
GPU Architecture

R. Govindarajan
Computer Science & Automation

Supercomputer Edn. & Res. Centre

Indian Institute of Scinece, Bangalore

govind@iisc.ac.in

© RG@SERC,IISc 2

Moore’s Law : Performance

Processor performance

 doubles every 1.5 years

Source: Univ. of Wisconsin 3

Moore’s Law

No. of Transistors

doubles every 18 months

© RG@SERC,IISc 4

Moore’s Law: Processor
Architecture Roadmap (Pre-2000)

Super-

scalar

EPIC

ILP
Processors

Accele-

rators

Rise of GPU Computing

• GPUs have become a popular platform

for general purpose applications

• New Programming Models

– CUDA

– ATI Stream Technology

– OpenCL

• Order of magnitude speedup over single-

threaded CPU

© RG@SERC,IISc 6

Accelerator – Fermi S2050

Next Few slides from

7

CUDA Programming

© RG@SERC,IISc 8

9

Execution of CUDA on GPUs

• A CUDA kernel consists of an array of light-weight
threads

– All threads run the same code (SPMD), but on
different data

– Each thread has an ID that it uses to compute memory
addresses and make control decisions

 7 6 5 4 3 2 1 0

…

float x =

input[threadID];

float y = func(x);

output[threadID] = y;

…

threadID

10

…

float x =

input[threadID];

float y = func(x);

output[threadID] = y;

…

threadID

Thread Block 0

…
…

float x =

input[threadID];

float y = func(x);

output[threadID] = y;

…

Thread Block 1

…

float x =

input[threadID];

float y = func(x);

output[threadID] = y;

…

Thread Block N - 1

Threads, Warps, Thread Blocks

• Group threads into multiple blocks

– Threads within a block cooperate via shared memory

and barrier synchronization

– Thread block scheduled on a single SM

– Consecutive k(=32) threads (within a block) form a warp

– Instrn. from a ready Warp is scheduled each cycle

7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

11

Thread Batching: Grids and Blocks

• A kernel is executed as a
grid of thread blocks
– Grid can be a 2-dimensional

array of thread blocks

• A thread block is a batch of
threads that can cooperate
with each other
– Synchronizing their execution

– Efficiently sharing data
through a low latency shared
memory

• Each thread block can be a
1-D, 2-D or 3-D array of
threads

Host

Kernel

1

Kernel

2

Device

Grid 1

Block

(0, 0)

Block

(1, 0)

Block

(2, 0)

Block

(0, 1)

Block

(1, 1)

Block

(2, 1)

Grid 2

Block (1, 1)

Thread

(0, 1)

Thread

(1, 1)

Thread

(2, 1)

Thread

(3, 1)

Thread

(4, 1)

Thread

(0, 2)

Thread

(1, 2)

Thread

(2, 2)

Thread

(3, 2)

Thread

(4, 2)

Thread

(0, 0)

Thread

(1, 0)

Thread

(2, 0)

Thread

(3, 0)

Thread

(4, 0)

Source : “NVIDIA CUDA Programming Guide”

CUDA Programming

© RG@SERC,IISc 12

© RG@SERC,IISc 13

How is the GPU connected?

C0

Memory

C1 C2 C3

IMC

SLC

PCI-e

CUDA Programming

© RG@SERC,IISc 14

Kernel Execution

15

Processing Flow

© RG@SERC,IISc 16

Processing Flow

© RG@SERC,IISc 17

Processing Flow

© RG@SERC,IISc 18

© RG@SERC,IISc 19

Accelerator – Fermi S2050

Streaming Multiprocessor

20

Inside a CUDA Core

21

Memory Hierarchy in CUDA

© RG@SERC,IISc 22

Global Memory

© RG@SERC,IISc 23

Global Memory Accesses

• Each thread issues memory accesses to data
types of varying sizes, perhaps as small as 1 byte
entities

• Given an address to load or store, memory
returns/updates “segments” of either 32 bytes,
64 bytes or 128 bytes

• Maximizing bandwidth:
– Operate on an entire 128 byte segment for each

memory transfer

M. Hall, Univ. of Utah
L6: Memory Hierarchy IV

Understanding Global Memory Accesses

Memory protocol for compute capability 1.2 and
1.3* (CUDA Manual 5.1.2.1 and Appendix A.1)
• Start with memory request by smallest numbered

thread. Find the memory segment that contains the
address (32, 64 or 128 byte segment, depending on
data type)

• Find other active threads requesting addresses
within that segment and coalesce

• Reduce transaction size if possible

• Access memory and mark threads as “inactive”

• Repeat until all threads in half-warp are serviced

*Includes Tesla and GTX platforms as well as new Linux machines!
M. Hall, Univ. of Utah
L6: Memory Hierarchy IV

Memory Coalescing

26

Threadblock Scheduling

• Each TB allocated to an SM; Multiple TBs in a SM

• Threads in a threadblock may need to cooperate
– Load/Store from memory together

– Share results (through shared memory)

– Synchronize with each other

• Thread Blocks can execute in any order
27

Resident Thread Blocks

• No. of threadblocks allocated to SM is limited by

– Max. Threadblocks

– Max. no. of threads

– Registers (Regs. per thread * Thrds per Block * # Blks)

– Shared Memory (Shared Memory per Block * # Blks)

