
 1

Parallel Architectures &
Parallelization Principles

R. Govindarajan

CSA/SERC, IISc

govind@iisc.ac.in

Overview

 Introduction

 Parallel Architecture

 Parallelization Steps

 Example
Shared Address Space

Distributed Address Space

 2

Acknowledgments:

Slides for this tutorial are taken from presentation materials

available with the book “Parallel Computing Architecture: A

Hardware/Software Approach” (Culler, Singh and Gupta,

Morgan Kaufmann Pub.) and the associated course material.

They have been suitably adapted.

3

Introduction

Parallel Machine: a computer system with

More than one processor

Processors interacting with each other

Typically solving a single problem

 Multiprocessors

 Multicores

 Clusters

 Network of Workstations

Parallel Architecture: Shared Memory

M

Network

° ° °

Centralized Shared Memory

M M

$

P

$

P

$

P
° ° °

Network

Distributed Shared Memory

M

$

P

M

$

P

° ° °

 4

© RG@SERC,IISc 5

M

Network

° ° °

Centralized Shared Memory

M M

$

P

$

P

$

P
° ° °

Network

Distributed Shared Memory

M

$

P

M

$

P

° ° °

Uniform Memory

Access (UMA)

Architecture

Non-Uniform Memory

Access (NUMA)

Architecture

Shared Memory Architecture

© RG@SERC,IISc 6

UMA Architecture

L2-Cache

C0 C2

L1$ L1$

L2-Cache

C4 C6

L1$ L1$

L2-Cache

C1 C3

L1$ L1$

L2-Cache

C5 C7

L1$ L1$

Memory

© RG@SERC,IISc 7

NUMA Architecture

L2$

C0 C2

L1$ L1$

C4 C6

L1$ L1$

L2$ L2$ L2$

L3-Cache

IMC QPI

L2$

C1 C3

L1$ L1$

C5 C7

L1$ L1$

L2$ L2$ L2$

L3-Cache

QPI IMC

Memory Memory

Distributed Memory Architecture

Network

M $

P ° ° °

M $

P

M $

P

 8

Distributed Memory Architecture

Network

M $

P ° ° °

M $

P

M $

P Proc.

Node

Proc.

Node

Proc.

Node

 8

Hybrid Architecture

Memory Memory NIC NIC

Memory Memory NIC NIC

N/W

Switch

Node 0 Node 1

Node 3 Node 2

 10

11

Parallel Architecture:
Interconnection Network

 Indirect interconnects: nodes are connected

to interconnection medium, not directly to

each other

Shared bus, multiple bus, crossbar, MIN

 Direct interconnects: nodes are connected

directly to each other

Topology: linear, ring, star, mesh, torus,

hypercube

Routing techniques: how the route taken by the

message from source to destination is decided

12

Indirect Interconnects

Shared bus
Multiple bus

Crossbar switch

Multistage Interconnection Network

2x2 crossbar

13

Direct Interconnect Topologies

Linear
Ring

Star

Mesh
2D

Hypercube (binary n-cube)

n=2 n=3

Torus

Space of Parallel Computing

Programming Models
 What programmer

uses in coding applns.

 Specifies synch. And
communication.

 Programming Models:
 Shared address

space, e.g., OpenMP

 Message passing,
e.g., MPI

Parallel Architecture
 Shared Memory

 Centralized shared
memory (UMA)

 Distributed Shared
Memory (NUMA)

 Distributed Memory
 A.k.a. Message

passing

 E.g., Clusters

 14

Parallel Programming

 Shared, global, address space, hence
called Shared Address Space

 Any processor can directly reference any
memory location

Communication occurs implicitly as result of
loads and stores

 Message Passing Architecture
Memory is private to each node
 Processes communicate by messages

 15

Definitions

 Speedup =
𝐸𝑥𝑒𝑐. 𝑇𝑖𝑚𝑒 𝑖𝑛 𝑈𝑛𝑖𝑃𝑟𝑜𝑐𝑒𝑠𝑜𝑟

𝐸𝑥𝑒𝑐.𝑇𝑖𝑚𝑒 𝑖𝑛 𝒏 𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑜𝑟𝑠

 Efficiency =
𝑆𝑝𝑒𝑒𝑑𝑢𝑝

𝒏

 Amdahl’s Law:
For a program with s part sequential

execution, speedup is limited by 1/s .

