GPU Architecture

R. Govindarajan

Computer Science & Automation
Supercomputer Edn. & Res. Centre

Indian Institute of Scinece, Bangalore
govind@iisc.ac.in \

Relative
perfaormance

1600 r

1500 ¢

1.58x per year
1300 |

1200

100 | Processor performance
1000 doubles every 1.5years | w

200

800 F
100

GO0 DEC
Alph

500 b -

400 -

300 -

200 | DS B HP EEG 1.35x per yaar

Power1 9000
R2000 o -
T l/l//
(4] = i i .—I—_aﬂ 1 =

Intel
Peantium lli

S &£ £ &£ & & F

Year

© 2003 Elsevier Science (USA). All rights reservad.

© RG@SERC IISc

',5@'

Moore's Law

10,000,000,000

1,000,000,000 . 2
: No. of Transistors o

doubles every 18 months

100,000,000

10,000,000 -

Transistors

1,000,000-

100,000

10,000

1,000 — T —— —r — ' - I |] '
1970 1975 1980 1985 1990 1995 2000 2005 2010 2015
Year

Source: Univ. of Wisconsin

Moore's Law: Processor

Architecture Roadmap (Pre-2000)

CPU Transistor Counts 1971-2008 & Moore’s
Accele-

2,000,000,000 e ratorLs -

1,000,000,000

100,000,000

oy * shows "M 4 L&
10,000,000 trangisior oount tattiing
[eatlel yh.-.a Sa J’f. l/

Transistor count

1,000,000 — LIw
e
100,000 - e
" 7\
10,000 "
2.300 RISC
IS
WV . |
1980 1990 2000 2008

Date of introduction

© RG@SERC,IISc 4

Rise of GPU Computing

 GPUs have become a popular platform
for general purpose applications

 New Programming Models
— CUDA
— ATI Stream Technology
— OpenCL
* Order of magnitude speedup over single-
threaded CPU

Accelerator - Fermi 52050

Core Core Core Core
Core Core Core Core
Core Cora Cora Core
Core Core Core Core

aadiStore Units x 1

Core Core Core Core
Core Corea Core Core

DRAM DRAM DRAM DRAM

m
Y

asepaju| }soH v
~—— ~— ‘

T N
ENEENEEEEEER NN

1
I
;
¢
,
\
|

|
ﬁ

-_—

a—

i/
1
| _%
|
_
|
|

© RG@SERC IISc

Next Few slides from

Cliff Woolley, NVIDIA
Developer Technology Group

CUDA Programming

Anatomy of a CUDA C/C++ Application

Serial code executes in a Host (CPU) thread

Parallel code executes in many Device (GPU) threads
across multiple processing elements

CUDA C/C++ Application
Host = CPU g
=elrial coae

Device = GPU

Parallel code

Host = CPU g

Serial code

Device = GPU

e — CEER

Execution of CUDA on GPUs

A CUDA kernel consists of an array of light-weight
threads

— All threads run the same code (SPMD), but on
different data

— Each thread has an ID that it uses to compute memory
addresses and make control decisions

threadID

0]1({2]3]4[5]|6]7

float x =
input|[threadlID] ;

float y = func(x);
output[threadID] = y;

* Group threads into multiple blocks

— Threads within a block cooperate via shared memory
and barrier synchronization

— Thread block scheduled on a single SM
— Consecutive k(=32) threads (within a block) form a warp
— Instrn. from a ready Warp is scheduled each cycle

Thread Block O Thread Block 1 Thread Block N - 1

threadID O 1| 2| 3| 4] 5| 6| 7 0| 1] 2| 3| 4] 5] 6| 7 Ol 1| 2| 3| 4|1 5| 6| 7

float x = float x =
input[threadID] ; input[threadID];
float y = func(x); EEN float y = func(x);

output[threadID] = y; output[threadID] = y;

