
1

Expert Prefetch Prediction: An Expert Predicting
the Usefulness of Hardware Prefetchers

Biswabandan Panda and Shankar Balachandran,
Indian Institute of Technology Madras,
{biswa, shankar}@cse.iitm.ac.in

Abstract—Hardware prefetching improves system performance by hiding and tolerating the latencies of lower levels of cache and
off-chip DRAM. An accurate prefetcher improves system performance whereas an inaccurate prefetcher can cause cache pollution
and consume additional bandwidth. Prefetch address filtering techniques improve prefetch accuracy by predicting the usefulness of
a prefetch address and based on the outcome of the prediction, the prefetcher decides whether or not to issue a prefetch request.
Existing techniques use only one signature to predict the usefulness of a prefetcher but no single predictor works well across all the
applications. In this work, we propose weighted-majority filter, an expert way of predicting the usefulness of prefetch addresses. The
proposed filter is adaptive in nature and uses the prediction of the best predictor(s) from a pool of predictors. Our filter is orthogonal
to the underlying prefetching algorithm. We evaluate the effectiveness of our technique on 22 SPEC-2000/2006 applications. On an
average, when employed with three state-of-the-art prefetchers such as AMPM, SMS, and GHB-PC/DC, our filter provides performance
improvement of 8.1%, 9.3%, and 11% respectively.

Index Terms—Hardware Prefetching, Cache, Memory systems

F

1 INTRODUCTION

Hardware prefetchers issue prefetch requests, which
bring data into the cache before processor demands for
the same. This results in improvement in system per-
formance. However, inaccurate prefetch requests bring
data into the cache, which are unlikely to be used by
the processor. We call these prefetch requests useless and
prefetch requests, which provide cache hits as useful
prefetch requests. Since no hardware prefetcher delivers
100% of prefetch accuracy for all the applications, pre-
dicting the usefulness of prefetch requests is important.
The problem: Existing technique on predicting the use-
fulness of a prefetch address such as pollution filter [11]
uses only one signature for prediction that works well
for some applications and fail in some. Even within
a single application, there are different phases of a
program where a predictor that uses a single signature
fails. Also, there is no predictor that is effective across
all the applications.
Our goal: Our goal is to propose an efficient prefetch-
address filter that can predict the usefulness of prefetch-
addresses accurately and can guide a prefetcher to issue
only the useful prefetch requests.
Our approach: We use multiple independent prefetch-
address filters (we call prefetch experts) where experts
predict the usefulness of a prefetch address by using
their own signatures (such as program counter (PC) of
a prefetch request or the upper bits of an address of
a prefetch request). For a given prefetch address, we
collect predictions from each of the experts and apply a

Manuscript submitted: 12-Mar-2015. Manuscript accepted: 20-Apr-2015.
Final manuscript received: 22-Apr-2015.

modified version of weighted-majority algorithm [4] to
find out the best prediction decision (to prefetch or not)
for an application. The contributions of this manuscript
are as follows:

• We propose a prefetch-address filter called
weighted-majority (WM) filter that uses multiple
independent experts to predict the usefulness of a
prefetch address.

• We show the effectiveness of our filter on 22 SPEC-
2000/2006 applications. On an average, when em-
ployed with the state-of-the-art AMPM prefetcher,
WM-filter delivers a prefetch-accuracy of 0.85,
which translates into 8.1% improvement in IPC.

2 BACKGROUND AND MOTIVATION
This section provides the necessary background to un-
derstand the usefulness of a prefetcher. A hardware
prefetcher exploits various cache access patterns and
prefetches data into the cache. But a prefetcher can
become less effective if the prefetched blocks1 do not
get hit at the cache. The performance can drop further if
prefetched blocks evict useful demand blocks2 causing
cache pollution.

Prior techniques on predicting the usefulness of a
prefetch address, such as pollution-filter [11], use a filter
to predict the prefetch addresses that are not likely to
get demand hits. Based on the outcome of the predictor
the prefetcher decides whether or not to prefetch. The
filter uses a hardware table of 4096 entries indexed
by a signature (hashed using PC or prefetch-address)
and each entry consists of a 2-bit saturating counter.