 16

Understanding Amdahl’s Law

Example: 2-phase calculation
sweep over n x n grid and do some independent

computation
sweep again and add each value to global sum

co
n

cu
rr

en
cy

1

n2 n2

(a) Serial

Time

 17

Understanding Amdahl’s Law

Execution time:
Time for first phase = n2/p
Second phase serialized at global variable = n2;
Speedup = (2n2/(n2 + n2/p)) or at most 2

Localize the sum in p procs and then do serial sum.

Time

p

1

p
n

2
/p

n
2
/p

co
n

cu
rr

en
cy

(c) Parallel

n2/p n2

p

1 co
n

cu
rr

en
cy

(b) Naïve Parallel

Time

 18

Definitions

 Task
Arbitrary piece of work in parallel computation

Executed sequentially; concurrency is only across
tasks

Fine-grained versus coarse-grained tasks

 Process (thread)
Abstract entity that performs the tasks

Communicate and synchronize to perform the tasks

 Processor:
Physical engine on which process executes

 19

Tasks involved in Parallelizaton

Identify work that can be done in parallel
work includes computation, data access and I/O

Partition work and perhaps data among
processes

Manage data access, communication and
synchronization

 20

Parallelizing Computation vs. Data

 Computation is decomposed and assigned
(partitioned) – task decomposition
 Task graphs, synchronization among tasks

 Partitioning Data is often a natural view
too – data or domain decomposition
Computation follows data: owner computes

Grid example; data mining;

 21

Domain Decomposition: Example

 Some computation
performed on all elts. of
the array

 for i=1 to m

 for j= 1 to n

 a[i,j] = a[i,j] + v[i]

 22

Steps in Creating a Parallel Program

 Decomposition of computation into tasks

 Assignment of tasks to processes

 Orchestration of data access, communication,
and synchronization.

 Mapping processes to processors

 23

Steps in Creating a Parallel Program

P0

Tasks Processes Processors

P1

P2 P3

p0 p1

p2 p3

p0 p1

p2 p3

Partitioning

Sequential
computation

Parallel
program

A
s
s
i
g
n
m
e
n
t

D
e
c
o
m
p
o
s
i
t
i
o
n

M
a
p
p
i
n
g

O
r
c
h
e
s
t
r
a
t
i
o
n

 24

Decomposition

 Identify concurrency

 Break up computation into tasks to be divided among
processes
Tasks may become available dynamically

No. of available tasks may vary with time

 Goal: Expose available parallelism  enough tasks to
keep processes busy

 25

Assignment

 Specifies how to group tasks together for a process
Balance workload, reduce communication and

management cost

 Structured approaches usually work well
Code inspection (parallel loops) or understanding of

application
Static versus dynamic assignment

 Both decomposition and assignment are usually
independent of architecture or prog model

But cost and complexity of using primitives may
affect decisions

 26

Orchestration

 Goals
Reduce cost of communication and synch.

Preserve locality of data reference

Schedule tasks to satisfy dependences early

Reduce overhead of parallelism management

 Choices depend on Programming Model,
Communication abstraction, and efficiency of
primitives

 Architecture should provide appropriate
primitives efficiently

 27

Mapping

 Two aspects:
Which process runs on which particular processor?

Will multiple processes run on same processor?

 Space-sharing
Machine divided into subsets, only one app at a time in a

subset

Processes can be pinned to processors, or left to OS

 System allocation

 Real world
User specifies some aspects, system handles some

 28

High-level Goals

Table 2.1 Steps in the Parallelization Process and Their Goals

Step
Architecture-
Dependent? Major Perf ormance Goals

Decomposition Mostly no Expose enough concurrency but not too much

Assignment Mostly no Balance workload

Reduce communication v olume

Orchestration Yes Reduce noninherent communication v ia data

locality

Reduce communication and sy nchronization cost

as seen by the processor

Reduce serialization at shared resources

Schedule tasks to satisf y dependences early

Mapping Yes Put related processes on the same processor if

necessary

Exploit locality in network topology

 29

Example: Grid Solver

 Gauss-Seidel (near-neighbor) sweeps to
convergence
interior n-by-n points of (n+2)-by-(n+2) updated in

each sweep
difference from previous value computed
accumulate partial diffs into global diff at end of

every sweep
check if it has converged

 to within a tolerance parameter

updates array and iterate

 30

for i = 1 to n

 for j = 1 to n

 {

 B[i,j] = 0.2 * (A[i,j] +
 A[i-1,j] + A[i+1,j]+
 A[i,j-1] + A[i,j+1]);

 diff += abs(B[i,j] – A[i,j]);

 }
for i = 1 to n

 for j = 1 to n

 A[i,j] = B[i,j] ;

Grid solver (Simple Version)

 31

for i = 1 to n

 for j = 1 to n

 {

 B[i,j] = 0.2 * (A[i,j] +
 A[i-1,j] + A[i+1,j]+
 A[i,j-1] + A[i,j+1]);

 diff += abs(B[i,j] – A[i,j]);

 }
for i = 1 to n

 for j = 1 to n

 A[i,j] = B[i,j] ;

Decomposition & Assignment

 Decomposition
 Both i and j loops can be

parallelized – no data
dependences

 Each grid point can be a
task

 To compute diff, some
coordination would be
required!