• Warps of resident threadblocks are context

switched to hide (long) latency

28

© RG@SERC,IISc 29

SM Warp Scheduling

• Each SM launches Warps of

Threads

– 2 levels of parallelism

– Shared instruction fetch per 32

threads (warps)

• SM hardware implements zero-

overhead Warp scheduling
– Warps whose next instruction has

its operands ready for consumption

are eligible for execution

– Eligible Warps are selected for

execution on a prioritized

scheduling policy

– All threads in a Warp execute the

same instruction when selected

warp 8 instruction 11

SM multithreaded
Warp scheduler

warp 1 instruction 42

warp 3 instruction 95

warp 8 instruction 12

. . .

time

warp 3 instruction 96

Source : “Kirk-Hwu Lecture Notes”

SM Instruction Buffer – Warp
Scheduling

• Fetch one warp instruction/cycle
– from instruction cache
– into any instruction buffer slot

• Issue one “ready-to-go” warp
instruction/cycle
– from any warp - instruction buffer slot
– operand scoreboarding used to prevent

hazards

• Issue selection based on round-
robin/age of warp

• SM broadcasts the same instruction to
32 Threads of a Warp

I $

Multithreaded
Instruction Buffer

R
F

C $
L 1

Shared
Mem

Operand Select

MAD SFU

CS6963
30

L2: Hardware Overview

Scoreboarding

• How to determine if a thread is ready to
execute?

• A scoreboard is a table in hardware that
tracks
– instructions being fetched, issued, executed
– resources (functional units and operands) they

need
– which instructions modify which registers

• Old concept from CDC 6600 (1960s) to
separate memory and computation

CS6963

31
L2: Hardware Overview

Scoreboarding from Example

• Consider three separate
instruction streams: warp1,
warp3 and warp8

warp 8 instruction 11

warp 1 instruction 42

warp 3 instruction 95

warp 8 instruction 12

. . .

warp 3 instruction 96

t=k

t=k+1

t=k+2

t=l>k

t=l+1

Warp Current
Instruction

Instruction
State

Warp 1 42 Computing

Warp 3 95 Computing

Warp 8 11 Operands
ready to go

…

Schedule

at time k

CS6963

32
L2: Hardware Overview

Scoreboarding from Example

• Consider three separate
instruction streams: warp1,
warp3 and warp8

warp 8 instruction 11

warp 1 instruction 42

warp 3 instruction 95

warp 8 instruction 12

. . .

warp 3 instruction 96

t=k

t=k+1

t=k+2

t=l>k

t=l+1

Warp Current
Instruction

Instruction
State

Warp 1 42 Ready to
write result

Warp 3 95 Computing

Warp 8 11 Computing

…

Schedule

at time k+1

CS6963

33
L2: Hardware Overview

Context Switching to hide
Latency

34

Wilson Fung, Ivan Sham,
George Yuan, Tor Aamodt

Dynamic Warp Formation and Scheduling
for Efficient GPU Control Flow 35

Branch Divergence Problem

• GPU uses SIMD

pipeline to save area

on control logic.

– Group scalar threads

into warps

• Branch divergence

occurs when threads

inside warps branches

to different execution

paths.

Branch

Path A

Path B

Branch

Path A

Path B

Performance loss with SIMD width = 16

36

- G 1111 TOS

B

C D

E

F

A

G

PDOM-Based Reconvergence

Thread Warp Common PC

Thread

2

Thread

3

Thread

4

Thread

1

B/1111

C/1001 D/0110

E/1111

A/1111

G/1111

- A 1111 TOS
E D 0110
E C 1001 TOS

- E 1111
E D 0110 TOS
- E 1111

A D G A

Time

C B E

- B 1111 TOS - E 1111 TOS
Reconv. PC Next PC Active Mask

Stack

E D 0110
E E 1001 TOS

- E 1111

Wilson Fung, Ivan Sham,
George Yuan, Tor Aamodt

Dynamic Warp Formation and Scheduling
for Efficient GPU Control Flow

Warp Divergence

 B1

 B2

 B3

 B4

 B5

 B6

Exit

TB 1 TB 2 TB 3

W1 cond = 5 cond = 15 cond = 10

W2 cond = 15 cond = 10 cond = 5

W3 cond = 10 cond = 5 cond = 15

for (i = 0; i < 2; i++) {

 S1;

 for (j = 0; j < cond; j++)

 S2;

 S3;

}

Warp Divergence

38

T
B
1

T
B
1

T
B
1

T
B
2

T
B
2

T
B
2

T
B
3

T
B
3

T
B
3

W1 W2 W3 W1 W2 W3 W1 W2 W3

T
im

e

Improvement

Warps wait
for siblings

Compute New
TB and Warp
Index
Overheads

Ideal Current Proposed

Warp Divergence

A

1

A

1

A

1

A

2

A

2

A

2

A

3

A

3

A

3

T
B
1

T
B
1

T
B
1

T
B
2

T
B
2

T
B
2

T
B
3

T
B
3

T
B
3

© RG@SERC,IISc

Research work on GPUs

• New warp and threadblock scheduling

• Improving Cache efficiency, prefetching, ..

• Memory management in GPUs

• Programming Languages/compilers for GPUs

• Integrated Heterogeneous Architectures

• Shared resources management

• …

