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Abstract—Cross-core last-level cache (LLC) eviction based side-
channel attacks are becoming practical because of the inclusive
nature of shared resources (e.g., an inclusive LLC), that creates
back-invalidation-hits at the private caches. Most of the cross-
core eviction based side-channel attack strategies exploit the
same for a successful attack. The fundamental principle behind
all the cross-core eviction attack strategies is that the attacker
can observe LLC access time differences (in terms of latency
differences between events such as hits/misses) to infer about the
data used by the victim. We fool the attacker (by providing LLC
hits to the addresses of interest) through a back-invalidation-
hits triggered hardware prefetching technique (BITP). BITP is
an L2 cache level hardware prefetcher that prefetches the back-
invalidated block addresses and refills the LLC (along with the
L2) before the attacker’s observation/access, efficiently nullifying
inferences due to differences in access latencies.

We show that BITP can fool the attacker with various
security metrics related to LLC side-channel. BITP provides zero
probability of success in terms of attacker’s probability of success
for Evict+Time, Evict+Reload, and Prime+Probe attacks. We also
show the effectiveness of BITP in terms of performance by sim-
ulating SPEC CPU 2006, PARSEC, and CloudSuite benchmarks
and find that, on average, BITP improves system performance
marginally by 1.1%. Overall, BITP is a simple, practical, and
yet powerful technique in mitigating various cross-core LLC
eviction-based side-channel attacks. Compared to the state-of-
the-art policies, BITP does not require support from software
writer, operating system (OS), and runtime systems. Overall,
BITP provides marginal improvement in system performance,
providing security with no hardware and performance overhead,
which makes BITP readily-implementable.

I. INTRODUCTION

Cross-core eviction based side-channel attacks at the last-

level cache (LLC), observe the fundamental property of “latency

differences between cache hits and misses” to infer about the

cache blocks that are accessed by the victim (cryptographic)

application [1]–[6]. An LLC eviction attack includes an attacker

(spy) application running along with a victim application on a

multi-core system. The attacker is a malicious application that

tries to infer the secret data. As all the cores of a system usually

share the LLC, an attacker tries to eviction with the victim at

the LLC set and fools the victim by employing different cross-

core side-channel attack strategies. These strategies observe

hits/misses to the cache block addresses of interest of the victim.

There are various cache eviction attacks that are mounted on

mobiles [7], desktops [5], and clouds [4].

The essence of an inclusive shared resource (e.g., an inclusive

LLC that is always a superset of the private caches (L1 and

L2)), becomes a security loophole when exploited carefully as

an eviction of a cache block from the LLC, back-invalidates

cache blocks in private caches. Moreover, future accesses by

the victim incur cache misses at private caches. Note that

inclusive LLCs are famous for simplifying the cache coherence

layer as LLC becomes the directory and there is no need for

additional hardware for maintaining cache coherence.

All the LLC eviction based cross-core side-channel attack

strategies exploit this feature to attack the victim. Even for a

non-inclusive LLC, a recent [8] successful eviction based cross-

core attack, exploits the inclusive cache coherence directory to

create inclusion-victims (back-invalidation hits). For the ease

of understanding, unless specified, we focus on inclusive LLCs.

We discuss a recent eviction attack on non-inclusive LLCs that

uses inclusive coherence directory in Section III-E.

To understand how an inclusive shared resource helps in

cross-core eviction attack, we look deep into these attacks: in

Evict+Reload attack [1], the attacker evicts a specific cache

block(s) of the victim at the shared inclusive LLC, and this

eviction causes back-invalidation-hit(s) at the private caches

of the victim. After a fixed interval, the attacker reloads the

evicted address and if it gets a shorter access time (LLC hit),

then the attacker can infer that the victim has accessed the

cache block between the eviction and reload. Other strategies

follow similar events to extract information about the victim’s

LLC accesses. All the eviction attacks use the notion of time

precisely to schedule the events such as evict, flush, and reload.

The problem: In LLC side-channel attacks, the fundamental

principle behind all the strategies is to observe LLC access

time differences to infer about the data used by another core.

What if an inclusive shared resource ensures equal access time

for security-critical data even after a eviction? This problem is

non-trivial.