 Assignment
 Each grid point

 Each row or column

 A group of rows or columns

 34

for i = 1 to n

 for j = 1 to n

 {

 temp = A[i,j];

 A[i,j] = 0.2 * (A[i,j] +
 A[i-1,j] + A[i+1,j]+
 A[i,j-1] + A[i,j+1]);

 diff += abs(temp – A[i,j]);

 }

Grid solver (Update-in-place Version)

 35

Decomposition & Assignment

 Decomposition
 Dependence on both

i and j loops

 Each grid point can be
a task

 Need point-to-point
synchronization --
Very expensive

 Assignment
 Grid points along

diagonal can a task

 Restructure loop and
global synchronization

 Load imbalance

 36

Exploiting Application Knowledge

Reorder grid traversal: red-
black ordering
Red sweep and black sweep

are each fully parallel:
Global synch between them

(conservative but convenient)
Different ordering of

updates: may converge
slower

 37

Red-Black Parallel Version

10. procedure Solve (A) /*solve the equation system*/
11. float **A; /*A is an (n + 2)-by-(n + 2) array*/
12. begin
13. int i, j, done = 0;
14. float diff = 0, temp;
15. while (!done) do /*outermost loop over sweeps*/
16. diff = 0; /*initialize maximum difference to 0*/
17. forall i  1 to n step 2 do/*sweep black points of grid*/
18. forall j  2 to n+1 step 2 do
19. temp = A[i,j]; /*save old value of element*/
20. A[i,j]  0.2 * (A[i,j] + A[i,j-1] + A[i-1,j] +
21. A[i,j+1] + A[i+1,j]); /*compute average*/
22. diff += abs(A[i,j] - temp);
23. end forall
24. end forall
24a /* similarly forall loop for red points of grid */
25. if (diff/(n*n) < TOL) then done = 1;
26. end while
27. end procedure

Ensure
computation for
all black points
are complete!

 38

Red-Black Parallel Version (contd.)

 Decomposition into elements: degree of concurrency
n2/2; 2 global synchronizations per n2 computation

 forall loop to express the parallelism.

 Too fine-grain parallelism  group tasks to form a
process.

 Decompose into rows? Computation vs.
communication overhead?

 39

Assignment

Static assignment: decomposition into rows
– Block assignment of rows: Rows i*(n/p), *(n/p) +1, … ,

(i+1)*(n/p) - 1 are assigned to process i

– Cyclic assignment of rows: process i is assigned rows i,
i+p, ...

 Dynamic assignment
 get a row index, work on the row, get a new row, …

 Concurrency? Volume of Communication?

 40

Assignment (contd.)

P0

P1

P2

P3

P0

P0

 41

Orchestration

 Different for different programming
models/architectures
Shared address space

 Naming: global addr. Space
 Synch. through barriers and locks

Distributed Memory /Message passing
 Non-shared address space
 Send-receive messages + barrier for synch.

 42

Shared Memory Version

1. int n, nprocs; /* matrix: (n + 2-by-n + 2) elts.*/

2. shared float **A, diff = 0;

2a. LockDec (diff_lock);

2b. BarrierDec (barrier1);

3. main()

4. begin

5. read(n) ; /*read input parameter: matrix size*/

5a. Read (nprocs);

6. A  g_malloc (a 2-d array of (n+2) x (n+2) doubles);

6a. Create (nprocs -1, Solve, A);

7. initialize(A); /*initialize the matrix A somehow*/

8. Solve (A); /*call the routine to solve equation*/

8a. Wait_for_End (nprocs-1);