1. Cache block containing prefetch response.
2. Demand blocks that might get re-referenced in the near future.

2

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

NO FILTER PC ADD PC+ADD REGION

Higher the Better

Fig. 1. Prefetch accuracy of different filters.

The filter works as follows: when a cache controller
inserts the prefetched block into the cache, it sets two
additional bits per block - a prefetch-bit to distinguish a
prefetched block from a demand block and a reference-
bit to find out whether a prefetched block is referenced
by the processor or not. For an entry, the corresponding
2-bit saturating counter gets incremented whenever a
prefetched block is evicted with its reference-bit set to 1
and gets decremented whenever a prefetched block is
evicted with its reference-bit set to 0.

Figure 1 shows the effectiveness of different filters
applied on the state-of-the-art AMPM prefetcher [3]. We
place the AMPM prefetcher beside the last-level-cache
(L2), which prefetches data from DRAM into L2. We
use four different filters and evaluate their effectiveness.
The filters explored are as follows: PC-based filter (PC),
prefetch-address-based filter (ADD) [11], memory region
based filter (REGION)3 and a combination of PC and
pref-address (PC+ADD). We create PC+ADD by per-
forming the bitwise OR of ADD and PC of a prefetch
request. Unlike the ADD, the REGION filter exploits the
spatial locality among the prefetch addresses and makes
prediction.

From Figure 1, we conclude that no single filter out-
performs all others across all the applications. PC filter
performs best in 3 applications. Similarly PC+ADD filter
provides best accuracy for 8 out of 22 applications. ADD
and REGION filters outperform others for sjeng and mcf
respectively. This behavior motivates us to propose a
prefetch-address filter that can perform best across all
the applications. Note that our aim is not to propose a
new prefetching/filtering algorithm.

3 WEIGHTED-MAJORITY FILTER
This section describes our prefetch-address filter, which
we call weighted majority (WM) filter. WM-filter uses the
weighted-majority algorithm to predict the usefulness of
a prefetch address. First, we describe the basic weighted
majority algorithm. Next, we explain how we use the
weighted-majority algorithm to build the WM-filter.
Weighted-majority algorithm: This is an algorithm that
is used for binary prediction (which predicts 1 or 0). It
uses the predictions of n experts where each expert is an
independent predictor. Each expert is assigned a weight
(w) that corresponds to the expert’s confidence (higher

3. We use a region size of 2KB (performs best which we find
empirically) which consists of 64-byte thirty two cache blocks. The
region of a prefetch address = prefetch address >> 11.

the better). Initially, the w of each expert is assigned
to 1. After every prediction made by expert (say i), the
algorithm updates the weight of expert i as follows:
wi ← wi × (α) if the prediction made by the expert is
incorrect and wi ← wi × (1

α) if the prediction made by
the expert is correct, where α is the learning rate that
ranges from 0 to 1, and determines the rate at which the
weights are updated.

The rationale behind such a decision making is, an expert,
which predicts correctly gains its weight but an expert that
predicts wrongly loses its weight based on the value of α.

The algorithm uses the prediction of each expert and
determines the majority in the following way: It finds
wy =

∑
wi,p=1 and wn =

∑
wi,p=0, where wi,p=0 is

the weight of an expert that predicts 0 and wi,p=1 is the
weight of an expert that predicts 1. If wy > wn, then the
algorithm predicts 1 else 0. This algorithm guarantees
that the prediction accuracy will be at-least as good as
the best expert (expert with highest prediction accuracy).