10

A kernel is executed as a
grid of thread blocks

— Grid can be a 2-dimensional
array of thread blocks

A thread block is a batch of
threads that can cooperate
with each other
— Synchronizing their execution
— Efficiently sharing data
through a low latency shared
memory
Each thread block can be a
1-D, 2-D or 3-D array of
threads

Host Device

Grid 1

Kernel —— ' Bjock Block Block
1 0,0 (1,0 (20

Block”| Block | Block
(0, ¥§ L1 (21

. ,'
/
’ . /
< Grid 2
’ ’
4 ’
’

Kernel —<—3
2 1

Block (1, 1)

Source : “NVIDIA CUDA Programming Gu'idﬁ’i

-~ SCIENie

CUDA Programming

void saxpy_serial(int n, float a, float *x, float *y)

{

for (int 1 = 0; i < n; ++1)
y[il = axx[i] + y[il; Standard C Code
}

// Invoke serial SAXPY kernel
saxpy_serial(n, 2.0, x, ¥); Y

N\ (

__global__ void saxpy_parallel(int n, float a, float *x, float *y) N
{

int i = blockIdx.x*blockDim.x + threadIdx.x;
if (G <n) y[il = a*x[1] + y[i]; Parallel C Code
}

// Invoke parallel SAXPY kernel with 256 threads/block
int nblocks = (n + 255) / 256;
saxpy_parallel<<<nblocks, 256>>>(n, 2.0, X, ¥);

How is the GPU connected?

CO||C1l||C2||C3

[Host |
Setup / Rstr / ZCull
Vix Thread Issue Geom Thread |$5Ul Pixel Thread Issue ‘
EIEI D@ E0EClE0] SLC
D D Oy D E] EI | |
[EI D EI ElE]
[|])) (|

»D]]]D]]][[D]\D]]]\[[[D\[D]]‘ | “ IMC

iwm-\ == u-!-\

= ﬁﬁtﬁjﬁ PCI-

$
LFB FB FB FB FB FB

Memory

© RG@SERC,IISc 13

CUDA Programming

Anatomy of a CUDA C/C++ Application

Serial code executes in a Host (CPU) thread

Parallel code executes in many Device (GPU) threads
across multiple processing elements

CUDA C/C++ Application
Host = CPU g
=elrial coae

Device = GPU

Parallel code

Host = CPU g

Serial code

Device = GPU

e — CEER

Kernel Execution

CUDA thread CUDA core - Each thread is executed by a

i |l core

» Each block is executed by

CUDA Streaming one SM and does not migrate
CUDA thread block Multiprocessor - Several concurrent blocks can

reside on one SM depending
|l |l |l |l on the blocks’ memory
requirements and the SM'’s
memory resources

CUDA-enabled GPU

CUDA kernel grid

» Each kernel is executed on
one device

» Multiple kernels can execute
on a device at one time

Processing Flow

Processing Flow

PCle Bus

1. Copy input data from CPU memory to GPU
memory

Processing Flow

Processing Flow

1. Copy input data from CPU memory to GPU
memory

2. Load GPU program and execute,
caching data on chip for performance

Processing Flow

Processing Flow

PCle Bus

CPU Memg

1. Copy input data from CPU memory to GPU
memory

2. Load GPU program and execute,
caching data on chip for performance

3. Copy results from GPU memory to CPU
memory

Core Core Core Core
Core Core Core Core
Core Core Core Core
Core Core Core Core

DRAM DRAM

II!I
ENEENEEEEEER NN

—\

Core Core Core Core

Core Core Core Core

aadiStore Units x 1

DRAM DRAM

I I S
LTI T
 ~——r
EEEENENRANANENEE

© RG@SERC IISc

Streaming Multiprocessor

GPU Architecture — Fermi:
Streaming Multiprocessor (SM)

¢ 32 CUDA Cores per SM
* 32 fp32 ops/clock
* 16 fp64 ops/clock
* 32 int32 ops/clock