9. end main

 43

Shared Memory Version

10. procedure Solve (A) /*solve the equation system*/
11. float **A; /*A is an (n + 2)-by-(n + 2) array*/
12. begin
13. int i, j, pid, done = 0;
14. float mydiff, temp;
14a. mybegin = 1 + (n/nprocs)*pid;
14b. myend = mybegin + (n/nprocs);
15. while (!done) do /*outermost loop over sweeps*/
16. mydiff = diff = 0; /*initialize local difference to 0*/
16a. Barrier (barrier1, nprocs);
17. for i  mybeg to myend do/*sweep for all points of grid*/
18. for j  1 to n do
19. temp = A[i,j]; /*save old value of element*/
20. A[i,j]  0.2 * (A[i,j] + A[i,j-1] + A[i-1,j] +
21. A[i,j+1] + A[i+1,j]); /*compute average*/
22. mydiff += abs(A[i,j] - temp);
23. end for
24. end for
24a lock (diff_lock);
24b. diff += mydiff;
24c unlock (diff_lock);
24d. barrier (barrier1, nprocs);
25. if (diff/(n*n) < TOL) then done = 1;
26. end while
27. end procedure 44

• No red-black, simply ignore
dependences within sweep

• Simpler asynchronous version,
may take longer to converge!

Shared Memory Version

10. procedure Solve (A) /*solve the equation system*/
11. float **A; /*A is an (n + 2)-by-(n + 2) array*/
12. begin
13. int i, j, pid, done = 0;
14. float mydiff, temp;
14a. mybegin = 1 + (n/nprocs)*pid;
14b. myend = mybegin + (n/nprocs);
15. while (!done) do /*outermost loop over sweeps*/
16. mydiff = diff = 0; /*initialize local difference to 0*/
16a. Barrier (barrier1, nprocs);
17. for i  mybeg to myend do/*sweep for all points of grid*/
18. for j  1 to n do
19. temp = A[i,j]; /*save old value of element*/
20. A[i,j]  0.2 * (A[i,j] + A[i,j-1] + A[i-1,j] +
21. A[i,j+1] + A[i+1,j]); /*compute average*/
22. mydiff += abs(A[i,j] - temp);
23. end for
24. end for
24a lock (diff_lock);
24b. diff += mydiff;
24c unlock (diff_lock);
24d. barrier (barrier1, nprocs);
25. if (diff/(n*n) < TOL) then done = 1;
26. end while
27. end procedure

Why do we need
this barrier?

Why do we need
this barrier?

 44

• No red-black, simply ignore
dependences within sweep

• Simpler asynchronous version,
may take longer to converge!

Shared Memory Version

10. procedure Solve (A) /*solve the equation system*/
11. float **A; /*A is an (n + 2)-by-(n + 2) array*/
12. begin
13. int i, j, pid, done = 0;
14. float mydiff, temp;
14a. mybegin = 1 + (n/nprocs)*pid;
14b. myend = mybegin + (n/nprocs);
15. while (!done) do /*outermost loop over sweeps*/
16. mydiff = diff = 0; /*initialize local difference to 0*/
16a. Barrier (barrier1, nprocs);
17. for i  mybeg to myend do/*sweep for all points of grid*/
18. for j  1 to n do
19. temp = A[i,j]; /*save old value of element*/
20. A[i,j]  0.2 * (A[i,j] + A[i,j-1] + A[i-1,j] +
21. A[i,j+1] + A[i+1,j]); /*compute average*/
22. mydiff += abs(A[i,j] - temp);
23. end for
24. end for
24a lock (diff_lock);
24b. diff += mydiff;
24c unlock (diff_lock);
24d. barrier (barrier1, nprocs);
25. if (diff/(n*n) < TOL) then done = 1;
26. end while
27. end procedure

Reduce (mydif, diff);

Why do we need
this barrier?

Why do we need
this barrier?

 44

• No red-black, simply ignore
dependences within sweep

• Simpler asynchronous version,
may take longer to converge!

Shared Memory Program : Remarks

 done condition evaluated redundantly by all

 Each process has private mydiff variable

 Most interesting special operations are for
synchronization provided by LOCK-UNLOCK around
criticalsection
Set of operations we want to execute atomically

accumulations into shared diff have to be mutually
exclusive

 Good global reduction?

 47

Message Passing Version

 Cannot declare A to be global shared array
compose it from per-process private arrays

usually allocated in accordance with the assignment of
work -- owner-compute rule

 process assigned a set of rows allocates them locally

 Structurally similar to SPMD Shared Memory
Version

 Orchestration different
data structures and data access/naming

communication

synchronization

 Ghost rows
 48

Data Layout and Orchestration

Data partition allocated per processor

Add ghost rows to hold boundary data

Send edges to neighbors

Receive into ghost rows

Compute as in sequential program

 49

Message Passing Version

1. int n, nprocs; /* matrix: (n + 2-by-n + 2) elts.*/

2. float **myA;

3. main()

4. begin

5. read(n) ; /*read input parameter: matrix size*/

5a. read (nprocs);