The basic WM algorithm works well in practice but
when we apply it for predicting the usefulness of a
prefetch address, we find some limitations: (i) it is very
slow to adapt if the best-expert changes over time. For
example, in omnetpp, PC-filter performs better than oth-
ers for some part of the program whereas ADD-filter
performs better for some. Also, a phase-change in an
application can decrease the weight of the best-expert
if it predicts wrongly and the recovery will take more
time. To make the WM algorithm more adaptable, we
modify the algorithm and update the weight of an expert
that makes wrong predictions, as before, but only if its
weight is at least γ times of the average weight of all
experts. Rationale: the lower bound on the weight of each
expert will prevent any one expert from making repeated
wrong predictions for a longer duration. Also, if an expert
becomes best-expert for a shorter period of time, the algorithm
will be able to recognize it. Further, we consider a lower
limit (ε) on weights to prevent the underflow of floating
point weights. WM algorithm with ε works equally well
when compared with the basic WM algorithm [2]. Please
note that this approach is different from selection based
approaches where only one predictor is selected from a
group of predictors.
WM-Filter: To predict the usefulness of a prefetcher, we
use WM algorithm and create WM-filter that uses four
experts in the form of filters: PC, ADD, REGION and
PC+ADD. Similar to pollution-filter [11], we model each
expert with a 4096-entry table where each entry consists
of a 2-bit saturating counter. The weight (higher the better)
of an expert corresponds to the expert’s contribution in overall
prefetch accuracy of an application.

Figure 2 shows an example of the prediction process
of the WM-filter. The filter works as follows: Before
issuing the prefetch request for a prefetch address, the
prefetcher sends the prefetch address to the WM-filter. In
1 , the prefetch address is indexed using four different

signatures to four experts (expert 1 to expert 4) based
on their respective signatures. In 2 , each expert predicts

3

EXPERT- 1

EXPERT- 2

EXPERT- 3

EXPERT- 4

Prefetch-address

2 1

0

0

1

1

n=w1+w3

p=w2+w4

w1

w2

w3

w4

3

p>n

1

0

4

1 Prefetch 0 No-prefetch

yes

no

Fig. 2. Prediction process of the WM-filter.

their outcome (1 or 0). In 3 , the filter adds the weights of
experts who have predicted ’0’ and stores it in a register
called n. Similarly, it adds the weights of experts who
have predicted ‘1‘ and stores it in register called p. In
4 , the filter predicts ’1’ and informs the prefetcher (to

issue the prefetch request) if p > n else with ’0’ (not to
issue the prefetch request).
4 IMPLEMENTATION DETAILS
We set α and γ as 3

4 and 1
4 respectively after sweeping

through various values of α and γ ranging from 0.1 to
0.9. Similarly, we set ε to 0.1. To store the weights of each
expert, we use four 32-bit registers. WM-filter also uses
shifters and multipliers to update the weight, adders to
add the weights and a comparator to compare them.

Each filter-table contains 4096 entries and each entry
consists of a 2-bit saturating counter leading to a hard-
ware overhead of 4×4096×2 = 32.76Kbits = 4KB for four
filter-tables. Similar to pollution-filter [11], each cache
block contains a prefetch-bit and a reference-bit. But in
contrast to the pollution filter, we do not store PC with
all the prefetched blocks4. Instead, we use set-dueling
monitors [8] and store PC with the prefetched blocks of
32 cache sets leading to a reduced hardware overhead of
only 1KB. Also to store the prediction of each expert, for
a given prefetch address, each cache block contains a bit-
vector of width 4 bits (for 4 experts). When a cache block
containing a prefetch response is inserted into the cache,
the bit-vector is set to 1 or 0 based on the prediction of
each expert. When a prefetched block is evicted from the
cache, the 4-bit bit-vector is transferred to the WM-filter
that helps in updating the weight of each expert based on
their prediction and actual outcome (used or not used)
of the usefulness of the evicted prefetched block.

For a 64B cache-block size, the hardware overhead
with these additional bits is 12.2KB, which leads to a
total overhead of 4KB + 1KB + 12.2KB = 17.6KB, which
is modest (1.71% for an 1MB cache). Compared to a
hardware prefetcher with one filter, WM-filter incurs

4. Storing PCs with each block increases the hardware overhead
significantly.

an additional hardware of modest 3KB. We also find
the area requirements and power consumption by using
CACTI 6.5 [5] considering 32nm technology. The area
overhead because of WM-filter is 0.385mm2 with power
consumption of 12.781mW, which is not significant com-
pared to the power consumed by the LLC.

