 
18.              for j  1 to n do 
19.      temp = A[i,j]; /*save old value of element*/ 
20.      A[i,j]  0.2 * (A[i,j] + A[i,j-1] + A[i-1,j] + 
21.     A[i,j+1] + A[i+1,j]); /*compute average*/ 
22.      mydiff += abs(A[i,j] - temp);    
23.                  end for 
24.         end for 
24a    lock (diff_lock); 
24b.    diff += mydiff; 
24c    unlock (diff_lock); 
24d.        barrier (barrier1, nprocs);  
25.         if (diff/(n*n) < TOL) then done = 1;   
26.  end while 
27.  end procedure   

Why do we need 
this barrier? 

Why do we need 
this barrier? 

 44 

• No red-black, simply ignore 
dependences within sweep 

• Simpler asynchronous version, 
may take longer to converge! 



Shared Memory Version 

10.   procedure Solve (A)   /*solve the equation system*/ 
11.  float **A;  /*A is an (n + 2)-by-(n + 2) array*/ 
12.   begin 
13.  int i, j, pid, done = 0; 
14.  float mydiff, temp; 
14a.  mybegin  = 1 + (n/nprocs)*pid;  
14b.  myend = mybegin + (n/nprocs);    
15.  while (!done) do /*outermost loop over sweeps*/ 
16.            mydiff = diff = 0;  /*initialize local difference to 0*/    
16a.      Barrier (barrier1, nprocs); 
17.       for  i   mybeg to myend do/*sweep for all points of grid*/ 
18.              for j  1 to n do 
19.      temp = A[i,j]; /*save old value of element*/ 
20.      A[i,j]  0.2 * (A[i,j] + A[i,j-1] + A[i-1,j] + 
21.     A[i,j+1] + A[i+1,j]); /*compute average*/ 
22.      mydiff += abs(A[i,j] - temp);    
23.                  end for 
24.         end for 
24a    lock (diff_lock); 
24b.    diff += mydiff; 
24c    unlock (diff_lock); 
24d.        barrier (barrier1, nprocs);  
25.         if (diff/(n*n) < TOL) then done = 1;   
26.  end while 
27.  end procedure   

Reduce (mydif, diff); 

Why do we need 
this barrier? 

Why do we need 
this barrier? 
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• No red-black, simply ignore 
dependences within sweep 

• Simpler asynchronous version, 
may take longer to converge! 



Shared Memory Program : Remarks 

 done condition evaluated redundantly by all 

 Each process has private mydiff variable 

 Most interesting special operations are for 
synchronization provided by LOCK-UNLOCK around 
criticalsection 
Set of operations we want to execute atomically 

accumulations into shared diff have to be mutually 
exclusive 

 Good global reduction? 

 47 



Message Passing Version 

 Cannot declare A to be global shared array 
compose it from per-process private arrays 

usually allocated in accordance with the assignment of 
work -- owner-compute rule 

 process assigned a set of rows allocates them locally 

 Structurally similar to SPMD  Shared Memory 
Version 

 Orchestration different 
data structures and data access/naming 

communication 

synchronization 

 Ghost rows 
 48 



Data Layout and Orchestration 

Data partition allocated per processor 

Add ghost rows to hold boundary data 

Send edges to neighbors 

Receive into ghost rows 

Compute as in sequential program 

 49 



Message Passing Version 

1.  int n, nprocs; /* matrix: (n + 2-by-n + 2) elts.*/ 

2.  float **myA; 

3.  main() 

4.  begin 

5.   read(n) ;   /*read input parameter: matrix size*/ 

5a.      read (nprocs);    

/* 6. A  g_malloc (a 2-d array of (n+2) x (n+2) doubles); */ 

6a.     Create (nprocs -1, Solve, A); 

/* 7.  initialize(A); */ /*initialize the matrix A somehow*/ 

8.   Solve (A); /*call the routine to solve equation*/ 

8a.  Wait_for_End (nprocs-1); 

