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Moore’s Law : Performance 

Processor performance 

 doubles every 1.5 years 



Source: Univ. of Wisconsin 3 

Moore’s Law 

No. of Transistors 

doubles every 18 months 
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Moore’s Law: Processor 
Architecture Roadmap (Pre-2000)  
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Rise of GPU Computing 

• GPUs have become a popular platform 

for general purpose applications 

• New Programming Models 

– CUDA 

– ATI Stream Technology 

– OpenCL 

• Order of magnitude speedup over single-

threaded CPU 

 



© RG@SERC,IISc 6 

Accelerator – Fermi S2050 



Next Few slides from 
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CUDA Programming 
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Execution of CUDA on GPUs 

• A CUDA kernel consists of an array of light-weight 
threads 

– All threads run the same code (SPMD), but on 
different data 

– Each thread has an ID that it uses to compute memory 
addresses and make control decisions 

 7 6 5 4 3 2 1 0 

… 

float x = 

input[threadID]; 

float y = func(x); 

output[threadID] = y; 

… 

threadID 
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… 

float x = 

input[threadID]; 

float y = func(x); 

output[threadID] = y; 

… 

threadID 

Thread Block 0 

… 
… 

float x = 

input[threadID]; 

float y = func(x); 

output[threadID] = y; 

… 

Thread Block 1 

… 

float x = 

input[threadID]; 

float y = func(x); 

output[threadID] = y; 

… 

Thread Block N - 1 

Threads, Warps, Thread Blocks 

• Group threads into multiple blocks 

– Threads within a block cooperate via shared memory  

and barrier synchronization 

– Thread block scheduled on a single SM 

– Consecutive k(=32) threads (within a block) form a warp 

– Instrn. from a ready Warp is scheduled each cycle 

7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 
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Thread Batching: Grids and Blocks 

• A kernel is executed as a 
grid of thread blocks 
– Grid can be a 2-dimensional 

array of thread blocks 

• A thread block is a batch of 
threads that can cooperate 
with each other  
– Synchronizing their execution 

– Efficiently sharing data 
through a low latency shared 
memory 

• Each thread block can be a 
1-D, 2-D or 3-D array of 
threads 

Host 

Kernel 

1 

Kernel 

2 

Device 

Grid 1 

Block 

(0, 0) 

Block 

(1, 0) 

Block 

(2, 0) 

Block 

(0, 1) 

Block 

(1, 1) 

Block 

(2, 1) 

Grid 2 

Block (1, 1) 

Thread 

(0, 1) 

Thread 

(1, 1) 

Thread 

(2, 1) 

Thread 

(3, 1) 

Thread 

(4, 1) 

Thread 

(0, 2) 

Thread 

(1, 2) 

Thread 

(2, 2) 

Thread 

(3, 2) 

Thread 

(4, 2) 

Thread 

(0, 0) 

Thread 

(1, 0) 

Thread 

(2, 0) 

Thread 

(3, 0) 

Thread 

(4, 0) 

Source : “NVIDIA CUDA Programming Guide” 



CUDA Programming 
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How is the GPU connected? 

C0 

Memory 

C1 C2 C3 

IMC 

SLC 

PCI-e 



CUDA Programming 
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Kernel Execution 
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Processing Flow 
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Processing Flow 
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Processing Flow 
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Accelerator – Fermi S2050 



Streaming Multiprocessor 
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Inside a CUDA Core 
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Memory Hierarchy in CUDA 
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Global Memory 
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Global Memory Accesses 

• Each thread issues memory accesses to data 
types of varying sizes, perhaps as small as 1 byte 
entities 

• Given an address to load or store, memory 
returns/updates “segments” of either 32 bytes, 
64 bytes or 128 bytes 

• Maximizing bandwidth: 
– Operate on an entire 128 byte segment for each 

memory transfer 

M. Hall, Univ. of Utah 
L6: Memory Hierarchy IV 
 



Understanding Global Memory Accesses 

Memory protocol for compute capability 1.2 and 
1.3* (CUDA Manual 5.1.2.1 and Appendix A.1) 
• Start with memory request by smallest numbered 

thread.  Find the memory segment that contains the 
address (32, 64 or 128 byte segment, depending on 
data type) 

• Find other active threads requesting addresses 
within that segment and coalesce 

• Reduce transaction size if possible 

• Access memory and mark threads as “inactive” 

• Repeat until all threads in half-warp are serviced 

*Includes Tesla and GTX platforms as well as new Linux machines! 
M. Hall, Univ. of Utah 
L6: Memory Hierarchy IV 
 



Memory Coalescing 
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Threadblock Scheduling 

• Each TB allocated to an SM; Multiple  TBs in a SM  

• Threads in a threadblock  may need to cooperate 
– Load/Store from memory together 

– Share results (through shared memory) 

– Synchronize with each other 

• Thread Blocks can execute in any order  
27 



Resident Thread Blocks 

• No. of threadblocks allocated to SM is limited by  

– Max. Threadblocks 

– Max. no. of threads 

– Registers   (Regs. per thread * Thrds per Block * # Blks) 

