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Why Study Memory System? 

• Memory Wall [McKee’94] 

– CPU-Memory speed disparity 

– 100’s of cycles for off-chip access 
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Memory Hierarchy : Recap  
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Memory Hierarchy in Multicore  
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Memory Bandwidth Demand  
for Multicores  

• Memory Wall [McKee’94] 

– CPU-Memory speed disparity 

– 100’s of cycles for off-chip access 

• Bandwidth Wall [ISCA’09] 

– More cores and limited off-chip bandwidth 

– Cores double every 18 months 

– Pincount grows only by 10% 

Off-chip accesses are expensive !  
Memory System Performance is Critical 
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Memory Controller 
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Basic DRAM Operations 

• ACTIVATE  Bring data from DRAM core into the row-buffer 

• READ/WRITE  Perform read/write operations on the 
contents in the row-buffer 

• PRECHARGE  Store data back to DRAM core (ACTIVATE 
discharges capacitors), put cells back at neutral voltage 
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DRAM Bank Operation 
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DRAM Command Summary 

Slide Source: S. Rixner 



DRAM Memory Controller 

• Frontend  

– Request/Response Buffers 

– Memory mapping 

– Arbiter 

• Controller Backend 

– Command Generator 

• Timing to be obeyed  
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Memory Controller Control 
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Bank Level Parallelism  
• Improves perf. with Parallelism and Row Buffer Hit 
• Hurts perf. due to bank-to-bank switch delay 



DRAM Refresh 

• Capacitors leak and lose charge  Need periodic restoration 
of charge 

• JEDEC Spec: At normal temp, cell retention time limit is 64ms. 
At high (extended) temp, retention time halves to 32ms. 

• The memory controller issues refresh operations periodically. 

Normal Access 
Normal 

Access 

Normal 

Access 

Normal 

Access 
Refresh  

Normal 

Access 

• Assume 4GB  DRAM with 2KB pages, organized as 16 banks 

• 2M pages total, 128K pages per bank 

• Refreshing a page takes 20ns (ACTIVATE+PRECHARGE) 

• Refreshing all pages in a bank  2.6ms! 

•  2.6/64  = 4%  overhead! 
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Memory Access Scheduling: FCFS 
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Memory Access Scheduling :          
FR-FCFS 

• A row-conflict memory access takes significantly 

longer than a row-hit access 

• Current controllers take advantage of the row 

buffer 

• Commonly used scheduling policy (FR-FCFS) 
[Rixner, ISCA’00] 

(1) Row-hit (column) first: Service row-hit memory 

accesses first 

(2) Oldest-first: Then service older accesses first 

• This scheduling policy aims to maximize DRAM 

throughput 

Slide Source: Onur Mutlu, CMU 
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Emerging Memory Technology 

• Non-Volatile Memory technology 

– Phase Change Memory (PCM), Magnetic RAM 

(MRAM), Resistive RAM (RRAM), Spin Torque 

Transfer RAM (STT-RAM), … 

68 Slide Source: Moin Quereshi, Georgia Tech. 



Emerging Memory Technology 

• Phase Change Memory 

– Data stored by changing phase of special material  

– Data read by detecting material’s resistance 

– Phase change material (chalcogenide glass) exists in 
two states: 

1. Amorphous: high resistivity – reset state or 0 

2. Crystalline: low resistivity – set state or 1 

– Non-volatality and low idle power (no refresh) 

– Expected to scale (to 9nm), denser than DRAM, and 
can store multiple bits/cell 

– Higher Write latency and write-energy 

– Endurance issues (cell dies after 108 writes) 

69 Slide Source: Onur Mutlu, CMU 



DRAM – PCM Hybrid Memory  

• PCM-based (main) memory be organized? 

 

 

 

 

  

  

• Hybrid PCM+DRAM 

– How to partition/migrate data between PCM and DRAM 

– Is DRAM a cache for PCM or part of main memory? 