9.  end main 
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Message Passing Version 

10.  procedure Solve (A)   /*solve the equation system*/ 
11.  float A[n+2][n+2];  /*A is an (n + 2)-by-(n + 2) array*/ 
12.   begin 
13.  int i, j, pid, done = 0; 
14.  float mydiff, temp; 
14a. myend = (n/nprocs) ;  
14b. myA = malloc  (array of ((n/nprocs)+2) x (n+2) floats ); 
14c.     If (pid == 0) 
         Initialize (A) 
14d.     GetMyArray (A, myA);   /* get n x (n+2) elts. from proess 0 */   
15.  while (!done)  { /*outermost loop over sweeps*/ 
16.           mydiff = 0;  /*initialize local difference to 0*/    
16a.     if (pid != 0) then   
            SEND (&myA[1,0] , n*sizeof(float), (pid-1), row); 
16b.     if (pid != nprocs-1) then  
             SEND (&myA[myend,0], n*sizeof(float), (pid+1), row); 
16c.     if (pid != 0) then  
              RECEIVE (&myA[0,0], n*sizeof(float), (pid -1), row); 
16d.      if (pid != nprocs-1) then  
              RECEIVE (&myA[myend+1,0], n*sizeof(float), (pid -1), row); 
16e.      ...     ...     ... 
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Message Passing Version – Solver  
12. begin 
           …    …    …  
15.  while (!done) do /*outermost loop over sweeps*/ 
            …   …    …   
17.         for  i   1 to myend do/*sweep for all points of grid*/ 
18.              for j  1 to n do 
19.      temp = myA[i,j]; /*save old value of element*/ 
20.      myA[i,j]  0.2 * (myA[i,j] + myA[i,j-1] +myA[i-1,j] + 
21.    myA[i,j+1] + myA[i+1,j]);    /*compute average*/ 
22.      mydiff += abs(myA[i,j] - temp);    
23.                end for 
24.         end for 
24a        if (pid != 0) then 
24b.   SEND (mydif, sizeof (float), 0, DIFF); 
24c.   RECEIVE (done, sizeof(int), 0, DONE); 
24d.        else 
24e.              for k  1 to nprocs-1 do 
24f.         RECEIVE (tempdiff, sizeof(float), k   ,  DIFF); 
24g.         mydiff += tempdiff; 
24h.                    Endfor 
24i.     if (diff/(n*n) < TOL) then done = 1;  
24j.                 for k  1 to nprocs-1 do 
24k.          SEND (done, sizeof(float), k , DONE); 
26.  end while 
27. end procedure   
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Message Passing Version : Remarks 

 Communication in whole rows, not element at a time 

 Code  similar, but indices/bounds in local rather than global 
space 

 Synchronization through sends and receives  
Update of global diff and event synch for done condition 

Could implement locks and barriers with messages  

 Can use REDUCE and BROADCAST library calls to simplify 
code 

 Communication done at beginning of iteration, 
synchronization  only between neighboring processes 
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What is OpenMP? 

 What does OpenMP stands for? 
Open specifications for Multi Processing via 

collaborative work between interested parties from 
the hardware and software industry, government and 
academia.  

 OpenMP is an Application Program Interface 
(API) that may be used to explicitly direct 
multi-threaded, shared memory parallelism. 
API components:  

 Compiler Directives 
 Runtime Library Routines 
 Environment Variables 

 54 



OpenMP execution model 

Fork and Join: Master thread spawns a team 
of threads as needed 

Master thread Master thread 

Worker 
Thread 

Parallel 
Region 
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R
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OpenMP syntax 

 Most of the constructs of OpenMP are pragmas 
#pragma omp construct [clause [clause] …] 
An OpenMP construct applies to a structural block 

(one entry point, one exit point) 

 Categories of OpenMP constructs 
Parallel regions 
Work sharing 
Data Environment 
Synchronization 
Runtime functions/environment variables 