/* 6. A  g_malloc (a 2-d array of (n+2) x (n+2) doubles); */

6a. Create (nprocs -1, Solve, A);

/* 7. initialize(A); */ /*initialize the matrix A somehow*/

8. Solve (A); /*call the routine to solve equation*/

8a. Wait_for_End (nprocs-1);

9. end main

 50

Message Passing Version

10. procedure Solve (A) /*solve the equation system*/
11. float A[n+2][n+2]; /*A is an (n + 2)-by-(n + 2) array*/
12. begin
13. int i, j, pid, done = 0;
14. float mydiff, temp;
14a. myend = (n/nprocs) ;
14b. myA = malloc (array of ((n/nprocs)+2) x (n+2) floats);
14c. If (pid == 0)
 Initialize (A)
14d. GetMyArray (A, myA); /* get n x (n+2) elts. from proess 0 */
15. while (!done) { /*outermost loop over sweeps*/
16. mydiff = 0; /*initialize local difference to 0*/
16a. if (pid != 0) then
 SEND (&myA[1,0] , n*sizeof(float), (pid-1), row);
16b. if (pid != nprocs-1) then
 SEND (&myA[myend,0], n*sizeof(float), (pid+1), row);
16c. if (pid != 0) then
 RECEIVE (&myA[0,0], n*sizeof(float), (pid -1), row);
16d. if (pid != nprocs-1) then
 RECEIVE (&myA[myend+1,0], n*sizeof(float), (pid -1), row);
16e.

 51

Message Passing Version – Solver
12. begin
 … … …
15. while (!done) do /*outermost loop over sweeps*/
 … … …
17. for i  1 to myend do/*sweep for all points of grid*/
18. for j  1 to n do
19. temp = myA[i,j]; /*save old value of element*/
20. myA[i,j]  0.2 * (myA[i,j] + myA[i,j-1] +myA[i-1,j] +
21. myA[i,j+1] + myA[i+1,j]); /*compute average*/
22. mydiff += abs(myA[i,j] - temp);
23. end for
24. end for
24a if (pid != 0) then
24b. SEND (mydif, sizeof (float), 0, DIFF);
24c. RECEIVE (done, sizeof(int), 0, DONE);
24d. else
24e. for k  1 to nprocs-1 do
24f. RECEIVE (tempdiff, sizeof(float), k , DIFF);
24g. mydiff += tempdiff;
24h. Endfor
24i. if (diff/(n*n) < TOL) then done = 1;
24j. for k  1 to nprocs-1 do
24k. SEND (done, sizeof(float), k , DONE);
26. end while
27. end procedure

 52

Message Passing Version : Remarks

 Communication in whole rows, not element at a time

 Code similar, but indices/bounds in local rather than global
space

 Synchronization through sends and receives
Update of global diff and event synch for done condition

Could implement locks and barriers with messages

 Can use REDUCE and BROADCAST library calls to simplify
code

 Communication done at beginning of iteration,
synchronization only between neighboring processes

 53

What is OpenMP?

 What does OpenMP stands for?
Open specifications for Multi Processing via

collaborative work between interested parties from
the hardware and software industry, government and
academia.

 OpenMP is an Application Program Interface
(API) that may be used to explicitly direct
multi-threaded, shared memory parallelism.
API components:

 Compiler Directives
 Runtime Library Routines
 Environment Variables

 54

OpenMP execution model

Fork and Join: Master thread spawns a team
of threads as needed

Master thread Master thread

Worker
Thread

Parallel
Region

F
O

R
K

J
O

IN

F
O

R
K

J
O

IN

 55

OpenMP syntax

 Most of the constructs of OpenMP are pragmas
#pragma omp construct [clause [clause] …]
An OpenMP construct applies to a structural block

(one entry point, one exit point)

 Categories of OpenMP constructs
Parallel regions
Work sharing
Data Environment
Synchronization
Runtime functions/environment variables

 In addition:
Several omp_<something> function calls
Several OMP_<something> environment variables 57

Parallel Regions – Example

 “omp parallel” pragma to indicates next structured
block is executed by all threads (forks)

 For example:

double A[1000];

omp_set_num_threads(4);

#pragma omp parallel

{

 int ID = omp_get_thread_num();

 pooh(ID,A);

}

 Each thread calls pooh(ID,A) for ID = 0 to 3

Each thread

executes a

copy of the

the code
within the

structured

block

Runtime function to

request a certain

number of threads

Runtime function

returning a thread ID

 58

Parallel Regions – Another Example

 Each thread executes the
same code redundantly.

 double A[1000];

omp_set_num_threads(4);

 #pragma omp parallel

{

 int ID = omp_get_thread_num();

 pooh(ID, A);

}

 printf(“all done\n”); omp_set_num_threads(4)

pooh(1,A) pooh(2,A) pooh(3,A)

printf(“all done\n”);

pooh(0,A)

double A[1000];

A single copy

of A is shared

between all

threads.