– How to design the hardware and software 
70 Slide Source: Onur Mutlu, CMU 



PCM-based Main Memory  

• How should PCM-based (main) memory be 
organized? 

 

 

 

 

 

 

• Pure PCM main memory [Lee et al., ISCA’09, Top Picks’10]:  

– How to redesign entire hierarchy (and cores) to 
overcome PCM shortcomings 

71 Slide Source: Onur Mutlu, CMU 



Expanding the Multicore 
Memory Hierarchy 
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Stacked DRAM 

• DRAM vertically stacked over the processor die. 

• Stacked DRAMs offer  

– High bandwidth 

– Large capacity  

– Same or slightly lower latency.  

3-D Stacked  DRAM 2.5-D Stacked  DRAM 
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Multicore With DRAM Cache 
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Overview of Different Designs 

PA_M PA_DRAM $ = Hash (PA_M) + Offset 



Problems in Architecting Large 
Caches 
• Organizing at cache line granularity (64 B) 

reduces wasted space and wasted bandwidth 

• Problem:   Cache of hundreds of MB needs tag-

store of tens of MB 

• E.g.  256MB DRAM cache needs ~20MB tag store 

(5 bytes/line) 

• But big blocks have their own issues  

– Wasted off-chip bandwidth 

– Wasted cache space 
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Option 1: SRAM Tags 

 

Fast, But Impractical 

(Not enough transistors) 

Option 2:  Tags in DRAM 

 

Naïve design has 2x latency 

(Two accesses --  tag and data) 



Stacked DRAM Caches 

Tags-On-DRAM 

• Cache tags on DRAM itself 

• Typically 64B blocks 

• Due to overhead of tag 

access from DRAM, 

requires some form of 

predictor/cache in SRAM 

• Several recent proposals 

(Loh-Hill, AlloyCache, 

ATCache, Bi-Modal) 

Tags-On-SRAM 

• Cache tags on SRAM 

• Expensive SRAM  

• Large storage overhead 

• So typically uses larger block 

sizes to reduce overhead  

    (~ 1KB) 

• Off-chip bandwidth and 

cache utilization are 

concerns 

• Several recent proposals 

(FootPrintCache, CHOP) 
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Overview of Different Designs 

• For DRAM caches, critical to optimize first for 

latency, then hit-rate 

 

PA_M PA_DRAM $ = Hash (PA_M) + Offset 
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Overview of Bi-Modal Cache 

• Tags-In-DRAM organization 

 

• With 3 new organizational features: 

1) Cache Sets are Bi-Modal – they can hold 

a combination of big (512B) and small 

(64B) blocks 

2) Parallel Tag and Data Accesses 

3) Eliminating Most Tag Accesses via a 

small SRAM based Way Locator 

Reduce Hit 

Latency 

Improves Hit Rate 

And  

Reduces Off-Chip 

Bandwidth 



Supporting Bi-Modal Block Sizes 

• Each Set can hold some big 

(512B) and some small (64B) 

blocks. 

 

• Block Size Predictor 

– Blocks with high spatial reuse  

  fetch 512B 

– Blocks with little spatial reuse  

  fetch 64B 
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Parallel Tag and Data 
Accesses 

High Row Buffer Hit Rate in 

the Metadata Bank! 

Channel 0 
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Tag Access Data Access 
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Data Data 

Page in DRAM Cache 



Eliminating a Majority of Tag 
Accesses using the Way Locator 

Set MRU: Tag  and Way MRU-1: Tag and Way 

Set 0 Tag a1 Way 3 Tag a2 Way 1 

Set 1 Tag a3 Way 2 Tag a4 Way 0 

Set 2 Tag a5 Way 0 Tag a6 Way 3 

… 

Set N Tag am Way x Tag an Way y 

Addr 

Set 

2-way Set Associative Cache 

Each entry specifies tag and associated way 

(DRAM column) where data is stored 



Putting them together 
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Hit Latency Improvement 

Common Case: 

Over 85% of  

accesses 