 In addition: 
Several omp_<something> function calls 
Several OMP_<something> environment variables  57 



Parallel Regions – Example 

 “omp parallel” pragma to indicates next structured 
block is executed by all threads (forks) 

 For example: 

double A[1000]; 

omp_set_num_threads(4); 

#pragma omp parallel 

{ 

 int ID = omp_get_thread_num(); 

     pooh(ID,A); 

} 

 Each thread calls pooh(ID,A) for ID = 0 to 3 

Each thread 

executes  a 

copy of the 

the code 
within the 

structured 

block 

Runtime function to 

request a certain 

number of threads 

Runtime function 

returning a thread ID 
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Parallel Regions – Another Example 

 Each thread executes the 
same code redundantly. 

 double A[1000]; 

omp_set_num_threads(4); 

 #pragma omp parallel 

{ 

         int ID = omp_get_thread_num(); 

    pooh(ID, A); 

} 

 printf(“all done\n”); omp_set_num_threads(4) 

pooh(1,A) pooh(2,A) pooh(3,A) 

printf(“all done\n”); 

pooh(0,A) 

double A[1000]; 

A single copy 

of A is shared 

between all 

threads. 

Threads wait  here  for all threads to finish 

before proceeding (i.e. a barrier) 
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Parallel Regions – Yet Another Example 

 Each thread executes the 
same code redundantly. 

  

omp_set_num_threads(4); 

 #pragma omp parallel 

{ 

         int ID = omp_get_thread_num(); 

    printf (“Hello World %d\n”, ID); 

} 

 printf(“All done\n”); omp_set_num_threads(4) 

printf  (... ,1) 

printf(“All done\n”); 

printf (... , 0) 

Prints in some 

order! 

Hello Word 0 

Hello World 2 

Hello World 3 

Hello World 1 

All Done  

Threads wait  here  for all threads to finish 

before proceeding (i.e. a barrier) 

printf  (... ,3) printf (... , 2) 
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OpenMP: Work Sharing Constructs 

Automatic 
parallelization of 
the for loop 

for (int i=0; i<N; i++) { a[i]=b[i]+c[i]; } 

#pragma omp parallel 

{ 

  int id = omp_get_thread_num(); 

  int Nthr = omp_get_num_threads(); 

  int istart = id*N/Nthr; iend = (id+1)*N/Nthr; 

  for (int i=istart; i<iend; i++) { a[i]=b[i]+c[i]; } 

} 

#pragma omp parallel 

#pragma omp for schedule(static) 

{ 

  for (int i=0; i<N; i++) { a[i]=b[i]+c[i]; } 

} 

(Semi) manual 
parallelization 

Sequential code 
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OpenMP: Work Sharing Constructs 

#pragma omp parallel 

#pragma omp for schedule(static) 

{ 

    for (int i=0; i<N; i++)  

     { a[i] =b[i]+c[i]; } 

} 

OpenMP* shortcut: Put the “parallel” and the 
work-share on the same line 

#pragma omp parallel for schedule(static) 

{ 

  for (int i=0; i<N; i++)  

  { a[i] =b[i]+c[i]; } 

} 
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OpenMP For construct: 
The Schedule Clause 

 The schedule clause affects how loop iterations 
are mapped onto threads 
 schedule(static [,csize]) 

 Deal-out blocks of iterations of size “csize” to each thread. 

 Default: chunks of approximately equal size, one to each thread 

 If more chunks than threads: assign in round-robin to the threads 
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Problems of schedule static for 

 Load balancing 
 If all the iterations execute at the same speed, the processors 

are used optimally 

 If some iterations are faster than others, some processors may 
get idle, reducing the speedup 

 We don’t always know the distribution of work, may need to re-
distribute dynamically 

 Granularity 
 Thread creation and synchronization takes time 

 Assigning work to threads on per-iteration resolution may take 
more time than the execution itself! 