Threads wait here for all threads to finish

before proceeding (i.e. a barrier)
 59

Parallel Regions – Yet Another Example

 Each thread executes the
same code redundantly.

omp_set_num_threads(4);

 #pragma omp parallel

{

 int ID = omp_get_thread_num();

 printf (“Hello World %d\n”, ID);

}

 printf(“All done\n”); omp_set_num_threads(4)

printf (... ,1)

printf(“All done\n”);

printf (... , 0)

Prints in some

order!

Hello Word 0

Hello World 2

Hello World 3

Hello World 1

All Done

Threads wait here for all threads to finish

before proceeding (i.e. a barrier)

printf (... ,3) printf (... , 2)

 60

OpenMP: Work Sharing Constructs

Automatic
parallelization of
the for loop

for (int i=0; i<N; i++) { a[i]=b[i]+c[i]; }

#pragma omp parallel

{

 int id = omp_get_thread_num();

 int Nthr = omp_get_num_threads();

 int istart = id*N/Nthr; iend = (id+1)*N/Nthr;

 for (int i=istart; i<iend; i++) { a[i]=b[i]+c[i]; }

}

#pragma omp parallel

#pragma omp for schedule(static)

{

 for (int i=0; i<N; i++) { a[i]=b[i]+c[i]; }

}

(Semi) manual
parallelization

Sequential code

 61

OpenMP: Work Sharing Constructs

#pragma omp parallel

#pragma omp for schedule(static)

{

 for (int i=0; i<N; i++)

 { a[i] =b[i]+c[i]; }

}

OpenMP* shortcut: Put the “parallel” and the
work-share on the same line

#pragma omp parallel for schedule(static)

{

 for (int i=0; i<N; i++)

 { a[i] =b[i]+c[i]; }

}
 62

OpenMP For construct:
The Schedule Clause

 The schedule clause affects how loop iterations
are mapped onto threads
 schedule(static [,csize])

 Deal-out blocks of iterations of size “csize” to each thread.

 Default: chunks of approximately equal size, one to each thread

 If more chunks than threads: assign in round-robin to the threads

 63

Problems of schedule static for

 Load balancing
 If all the iterations execute at the same speed, the processors

are used optimally

 If some iterations are faster than others, some processors may
get idle, reducing the speedup

 We don’t always know the distribution of work, may need to re-
distribute dynamically

 Granularity
 Thread creation and synchronization takes time

 Assigning work to threads on per-iteration resolution may take
more time than the execution itself!

 Need to coalesce the work to coarse chunks to overcome the
threading overhead

 Trade-off between load balancing and granularity!

 64

OpenMP For construct:
The Schedule Clause

 Use dynamic schedule clause for load balancing
 schedule(dynamic[,csize])

 Each thread grabs “csize” iterations from a queue until all
iterations have been handled.

 Threads receive chunk assignments dynamically

 Default csize = 1

 65

OpenMP Section :
Work Sharing Construct

 The Sections work-sharing construct gives a
different structured block to each thread.

#pragma omp parallel

#pragma omp sections

{

 #pragma omp section

 X_calculation();

 #pragma omp section

 y_calculation();

 #pragma omp section

 z_calculation();

}

By default, there is a

barrier at the end of the

“omp sections”. Use the

“nowait” clause to turn off

the barrier. 66

PI Program: The sequential program

static long num_steps = 100000;

double step;

void main ()

{ int i; double x, pi, sum = 0.0;

 step = 1.0/(double) num_steps;

 for (i=1;i<= num_steps; i++){

 x = (i-0.5)*step;

 sum = sum + 4.0/(1.0+x*x);

 }

 pi = step * sum;

}

 67

PI Program: OpenMP Version
#include <omp.h>

static long num_steps = 100000; double step;

#define NUM_THREADS 4

void main ()

{ int i; double x, pi, sum[NUM_THREADS] ={0};

 step = 1.0/(double) num_steps;

 omp_set_num_threads(NUM_THREADS);

 #pragma omp parallel

 { double x; int id, i;

 id = omp_get_thread_num();

 #pragma omp for

 for (i=id;i< num_steps; i++)

 { x = (i+0.5)*step;

 sum[id] += 4.0/(1.0+x*x);

 }

 }

 for(i=0, pi=0.0;i<NUM_THREADS;i++)

 pi += sum[i] * step;

}

Any synchronization
required?