Our goal is to propose a simple micro architecture technique

that can completely mitigate cross-core LLC eviction based

side-channel attacks with no performance and hardware over-

head, and which does not demand intervention from software

writer, instruction set architecture (ISA), compiler, runtime

system, and operating system (OS). Prior proposals [9]–[14]

that try to mitigate side-channel attacks at the LLC degrade
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Fig. 1. Fraction of LLC evictions that result in back-invalidation-hits at the
L2 for single-core and multi-core systems with 2MB/LLC per core.

system performance and system fairness and some of the

proposals are very specific to a particular attack. Some of

them [15], [16] demand changes at the OS level.

Key Observations: The following observations motivate our

proposal.

(I) Back-invalidation-hits help attackers: In a eviction based

cross-core side channel attack, the attacker’s premise is that

the evicted LLC block is present in private caches. Therefore,

in such a scenario, back-invalidations originating from the

LLC, hit at the private cache of the victim and invalidates the

corresponding blocks. This leads to private cache misses for

future accesses to the same blocks by the victim and future

accesses load the same block from the LLC.

(II) Cross-core Back-invalidation-hits are rare and benign: The

fraction of back-invalidations that hit at the private caches is

low if the per-core L2:L3 ratio is low and the back-invalidated

blocks are “hot” (get reused) [17]. So, prefetching back-

invalidated blocks will not degrade the system performance.

While the first observation is the essence of the attack

scenario, the second observation requires empirical validation

for strengthening the claim and quantifying the performance

overhead. To establish “back-invalidation-hits help attackers”,

we simulate a 2-core system mounting the Evict+Reload attack,

where a spy runs on core-0 and a victim runs on core-1 with

cryptographic applications such as GnuPG [18] and Poppler

[19]. We find that all the block addresses of interest cause

back-invalidation-hits at the L2. We describe the details about

different attack strategies in Section II. We also experiment

with other ciphers like AES-128 and RSA, and our conclusion

remains the same.

To establish that “Cross-core back-invalidation-hits are rare

and benign”, we quantify the fraction of back-invalidations that

hit at L2. We perform this study with two of the best cache

replacement policies: SHiP++ (an extended SHiP [20]) and

a modified version of HAWKEYE [21] as per the 2nd cache

replacement championship (CRC-2) held in ISCA ’17. Figure 1

shows that on average, less than 4% LLC evictions cause back-

invalidation-hits at the L2 for single-core and multi-core mixes

involving SPEC CPU 2006 [22], PARSEC [23], and CloudSuite

[24] benchmarks and out of which more than 98% of the

back-invalidated blocks get reused. We use all the 4-core multi-

programmed mixes possible (28 choose 4 with repetitions)

for client based workloads and then combine them to create

8-core and 16-core mixes. For server workloads, we use the

multi-threaded cloudSuite benchmarks and for scientific parallel

applications, we use the multi-threaded PARSEC benchmarks.

We observe a similar trend with other replacement policies

that are mentioned in CRC-2 site. We do not report the back-

invalidation-hits at the L1 as L2 is inclusive of L1. For this

experiment, we use the gem5 [25] simulator with L1 D-cache

of 32KB, L2 cache of 256 KB, and an inclusive LLC of

2MB/core, which is the industry standard in some of the recent

commercial processors. Also, the recently concluded CRC-2

[26] has 2MB LLC/core.

Note that, the fraction of back-invalidations that hit at the
L2 in the temporal locality aware (TLA) policy [17] is high
because, the authors have used an LLC of 1MB/core, motivated
by the 1st cache replacement championship (CRC-1) [27] held
in ISCA 2010. In contrast, we consider 2MB/core LLC for

the reasons already mentioned. Note that the expected back-

invalidation-hit ratio is around 256KB
2MB for L2 and with a 1MB

LLC/core, this ratio goes up to around 256KB
1MB . We corroborate

the findings of [17] for different L2/LLC ratios.

We also try LRU based replacement policies where the

percentage of back-invalidation-hits is small because policies

such as SHiP++ and HAWKEYE are more aggressive than

LRU in evicting cache blocks of cache-averse applications

(applications that do not get benefit with LLC). Note that,

We use the gem5 [25] full-system simulator and simulate the

SPEC CPU 2006 benchmarks for 250M instructions within

their respective region of interest after a fast-forward of 200M

instructions. We use the region of interests similar to the CRC-

2 site. This experiment sets the tone for our proposal as the
fraction of back-invalidations that hit at the L2 is marginal
and a large fraction of them get reused.