 Need to coalesce the work to coarse chunks to overcome the 
threading overhead 

 Trade-off between load balancing and granularity! 
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OpenMP For construct: 
The Schedule Clause 

 Use dynamic schedule clause for load balancing 
 schedule(dynamic[,csize]) 

 Each thread grabs “csize” iterations from a queue until all 
iterations have been handled.  

 Threads receive chunk assignments dynamically 

 Default csize = 1  
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OpenMP Section :  
Work Sharing Construct  

 The Sections work-sharing construct gives a 
different structured block to each thread.   

#pragma omp parallel 

#pragma omp sections 

{ 

    #pragma omp section

 X_calculation(); 

    #pragma omp section 

 y_calculation(); 

    #pragma omp section 

 z_calculation(); 

} 

By default, there is a 

barrier at the end of the 

“omp sections”.  Use the 

“nowait” clause to turn off 

the barrier.  66 



PI Program: The sequential program 

static long num_steps = 100000; 

double step; 

void main () 

{   int i;    double x, pi, sum = 0.0; 

 

   step = 1.0/(double) num_steps; 

 

   for (i=1;i<= num_steps; i++){ 

    x = (i-0.5)*step; 

    sum = sum + 4.0/(1.0+x*x); 

   } 

   pi = step * sum; 

} 
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PI Program: OpenMP Version 
#include <omp.h> 

static long num_steps = 100000;    double step; 

#define NUM_THREADS 4 

void main () 

{     int i;  double x, pi, sum[NUM_THREADS] ={0}; 

       step = 1.0/(double) num_steps; 

      omp_set_num_threads(NUM_THREADS); 

      #pragma omp parallel  

     {   double x;     int id, i; 

   id = omp_get_thread_num(); 

                 #pragma omp for 

         for (i=id;i< num_steps; i++ ) 

        {       x = (i+0.5)*step; 

                 sum[id] += 4.0/(1.0+x*x); 

         } 

      } 

      for(i=0, pi=0.0;i<NUM_THREADS;i++)    

 pi += sum[i] * step; 

} 

Any synchronization 
required?  

 68 

Any synchronization 
required?  



OpenMP: Data Environment 

 Shared Memory programming model 
Most variables  are shared by default 

 Global variables are shared 
 File scope variables, static variables 

 Some variables  can be private 
Automatic variables inside the statement 

block 
Automatic variables in the called functions 
Variables can be explicitly declared as private: 

A local copy is created for each thread 
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Overriding Storage attributes 

 private: 
 A copy of the variable is 

created for each thread 
 There is no connection 

between the original 
variable and the private 
copies 

 firstprivate: 
 Same, but the initial value 

of the variable is copied 
from the main thread 

 lastprivate: 
 Same, but last sequential 

value of the variable is 
copied to the main thread 

int idx=1; 
int x = 10; 

#pragma omp parallel for   

         private (i,idx, x) 
for (i=0; i<n; i++) {  
    if (data[i] == x) 
         idx = i; x++; 
} 
printf (“%d\n, idx); 

int idx=1; 

int x = 10; 

#pragma omp parallel for  

     firsprivate(x) lastprivate(idx) 

for (i=0; i<n; i++) { 

   if (data[i]==x)  

         idx = i; x++;  

} 

printf (“%d\n, idx); 

x is not 

initialized 

Value of idx is 

not from the 

for loop 
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OpenMP Synchronization 

X = 0; 

#pragma omp parallel 

     X = X+1; 

 OpenMP assumes that the programmer knows 
what (s)he is doing 
Regions of code that are marked to run in parallel are 

independent 

Race conditions are possible, it is the programmer’s 
responsibility to insert protection 

 

What should be the result 

(assume 2 threads)? 

Could be 1 or 2!    
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Synchronization Mechanisms 

 Many of the existing mechanisms for 
shared programming 
Critical sections, Atomic updates 

Barriers 

Nowait (turn synchronization off!) 