* 2 warp schedulers

* Up to 1536 threads
concurrently

¢ 4 special-function units
* 64KB shared mem + L1 cache
¢ 32K 32-bit registers

Inside a CUDA Core

GPU Architecture — Fermi:
CUDA Core

‘ Floatlng point & Integer unit

IEEE 754-2008 floating-point
standard

* Fused multiply-add (FMA) CUDA Core
instruction for both single and

double precision
* Logic unit
* Move, compare unit
* Branch unit

Memory Hierarchy in CUDA

Memory hierarchy

\ \ N\
| :I]

¢ Thread: .j’ [/ |:_’
* Registers \“-. \} ‘\1
¢ Local memory) _, |

S

(| i/

* Block of threads: LN 4
e HEEEEEEN

Global Memory

Memory hierarchy : Global memory

* Accessible by all threads of any
kernel

¢ Data lifetime: from allocation to

deallocation by host code

cudaMalloc (void ** pointer, size_t nbytes)

cudaMemset (void * pointer, int value, size_t
count)

cudaFree (void* pointer)
¢ Latency: 400-800 cycles
¢ Bandwidth: 156 GB/s

* Note: requirement on access pattern to
reach peak performance

G00080 90008d 9000k

Global

Global Memory Accesses

» Each thread issues memory accesses to data
types of varying sizes, perhaps as small as 1 byte
entities

» Given an address to load or store, memory
returns/updates "segments” of either 32 bytes,
64 bytes or 128 bytes

* Maximizing bandwidth:

- Operate on an entire 128 byte segment for each
memory transfer

M. Hall, Univ. of Utah
L6: Memory Hierarchy IV

Understanding Global Memory Accesses § || 4

Memory protocol for compute capability 1.2 and
1.3* (CUDA Manual 5.1.2.1 and Appendix A.1)

Start with memory request by smallest numbered
thread. Find the memory segment that contains the
address (32, 64 or 128 byte segment, depending on
data type)

Find other active threads requesting addresses
within that segment and coalesce

Reduce transaction size if possible
Access memory and mark threads as “inactive”
Repeat until all threads /n half-warp are serviced

*Includes Tesla and GTX platforms as well as new Linux machines!

M. Hall, Univ. of Utah
L6: Memory Hierarchy IV

Memory Coalescing

Coalescing
Compute capability 1.2 and higher

® Issues transactions for segments of 32B, 64B, and 128B
® Smaller transactions used to avoid wasted bandwidth

1 transaction - 64B segment
IEEEEEEE EEEEEEEE S EEEEEEE EEEEEEEE N EEEEEEE EEEEEEEE
NN EEEEEEEEEEEE NN NN EEEEEE D EEEEEEEL
AEEEEEEE EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE EEEEEEEE

Kernel Grid
Launch

Block 0
Block 1
Block 2
Block 3
Block 4
Block 5
Block 6
Block 7

Device with 4 SMs

Block0 || Block1 || Block2 || Block3
Block 4 Block 5 Block 6 Block 7

« Each TB allocated to an SM; Multiple TBs in a SM

* Threads in a threadblock may need to cooperate
— Load/Store from memory together
— Share results (through shared memory)
— Synchronize with each other

 Thread Blocks can execute in any order .

Resident Thread Blocks

* No. of threadblocks allocated to SM is limited by
— Max. Threadblocks
— Max. no. of threads
— Registers (Regs. per thread * Thrds per Block * # BIks)
— Shared Memory (Shared Memory per Block * # Blks)

« Warps of resident threadblocks are context
switched to hide (long) latency

28

Each SM launches Warps of
Threads

— 2 levels of parallelism

— Shared instruction fetch per 32 ‘
threads (warps)