Our Idea: We propose a simple per-core private hardware

prefetcher at the L2 level and name it back-invalidation-

triggered-prefetching (BITP). Note that, no other invalidation
hits such as invalidation hits while maintaining cache coher-
ence, trigger BITP. BITP prefetches the back-invalidated block

addresses and it does not maintain any additional hardware

structure to prefetch. To the best of our knowledge, this is

the first proposal on hardware prefetching that mitigates well-

known cross-core LLC eviction based side-channel attacks by

exploiting the notion of back-invalidation-hits. Overall, our

contributions are as follows:

• We quantify the back-invalidation-hits for cryptographic

and standard applications (Figure 1) and propose BITP

that brings the back-invalidated blocks into L2 and LLC.

We provide the security effectiveness of BITP and show

how BITP mitigates cross-core LLC eviction attacks. We

also discuss few subtle issues of interest. (Section III).

• We show the effectiveness of BITP in terms of system

performance (an average improvement of 1.1%) and

provide security with no hardware overhead, and no

support from ISA, compilers, runtime systems, and OS

(Section IV).
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II. BACKGROUND

This section provides background on different cross-core

eviction based side-channel attacks (miss type and hit type)

at the LLC. It also provides a discussion about some of the

recent LLC replacement policies. In miss type attacks, the

attacker is interested in observing longer cache access time,

because of cache misses (miss access can be either from the

victim or the attacker). In contrast, in hit-based attacks, the

attacker is interested in shorter access time (hits). All the

attacks measure LLC access time. However, some attacks do

it precisely per memory access (access based attacks), and

some accumulate the timing information for the entire security-

critical accesses (timing based attacks). Primarily, there are

three different strategies such as (i) Evict+Reload (a variant of

Flush+Reload attack where the Flush operation is replaced by

the Evict operation), (ii) Evict+Time, and (iii) Prime+Probe.

In flush based attacks such as Flush+Reload [5], the attacker

uses clflush instruction to flush a cache block address from

all the cache levels and later reloads the same block address.

While reloading, if it gets a hit, then the attacker concludes

that the victim has accessed the cache block.

Note that, based on the prior works suggest flush based at-
tacks [5], [28]–[30] can be mitigated by preventing clflush
instruction in user mode for read-only or executable OS pages
(such as shared library code) [16]. It can be done through
a system call (Linux OS already has a system call called
cacheflush [31]). There are other possibilities like making
clflush constant time, or the extreme case like Google Nacl
[32] that disables clflush instruction. However, it can be
noted that x86 still allows clflush from the user mode. We
believe there are undisclosed reasons for which clflush is
not privileged yet and it is an open problem to debate and
discuss, which is beyond the scope of this paper. In this paper,
we only concentrate on eviction based attacks.

Evict+Time: In this attack, the spy observes the execution

time of the victim over a large number of intervals. First, the

spy evicts cache blocks from a few set(s) at the LLC that

causes back-invalidation-hits in the private L2 of the victim.

Later, when the victim accesses the evicted block(s), it results

in a longer access time. The spy observes the same.

Evict+Reload: In Evict+Reload attack, the spy core evicts

a cache block from the LLC that results in a back-invalidation

and invalidates the corresponding cache blocks in private L2

of the victim. After an interval (predetermined fixed value), the

spy reloads the same address and if it gets a shorter access time

(an LLC hit), then it concludes that the victim has accessed

the same cache block.

Prime+Probe: In this attack, the attacker loads its cache

blocks by evicting the blocks of the victim (the prime part).

Then the victim executes its secure operation and in the process,

gets LLC misses, evicts the blocks brought by the attacker.

Next, the attacker probes its execution time by reloading its

blocks, to see whether it gets longer access time because the

victim has evicted the block (an LLC miss).

Out of all these attacks, Evict+Reload attack demands the

notion of sharing of OS pages between the victim and the

spy. The attack is more precise (operates at specific block

addresses).

The notion of time: In all the cross-core eviction based
attack strategies, the attacker uses monitor epochs of 5000 to
10,000 cycles [2]1, [16], [33], and [10]. In one epoch, the

attacker evicts (or primes) 16 cache blocks (assuming a 16-way

LLC) at the beginning of the epoch, waits, and reloads (or

probes/observes) LLC block(s) of interest, just before the end

of the epoch. Yarom and Falkner [5] show how to choose

the time gap (length of the epoch) so that an attacker can

attack successfully. The next section shows how BITP mitigates

various cross-core LLC side-channel attacks.