Single/Master execution 

Ordered 

Flush (memory subsystem synchronization) 

Reduction  
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Critical Sections 

 #pragma omp critical [name] 
Standard critical section functionality 

 Critical sections are global in the program 
Can be used to protect a single resource in 

different functions 

 #pragma omp atomic 
update_statement 
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Reduction Motivation 

for (i=0; i<N; j++) { 
    sum = sum+a[i]*b[i]; 
} 

 How to parallelize this code? 
 
 
 

accessing it atomically is too expensive 
Have a private copy in each thread, then add them up 

 OpenMP clause Reduction: data environment 
clause that affects the way variables are shared: 

reduction (op : list) 

The variables in “list” must be shared in the enclosing 
parallel region 

 Use the reduction clause! 
#pragma omp parallel for reduction(+: sum) 
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OpenMP: Reduction Example  

#include <omp.h> 

#define NUM_THREADS 4 

void main () 

{   

      int i;     

      int A[1000], B[1000];  sum=0; 

      omp_set_num_threads(NUM_THREADS); 

      #pragma omp parallel for reduction(+:sum) private(tmp)  

      for (i=0; i< 1000; i++){ 

   tmp = A[i] * B[i] ; 

   sum = sum + tmp; 

      } 

} 
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Barrier synchronization 

 #pragma omp barrier 

 Performs a barrier synchronization between all 
the threads in a team at the given point. 

 Example: 
#pragma omp parallel 

{ 

  int result = heavy_computation_part1(); 

  #pragma omp atomic 

      sum += result; 

  #pragma omp barrier 

  heavy_computation_part2(sum); 

} 
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OpenMP: Implicit Synchronization 

 Barriers are implied on the following 
OpenMP constructs: 
end parallel 

end sections  

end single   

 Use NoWait to avoid synchronization 
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Controlling OpenMP behavior 

 omp_set_num_threads(int)   
 Control the number of threads used for parallelization   

 Must be called from sequential code 

 Also can be set by OMP_NUM_THREADS environment variable 

 omp_get_num_threads() 
 How many threads are currently available? 

 omp_get_thread_num() 

 omp_set_nested(int)/omp_get_nested() 
 Enable nested parallelism 

 omp_in_parallel() 
 Am I currently running in parallel mode? 

 omp_get_wtime() 
 A portable way to compute wall clock time 

 78 



79 

Message Passing Interface (MPI) 

Standard API 
Hides sw/hw details, portable, flexible 

Implemented as a library 

Your program 

MPI Library 

Custom 

SW 

Standard 

TCP/IP 

Standard 

network HW 
Custom 

HW 
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Making MPI Programs 

 Executable must be built by compiling program 
and linking with MPI library 
Header files (mpi.h) provide definitions and 

declarations 
 MPI commonly used in SPMD mode 
One executable 
Multiple instances of it executed 

concurrently 
 Implementations provide command to initiate 

execution of MPI processes (mpirun) 
Options: number of processes, which 

processors they are to run on 
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Key MPI Functions and Constants 

 MPI_Init (int *argc, char ***argv) 
 MPI_Finalize (void) 
 MPI_Comm_rank (MPI_COMM comm, int *rank) 
 MPI_Comm_size (MPI_COMM comm, int *size) 
 MPI_Send (void *buf, int count, MPI_Datatype 

datatype, int dest, int tag, MPI_Comm comm) 
 MPI_Recv (void *buf, int count, MPI_Datatype 

datatype, int source, int tag, MPI_Comm comm, 
MPI_Status *status) 

 MPI_CHAR, MPI_INT, MPI_LONG, MPI_BYTE 
 MPI_ANY_SOURCE, MPI_ANY_TAG 
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MPI: Matching Sends and Recvs 

 Sender always specifies destination and 
tag, Addr., size, type of the data 

 Receiver specifies source, tag,  location,  
size and type of data  

 Receive can specify for exact match or 
using wild cards (any source, any tag) 