– Shared Memory (Shared Memory per Block * # Blks) 

• Warps of resident threadblocks are context 

switched to hide (long) latency 

 

 

28 
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SM Warp Scheduling 

• Each SM launches Warps of 

Threads 

– 2 levels of parallelism 

– Shared instruction fetch per 32 

threads (warps) 

• SM hardware implements zero-

overhead Warp scheduling 
– Warps whose next instruction has 

its operands ready for consumption 

are eligible for execution 

– Eligible Warps are selected for 

execution on a prioritized 

scheduling policy 

– All threads in a Warp execute the 

same instruction when selected 

warp 8 instruction 11 

SM multithreaded 
Warp scheduler 

warp 1 instruction 42 

warp 3 instruction 95 

warp 8 instruction 12 

. . . 

time 

warp 3 instruction 96 

Source : “Kirk-Hwu Lecture Notes” 



SM Instruction Buffer – Warp 
Scheduling 

• Fetch one warp instruction/cycle 
– from instruction cache  
– into any instruction buffer slot 

• Issue one “ready-to-go” warp 
instruction/cycle 
– from any warp - instruction buffer slot 
– operand scoreboarding used to prevent 

hazards 

• Issue selection based on round-
robin/age of warp 

• SM broadcasts the same instruction to 
32 Threads of a Warp 

I $ 

Multithreaded 
Instruction Buffer 

R 
F 

C $ 
L 1 

Shared 
Mem 

Operand Select 

MAD SFU 

CS6963 
30 

L2: Hardware Overview 



Scoreboarding 

• How to determine if a thread is ready to 
execute? 

• A scoreboard is a table in hardware that 
tracks 
– instructions being fetched, issued, executed  
– resources (functional units and operands) they 

need 
– which instructions modify which registers 

• Old concept from CDC 6600 (1960s) to 
separate memory and computation 

 

 
CS6963 

31 
L2: Hardware Overview 



Scoreboarding from Example 

• Consider three separate 
instruction streams: warp1, 
warp3 and warp8 

warp 8 instruction 11 

warp 1 instruction 42 

warp 3 instruction 95 

warp 8 instruction 12 

. . . 

warp 3 instruction 96 

t=k 

t=k+1 

t=k+2 

t=l>k 

t=l+1 

Warp Current 
Instruction 

Instruction 
State 

Warp 1 42 Computing 

Warp 3 95 Computing 

Warp 8 11 Operands 
ready to go 

… 

Schedule 

at time k 

CS6963 

32 
L2: Hardware Overview 



Scoreboarding from Example 

• Consider three separate 
instruction streams: warp1, 
warp3 and warp8 

warp 8 instruction 11 

warp 1 instruction 42 

warp 3 instruction 95 

warp 8 instruction 12 

. . . 

warp 3 instruction 96 

t=k 

t=k+1 

t=k+2 

t=l>k 

t=l+1 

Warp Current 
Instruction 

Instruction 
State 

Warp 1 42 Ready to 
write result  

Warp 3 95 Computing 

Warp 8 11 Computing 

… 

Schedule 

at time k+1 

CS6963 

33 
L2: Hardware Overview 



Context Switching to hide 
Latency 

34 



Wilson Fung, Ivan Sham, 
George Yuan, Tor Aamodt 

Dynamic Warp Formation and Scheduling 
for Efficient GPU Control Flow 35 

Branch Divergence  Problem 

• GPU uses SIMD 

pipeline to save area 

on control logic. 

– Group scalar threads 

into warps 

• Branch divergence 

occurs when threads 

inside warps branches 

to different execution 

paths. 

Branch 

Path A 

Path B 

Branch 

Path A 

Path B 

Performance loss with SIMD width = 16 
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Wilson Fung, Ivan Sham, 
George Yuan, Tor Aamodt 

Dynamic Warp Formation and Scheduling 
for Efficient GPU Control Flow 



Warp Divergence  

 B1 

 B2 

 B3 

 B4 

 B5 

 B6 

Exit 

TB 1 TB 2 TB 3 

W1 cond = 5 cond = 15 cond = 10 

W2 cond = 15 cond = 10 cond = 5 

W3 cond = 10 cond = 5 cond = 15 

for (i = 0; i < 2; i++) { 

    S1; 

    for (j = 0; j < cond; j++) 

        S2; 

    S3; 

} 



Warp Divergence 

38 

T
B
1 

 
T
B
1 

T
B
1 

 
T
B
2 

T
B
2 

T
B
2 

T
B
3 

T
B
3 

T
B
3 

W1 W2 W3 W1 W2 W3 W1 W2 W3 

T
im

e
 

Improvement 

Warps wait 
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Research work on GPUs 

• New warp and threadblock scheduling 

• Improving Cache efficiency, prefetching, .. 

• Memory management in GPUs 

• Programming Languages/compilers for GPUs 

• Integrated Heterogeneous Architectures  

• Shared resources management 

• …  

 

 

 