Cache Replacement Policies: LLC replacement policies

play an important role in setting up the eviction based attacks

because to evict a block from a cache set, the attacker has to

access the set multiple times to make sure the victim’s block

is evicted from the LLC. As LRU based policies are not that

effective for large LLCs, aggressive LLC replacement policies

such as SHiP++ [20] and HAWKEYE [21] have been proposed

that use re-reference interval prediction (RRIP) [34] chain

based policies with re-reference prediction values (RRPVs).

SHiP++ uses difference signatures like the program counter

(PC) and memory region to infer about the reuse of the blocks

belonging to that signature and HAWKEYE tries to provide

an illusion of Belady’s optimal replacement policy. It looks at

the past behavior of cache blocks based on a signature like

PC and applies Belady’s policy on them.

III. BACK-INVALIDATION-HITS

TRIGGERED PREFETCHING (BITP)

A. BITP Mechanism

A self-contained Figure 2 shows the steps involved with the

BITP mechanism. BITP only prefetches on back-invalidation

hits and not on invalidations due to cache coherence. Note

that in case of a baseline system without BITP, the LLC

controller sends a normal invalidation command (INV) along

with the evicted address to the private caches. With BITP,

we need a mechanism to distinguish back-invalidations from

normal invalidations. To accomplish this, the LLC con-

troller sends a packet with BACK-INV command (simi-

lar to other commands like GET/PUT/INV/LOAD/STORE/

PREFETCH/WRITEACK) along with the evicted block address

in the command+address bus. The private cache controllers

would trigger BITP if there is a back-invalidation hit (by

comparing the tag) and the command is BACK-INV and

not INV. Also, depending on the implementation of cache

coherence directory (e.g., a sliced directory for each slice

at the LLC), the evicted LLC block address along with the

BACK-INV command, should be communicated to the sliced

directory first, which converts the address and the command

into back-invalidation requests for private caches. So, overall,

BITP demands marginal changes to existing structures and

does not demand any additional hardware.

1Note that this epoch is used in real machines.
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Fig. 2. BITP Mechanism. MSHRS in 6 and 7 are the same as 3 and 4 .

B. Metrics for Security Effectiveness

To compare different micro-architecture techniques in terms

of information leakage, metrics such as true positive rate (TPR),

which is the ratio of true critical accesses observed by the

attacker and the number of critical accesses of the victim

and Cache side-channel vulnerability (CSV) [35] (Pearson’s

correlation coefficient between the victim and attacker traces

at the LLC) are proposed. Recently, He and Lee proposed a

nice and more generic model called Probabilistic information

flow graph (PIFG) [36] to quantify the probability of attack

success (PAS). A PAS value closer to 0 is better and secure.

We apply PIFG [36] to include the events of interest for an

inclusive LLC. We redefine PAS for an inclusive LLC for

Evict+Time, Prime+Probe, and Evict+Reload attacks by adding

one additional event of back-invalidation-hit. Overall, we show

the effectiveness of BITP with the following metrics: (i) PAS,

(ii) Relative LLC access time difference as observed by the

attacker, (iii) TPR, and (iv) CSV. Out of these four metrics,

PAS is a recent one, which we explain in details.

PAS [36]: Table I shows conditional probabilities of interest

through which the information flows from the victim to the

attacker, for all three cross-core eviction based attacks at the

LLC. For a detailed overview on PIFG, please refer [36]. We

quantify PAS for a baseline system with 32KB L1, 256KB L2,

and 16-way 2MB LLC slice/core (similar to Intel’s slicing at

the LLC [37]) by finding out the probabilities (Table I):

p1: 1.00, conventional mapping in which a DRAM address

mapped to a particular cache set with probability 1.00 and it is

known to the attacker. If it is not known to the attacker, then

it will be less than 1.00.

p2: 1.00, for a successful attack, the attacker should be able to

replace the cache block(s) of interest before the victim reloads.

For a w-way cache, the attacker should access a particular set

at-least w times for LRU based policy and w̄ (w̄ can be less

than equal to w or greater than w) times for RRIP [34] based

eviction policies.

p3: 1.00, this probability will change if we prevent replacement

of the block of interest.

p4: 0.125, theoretically, the expected probability of getting a

back-invalidation-hit with state-of-the-art replacement policies

is 256KB
2MB = 0.125.