 Send/Receive : Standard, Buffered, 
Synchronous and Ready modes 

 Send/Receive : Blocking or Non-Blocking 
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Parameters of Blocking Send 
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MPI Blocking and Non-blocking 

 Blocking - return after local actions 
complete, though the message transfer 
may not have been completed 

 Non-blocking - return immediately 
Assumes that data storage to be used for 

transfer is not modified by subsequent 
statements prior to being used for transfer 

Implementation dependent local buffer space 
is used for keeping message temporarily 
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MPI Group Communication 

 Until now: point-to-point messages 

 MPI also provides routines that sends messages 
to a group of processes or receives messages 
from a group of processes 
Not absolutely necessary for programming 

More efficient than separate point-to-point 
routines 

 Examples: broadcast, multicast, gather, scatter, 
reduce, barrier 
MPI_Bcast, MPI_Reduce, MPI_Allreduce, MPI_Alltoall, 

MPI_Scatter, MPI_Gather, MPI_Barrier 
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Broadcast 
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MPI Broadcast 

MPI_Bcast(void *buf, int count, 
MPI_Datatype datatype, int root, 
MPI_Comm Comm) 
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Example: MPI Pi Calculating Program 

MPI_Init (&argc, &argv); 
MPI_Comm_size( MPI_COMM_WORLD, &numprocs); 
MPI_Comm_rank( MPI_COMM_WORLD, &myid); 
MPI_Bcast(&nsteps,1,MPI_INT,0,  MPI_COMM_WORLD); 
h = 1.0 / (double) n; 
sum = 0.0; 
for (i = myid+1; i <= n; i += numprocs)  { 
  x = h * ((double) i - 0.5); 
  sum += (4.0 / (1.0 + x*x)); 
} 
mypi = h * sum; 
If (myrank !=0) 
     MPI_Send (&mypi, &pi, 1, MPI_DOUBLE, MPI_tag, MPI_COMM_WORLD); 
else 
    for (j = 1 ; j < num_procs; j++ ) { 
     MPI_Recv (&temp, &pi, 1, MPI_DOUBLE, MPI_tag, MPI_COMM_WORLD); 
     mypi += temp 
} 
MPI_Finalize(); 
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Example: MPI Pi Calculating Program 

MPI_Init (&argc, &argv); 
MPI_Comm_size( MPI_COMM_WORLD, &numprocs); 
MPI_Comm_rank( MPI_COMM_WORLD, &myid); 
MPI_Bcast(&nsteps,1,MPI_INT,0,  MPI_COMM_WORLD); 
h = 1.0 / (double) n; 
sum = 0.0; 
for (i = myid+1; i <= n; i += numprocs)  { 
  x = h * ((double) i - 0.5); 
  sum += (4.0 / (1.0 + x*x)); 
} 
mypi = h * sum; 
If (myrank !=0) 
     MPI_Send (&mypi, &pi, 1, MPI_DOUBLE, MPI_tag, MPI_COMM_WORLD); 
else 
    for (j = 1 ; j < num_procs; j++ ) { 
     MPI_Recv (&temp, &pi, 1, MPI_DOUBLE, MPI_tag, MPI_COMM_WORLD); 
     mypi += temp 
} 
MPI_Finalize(); 
 

 

MPI_Reduce(&mypi, &pi, 1, MPI_DOUBLE, MPI_SUM, 0,  
MPI_COMM_WORLD); 
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Beware of Deadlock 

 Suppose a process P i needs to be 
synchronized and to exchange data with 
process Pi-1 and process Pi+1 before 
continuing 

 Pi: 

  send(Pi-1); 

  send(Pi+1); 

  recv(Pi-1 ); 

  recv(Pi+1); 
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MPI Reduce 

MPI_Reduce ( void *sbuf, void *rbuf, int 
count, MPI_Datatype datatype, MPI_Op 
op, int root, MPI_Comm comm) 

 Operations: MPI_SUM, MPI_MAX 

 Reduction includes value coming from root 
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Reduce 