TABLE 1
Parameters of Simulated Machine.

Processor core out of order, 3.7GHz
Fetch/Commit width 8
Branch Predictor Tournament
ROB/LQ/SQ/Issue Queue 192/96/64/64 entries
L1 D/I Cache 32KB, 4 way, 2 cycle latency, LRU
L2 Unified Cache 1MB, 16 way, 26 cycle latency, LRU
MSHRs 16 at L1/L2
Cache line size 64B in L1 and L2
Write Buffer 64 Entries
DRAM Controller On-chip, Open Row, FR-FCFS
DRAM Bus split-transaction, 800 MHz, BL=8
DRAM DDR3 1600 MHz (11-11-11)

5 EVALUATION
To study the effectiveness of our filter we use gem5 [1]
full system simulator to simulate a single core system
with 2 levels of cache. Table 1 shows the baseline pa-
rameters of our simulated system. We use the region
of interest (ROI) of selected SPEC 2000 and SPEC 2006
benchmarks. We simulate each application for 1 billion
instructions after a fast-forward and warm-up of 500
million instructions within the ROI.

We compare the effectiveness of our technique in
terms of prefetch accuracy, prefetch coverage and im-
provement in IPC with three baseline prefetchers such
as AMPM [3], SMS [9], and GHB-PC/DC [6] that do
not use any filter. We provide detailed results only
for AMPM because on an average, it outperforms both
SMS and GHB-PC/DC. We also compare our filter with
the individual-best prefetch-address filter (a filter that
performs best for an individual application).

Figure 3 shows the prefetch accuracy provided by the
WM filter. On an average, for AMPM, SMS, and GHB-
PC/DC prefetchers, individual-best provides accuracies
of 0.68, 0.51, and 0.43 respectively whereas, the proposed
WM-filter provides accuracies of 0.85, 0.81, and 0.76
respectively. Our filter provides a prefetch-accuracy of
more than 0.85 for 12 out of 22 applications.

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Accuracy (Individual Best) Accuracy (WM) Coverage (Individual Best) Coverage (WM)

Higher the better

Fig. 3. Prefetch-accuracy/coverage with the WM-filter.

4

Higher the better

1
1.02
1.04
1.06
1.08

1.1
1.12
1.14
1.16
1.18

N
o

rm
al

iz
e

d
 IP

C
 C

o
m

p
ar

e
d

 t
o

 A
M

P
M

Individual best WM

Fig. 4. Performance with the WM-filter. Note, Gmean (SMS) and
Gmean (GHB-PC/DC) are the geomean of IPCs normalized to
baseline SMS and GHB-PC/DC prefetchers respectively.

Figure 4 shows the performance improvement in
terms of IPC. Compared to a system with baseline
prefetchers without filters, WM-filter provides IPC im-
provements of 8.1%, 9.3%, and 11% for AMPM, SMS, and
GHB-PC/DC respectively with maximum improvement
of 17%. On the other hand, the individual-best provides
IPC improvements of 2.8%, 3.6% and 4.9% for the same
set of prefetchers.

Why WM performs better than the individual-best?
We analyze the reasons behind the performance gain
with the WM-filter, as follows: (i) WM-filter adapts to
the phase changes of applications. For example, milc
changes its phase once in 50M cycles causing sudden
decrease in its prefetch accuracy (from 0.52 to 0.21).
(ii) The approach of combining the weights of multiple
filters holds the key. In case of the individual-best, if
the best-filter that has been predicting correctly in the
past predicts wrongly then the individual-best will make
an incorrect prediction, whereas with WM-filter, it can
happen that sum of the weights of other filters, that
predict oppositely is higher than the weight of the best-
filter. On an average, for AMPM, this happens for 23%
of the total predictions.

To exemplify further, Figure 5 shows how summation
of weights from the experts that predict ‘1’(wy) and
summation of weights from the experts that predict
‘0’(wn) affect the WM-filter’s prediction process. We
select 20 predictions from the ROI of omnetpp, which
spends a large part of the execution time traversing a
non-linear data structure (heap), and present wn and wy .