 68

Any synchronization
required?

OpenMP: Data Environment

 Shared Memory programming model
Most variables are shared by default

 Global variables are shared
 File scope variables, static variables

 Some variables can be private
Automatic variables inside the statement

block
Automatic variables in the called functions
Variables can be explicitly declared as private:

A local copy is created for each thread

 69

Overriding Storage attributes

 private:
 A copy of the variable is

created for each thread
 There is no connection

between the original
variable and the private
copies

 firstprivate:
 Same, but the initial value

of the variable is copied
from the main thread

 lastprivate:
 Same, but last sequential

value of the variable is
copied to the main thread

int idx=1;
int x = 10;

#pragma omp parallel for

 private (i,idx, x)
for (i=0; i<n; i++) {
 if (data[i] == x)
 idx = i; x++;
}
printf (“%d\n, idx);

int idx=1;

int x = 10;

#pragma omp parallel for

 firsprivate(x) lastprivate(idx)

for (i=0; i<n; i++) {

 if (data[i]==x)

 idx = i; x++;

}

printf (“%d\n, idx);

x is not

initialized

Value of idx is

not from the

for loop

 70

OpenMP Synchronization

X = 0;

#pragma omp parallel

 X = X+1;

 OpenMP assumes that the programmer knows
what (s)he is doing
Regions of code that are marked to run in parallel are

independent

Race conditions are possible, it is the programmer’s
responsibility to insert protection

What should be the result

(assume 2 threads)?

Could be 1 or 2!

 71

Synchronization Mechanisms

 Many of the existing mechanisms for
shared programming
Critical sections, Atomic updates

Barriers

Nowait (turn synchronization off!)

Single/Master execution

Ordered

Flush (memory subsystem synchronization)

Reduction

 72

Critical Sections

 #pragma omp critical [name]
Standard critical section functionality

 Critical sections are global in the program
Can be used to protect a single resource in

different functions

 #pragma omp atomic
update_statement

 73

Reduction Motivation

for (i=0; i<N; j++) {
 sum = sum+a[i]*b[i];
}

 How to parallelize this code?

accessing it atomically is too expensive
Have a private copy in each thread, then add them up

 OpenMP clause Reduction: data environment
clause that affects the way variables are shared:

reduction (op : list)

The variables in “list” must be shared in the enclosing
parallel region

 Use the reduction clause!
#pragma omp parallel for reduction(+: sum)

 74

OpenMP: Reduction Example

#include <omp.h>

#define NUM_THREADS 4

void main ()

{

 int i;

 int A[1000], B[1000]; sum=0;

 omp_set_num_threads(NUM_THREADS);

 #pragma omp parallel for reduction(+:sum) private(tmp)

 for (i=0; i< 1000; i++){

 tmp = A[i] * B[i] ;

 sum = sum + tmp;

 }

}

 75

Barrier synchronization

 #pragma omp barrier

 Performs a barrier synchronization between all
the threads in a team at the given point.

 Example:
#pragma omp parallel

{

 int result = heavy_computation_part1();

 #pragma omp atomic

 sum += result;

 #pragma omp barrier

 heavy_computation_part2(sum);

}
 76

OpenMP: Implicit Synchronization

 Barriers are implied on the following
OpenMP constructs:
end parallel

end sections

end single

 Use NoWait to avoid synchronization

 77

Controlling OpenMP behavior

 omp_set_num_threads(int)
 Control the number of threads used for parallelization

 Must be called from sequential code

 Also can be set by OMP_NUM_THREADS environment variable

 omp_get_num_threads()
 How many threads are currently available?

 omp_get_thread_num()

 omp_set_nested(int)/omp_get_nested()
 Enable nested parallelism

 omp_in_parallel()
 Am I currently running in parallel mode?

 omp_get_wtime()
 A portable way to compute wall clock time

 78

79

Message Passing Interface (MPI)

Standard API
Hides sw/hw details, portable, flexible

Implemented as a library

Your program

MPI Library

Custom

SW

Standard

TCP/IP

Standard

network HW
Custom

HW

80

Making MPI Programs

 Executable must be built by compiling program
and linking with MPI library
Header files (mpi.h) provide definitions and

declarations
 MPI commonly used in SPMD mode
One executable
Multiple instances of it executed

concurrently
 Implementations provide command to initiate

execution of MPI processes (mpirun)
Options: number of processes, which

processors they are to run on

81

Key MPI Functions and Constants

 MPI_Init (int *argc, char ***argv)
 MPI_Finalize (void)
 MPI_Comm_rank (MPI_COMM comm, int *rank)
 MPI_Comm_size (MPI_COMM comm, int *size)
 MPI_Send (void *buf, int count, MPI_Datatype

datatype, int dest, int tag, MPI_Comm comm)
 MPI_Recv (void *buf, int count, MPI_Datatype

datatype, int source, int tag, MPI_Comm comm,
MPI_Status *status)