SM hardware implements zero- time

overhead Warp scheduling
— Warps whose next instruction has

Its operands ready for consumption
are eligible for execution

— Eligible Warps are selected for
execution on a prioritized
scheduling policy

— All threads in a Warp execute the
same instruction when selected v m

© RG@SERC,IISc Source : “Kirk-Hwu Lecture Notes” 29

! W ‘\\ '\“\.‘".
i / ///«'//)',. ’/ u/.!./o i ‘ \ \ \
SM multithreaded ‘

Warp scheduler

SM Instruction Buffer - Warp

Scheduling

* Fetch one warp instruction/cycle
- from instruction cache
- into any instruction buffer slot

* Issue one “ready-to-go” warp
instruction/cycle

v

- from any warp - instruction buffer slot Sk cs s
- operand scoreboarding used to prevent T =
hazards
. Operand Select
» TIssue selection based on round-
robin/age of warp ’ ’

MAD SFU

- SM broadcasts the same instruction to
32 Threads of a Warp))

30

CS6963 L2: Hardware Overview

Scoreboarding

ow to determine if a thread is ready to
execute?

- A scoreboard is a table in hardware that
tracks
- instructions being fetched, issued, executed

- resources (functional units and operands) they
need

- which instructions modify which registers

» Old concept from CDC 6600 (1960s) to
separate memory and computation

CS6963

31
L.2: Hardware Overview

- Consider three separate
instruction streams: warpl,
warp3 and warp8

42
95

11

CS6963

32
L.2: Hardware Overview

Computing

Computing

Operands Schedule
readytogo attimek

- Consider three separate
instruction streams: warpl,
warp3 and warp8

42
95

11

CS6963

33
L.2: Hardware Overview

Schedule
Rejcldy e at time k+1
write result
Computing

Computing

Context Switching to hide
Latenc

* CPU architecture must minimize latency within each thread
* GPU architecture hides latency with computation from other thread warps

GPU Stream Multiprocessor — High Throughput Processor Computation Thread/Warp

Ty Processing

Waiting for data

Ready to be processed

CPU core — Low Latency Processor

I CHEND CHOEND NN | comerswnen

Branch Divergence Problem

e GPU uses SIMD
pipeline to save area
on control logic.

— Group scalar threads
Into warps

 Branch divergence
occurs when threads
Inside warps branches
to different execution
paths.

Branch

SRRRRRY
SRRRRRY

Path A

Path\Bj

b
Pl

SRRRRRY

Performance loss with SIMD width = 16

Wilson Fung, Ivan Sham, Dynamic Warp Formation and Scheduling
George Yuan, Tor Aamodt for Efficient GPU Control Flow 35

A/1111

Stack

Reconv. PC Next PC Active Mask
TOS—* - E 1111
TOS—» E D 0110
B/1111 TOS— E E 1001
C/1001| |D/0110]| IF
Naa” Thread Warp Common PC
E/1111 Thread|Thread|Thread|Thread
1 2 3 4
G/1111
AlLB | C D | EJG | A
P =) i —> =1 —{ —1
....:—>: — ! —Il 1 -1 -
e | Bl B | D B ey [Biel
. > Time

Wilson Fung, Ivan Sham,
George Yuan, Tor Aamodt

Dynamic Warp Formation and Scheduling

for Efficient GPU Control Flow

36

Warp Divergence

Exit

B6

for(1=0;1<2;1++){

S1;
for (j =0;] <cond; |j++)
S2;
S3;
}
TB 1 B 2 TB 3

W1 cond=5 |cond =15 | cond =10
W2 cond=15|cond=10| cond =5
W3 cond=10| cond=5

Warp Divergence

38

Time

Current

Improvement

W1w2W3

W1w2 W3

W1Ww2 W3

Research work on GPUs

 New warp and threadblock scheduling

* Improving Cache efficiency, prefetching, ..

« Memory management in GPUs

* Programming Languages/compilers for GPUs
* Integrated Heterogeneous Architectures

« Shared resources management

© RG@SERC IISc