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Su
m

m
at

io
n

 o
f

w
e

ig
h

ts

Instances of Prediction

wy wn

If wy > wn, WM filter predicts 1 else 0

Fig. 5. Variation in weights for omnetpp with the WM-filter.
Circle shows the mis-predictions of WM-filter and squared ones
show predictions of the individual-best that are different from the
WM-filter.

Out of the 20 predictions, WM-filter predicts 17 correctly.
The instances of 3 mis-predictions are circled in Figure 5
and the instances where individual-best differs from the
WM-filter are shown in squared boxes.

During the first 6 instances, both individual-best and
WM-filter predict 1. At the 7th instance, the WM-filter
mis-predicts whereas the individual-best predicts cor-
rectly. From 11th to 14th, and 16th to 20th instances, WM-
filter predicts correctly but individual-best mis-predicts.
During these instances, PC+ADD, which is the best-filter
till the 7th instance starts mis-predicting and affects the
decisions of the individual-best. On the other hand, the
WM-filter adapts efficiently, predicting correctly.

Effect of learning rate on performance: The learning
rate of a filter depends on α (rate of update). When
α becomes less than 0.35, the WM-filter provides a
performance improvement of 3.9%. When α is close to 1,
the WM-filter delivers better performance achieving the
best when α is 0.75.

Other insights: ε and γ play an important role in
determining the effectiveness of the WM-filter. A WM-
filter without ε and γ provides an IPC improvement of
3.7%, 2.8%, and 2.7% for SMS, AMPM, and GHB-PC/DC
respectively. Further, the number of experts also play an
important role. More the number of experts, the better
would be the accuracy of the WM-filter.

6 RELATED WORK
The most closely related work is Pugsley et al.’s sand-
box prefetching [7] that uses a bloom filter to test the
effectiveness of a prefetch request by using 16 candidate
prefetchers. Every time a prefetch request is issued, the
filter predicts whether the prefetch-address would be
useful, and by checking the accuracy of the correspond-
ing candidate, it determines the number of prefetch
requests to be issued. One of the limitations of the
sandbox prefetching is that it predicts the usefulness of
a prefetch address by observing only the past history
of the prefetch address (one expert, in contrast to four
experts of WM-filter).

7 CONCLUSIONS
In this manuscript, we have presented an effective WM-
filter, a prefetch-address filtering technique that uses
weighted-majority algorithm to predict the usefulness
of prefetch addresses. The main advantage of using the
WM-filter is its adaptive nature in making predictions.
Our results show that WM-filter performs well across a
wide variety of applications.

REFERENCES
[1] Binkert et al.The gem5 simulator, SIGARCH CAN, 2011.
[2] Bianchi et al., How to use expert advice, Journal of ACM, 1997.
[3] Ishii et al., Access map pattern matching for high performance data

cache prefetch. In Journal of Instruction-Level Parallelism, 2011.
[4] Littlestone et al., The Weighted Majority Algorithm. Information

and Computation, 108(2):212-261, Feb.1994.
[5] Muralimanohar et al., CACTI 6.5.
[6] Nesbit et al., Data cache prefetching using a global history buffer,

IEEE Micro, 2005.
[7] Pugsley et al., Sandbox Prefetching: Safe run-time evaluation of

aggressive prefetchers, in HPCA, 2014.

5

[8] Qureshi et al., Adaptive Insertion Policies for High Performance
Caching, in ISCA, 2007.

[9] Somogyi et al., Spatial Memory Streaming, in ISCA 2006.
[10] SPEC CPU2006, SPEC CPU2000, http://www.spec.org.
[11] Zhuang et al., A hardware-based cache pollution filtering mech-

anism for aggressive prefetches, In ICPP, 2003.

http://www.spec.org

	Introduction
	Background and Motivation
	Weighted-majority Filter
	Implementation Details
	Evaluation
	Related Work
	Conclusions
	References