 MPI_CHAR, MPI_INT, MPI_LONG, MPI_BYTE
 MPI_ANY_SOURCE, MPI_ANY_TAG

82

MPI: Matching Sends and Recvs

 Sender always specifies destination and
tag, Addr., size, type of the data

 Receiver specifies source, tag, location,
size and type of data

 Receive can specify for exact match or
using wild cards (any source, any tag)

 Send/Receive : Standard, Buffered,
Synchronous and Ready modes

 Send/Receive : Blocking or Non-Blocking

83

Parameters of Blocking Send

84

MPI Blocking and Non-blocking

 Blocking - return after local actions
complete, though the message transfer
may not have been completed

 Non-blocking - return immediately
Assumes that data storage to be used for

transfer is not modified by subsequent
statements prior to being used for transfer

Implementation dependent local buffer space
is used for keeping message temporarily

85

MPI Group Communication

 Until now: point-to-point messages

 MPI also provides routines that sends messages
to a group of processes or receives messages
from a group of processes
Not absolutely necessary for programming

More efficient than separate point-to-point
routines

 Examples: broadcast, multicast, gather, scatter,
reduce, barrier
MPI_Bcast, MPI_Reduce, MPI_Allreduce, MPI_Alltoall,

MPI_Scatter, MPI_Gather, MPI_Barrier

86

Broadcast

87

MPI Broadcast

MPI_Bcast(void *buf, int count,
MPI_Datatype datatype, int root,
MPI_Comm Comm)

88

Example: MPI Pi Calculating Program

MPI_Init (&argc, &argv);
MPI_Comm_size(MPI_COMM_WORLD, &numprocs);
MPI_Comm_rank(MPI_COMM_WORLD, &myid);
MPI_Bcast(&nsteps,1,MPI_INT,0, MPI_COMM_WORLD);
h = 1.0 / (double) n;
sum = 0.0;
for (i = myid+1; i <= n; i += numprocs) {
 x = h * ((double) i - 0.5);
 sum += (4.0 / (1.0 + x*x));
}
mypi = h * sum;
If (myrank !=0)
 MPI_Send (&mypi, &pi, 1, MPI_DOUBLE, MPI_tag, MPI_COMM_WORLD);
else
 for (j = 1 ; j < num_procs; j++) {
 MPI_Recv (&temp, &pi, 1, MPI_DOUBLE, MPI_tag, MPI_COMM_WORLD);
 mypi += temp
}
MPI_Finalize();

88

Example: MPI Pi Calculating Program

MPI_Init (&argc, &argv);
MPI_Comm_size(MPI_COMM_WORLD, &numprocs);
MPI_Comm_rank(MPI_COMM_WORLD, &myid);
MPI_Bcast(&nsteps,1,MPI_INT,0, MPI_COMM_WORLD);
h = 1.0 / (double) n;
sum = 0.0;
for (i = myid+1; i <= n; i += numprocs) {
 x = h * ((double) i - 0.5);
 sum += (4.0 / (1.0 + x*x));
}
mypi = h * sum;
If (myrank !=0)
 MPI_Send (&mypi, &pi, 1, MPI_DOUBLE, MPI_tag, MPI_COMM_WORLD);
else
 for (j = 1 ; j < num_procs; j++) {
 MPI_Recv (&temp, &pi, 1, MPI_DOUBLE, MPI_tag, MPI_COMM_WORLD);
 mypi += temp
}
MPI_Finalize();

MPI_Reduce(&mypi, &pi, 1, MPI_DOUBLE, MPI_SUM, 0,
MPI_COMM_WORLD);

90

Beware of Deadlock

 Suppose a process P i needs to be
synchronized and to exchange data with
process Pi-1 and process Pi+1 before
continuing

 Pi:

 send(Pi-1);

 send(Pi+1);

 recv(Pi-1);

 recv(Pi+1);

91

MPI Reduce

MPI_Reduce (void *sbuf, void *rbuf, int
count, MPI_Datatype datatype, MPI_Op
op, int root, MPI_Comm comm)

 Operations: MPI_SUM, MPI_MAX

 Reduction includes value coming from root

92

Reduce