TABLE I
CONDITIONAL PROBABILITIES OF EVENTS OF INTEREST BASED ON PIFG.

Events
p1 Memory block getting mapped into a cache set
p2 Cache block selected for replacement given the cache set
p3 Cache block selected by the replacement policy is evicted
p4 Evicted cache block leads to back-invalidation-hits at the L2
p5 Evicted block (that has caused back-invalidation-hit) when accessed

again gets an LLC miss and the very next access gets a hit.
p6 LLC hit/miss getting mapped to the shorter/longer access time.

p5: 1.00, the attacker observes an LLC miss/hit in miss/hit

type attacks.

p6: 1.00, a direct correlation between miss/hit with the LLC

access time. So the PAS of the baseline system is 0.125 (p1×
p2×p3×p4×p5×p6). Next, we show the PAS for cross-core

miss-type attacks, which is easy to understand followed by the

hit-type attacks.

C. PAS of BITP

1) PAS for Evict+Time attack with BITP: As Evict+Time

is a miss type and timing based attack, the attacker will

be successful if it observes longer access time to the block

addresses of interest that are evicted by itself. The only

conditional probability that changes with BITP is p5, which

becomes 0 as the probability of victim’s reload getting a miss

is zero (BITP provides hits), which results in a PAS of 0.

2) PAS for Evict+Reload Attack: In contrast to Evict+Time

attack, Evict+Reload is a hit type attack. An attacker goes

through conditional probabilities of p1 to p4 (same as

Evict+Time). p5 corresponds to the attacker’s reload is a hit

provided the victim has accessed the cache block between evict

and reload. Note that PIFG calculates the forward probability

from the victim’s side ( attacker=hit
victim=accessed ) and because of which

it can not capture the effectiveness BITP as it does not consider

the cases where the victim has not accessed and the attacker

still gets the hits. A formal way of finding the PAS for this

attack is to find the backward probability from the attacker’s

point of view (victim=accessed
attacker=hit ) till the point that a cache set

is mapped to the memory block. A simple alternative is p5
can be exactly correlated with the TPR, which is 1.00 in the

baseline. With BITP, p5 is PV (probability of the victim’s

access at the LLC in between evict and reload). Note that,

there are two possibilities:

(i) The victim gets a hit at the L2 thanks to BITP and there

is no access to LLC. In this case PV and p5 are 0, which

happens all the time with BITP.

(ii) However, it is still possible that the victim gets a miss at

the L2 and accesses LLC with probability PV and in this case,

BITP provides LLC hits all the time to the attacker. So, in the
worst case, the PAS for Evict+Reload is 0.125×PV. Based on
our simulations on AES-128, GnuPG, and Poppler, we find PV
varies from 0.04 to 0.26.

3) PAS for Prime+Probe Attack with BITP: In Prime+Probe

attack, first, the attacker evicts blocks of interest of the victim

(step 1) and then the victim misses and evicts the blocks of

interest of the attacker (step 2). Later, when the attacker probes,

it gets an LLC miss (longer access time). In terms of PAS,
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ALGORITHM 1: Square Multiply Exponentiation
1: Input: base b, modulo m, and exponent e (en−1 to e0)
2: Output: be mod m
3: r=1
4: for all i, from n-1 to 0 do
5: r = square (r)
6: r = modulo (r, m)
7: if (ei==1) then
8: r = multiply (r, b)
9: r = modulo (r, m)

10: end if
11: end for
12: return r
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Fig. 3. Normalized average encryption time observed by the attacker for
different plain-text values on AES-128. Higher avg. encryption time leads to
a successful Evict+Time attack.

there is one sequence of p1 to p6 for the attacker (evicting

victim’s blocks). There is another sequence of p1 to p6 for

the victim (evicting attacker’s blocks), which leads to a PAS of

0.125×0.125 = 0.0156 in the baseline system. With BITP, the

PAS becomes zero, because the victim does not evict the blocks

of the attacker. So in the Probe stage, the attacker gets hits at its

L2 (no LLC misses during the victim’s accesses, no evictions,

and no back-invalidations to the blocks of the attacker). So

BITP prevents information leakage and also makes it difficult

to mount Prime+Probe attack at the LLC.

Note that, BITP prefetches on all back-invalidation-hits,
irrespective of the source of the request:attacker/victim and
it is not dependent on the core-id of the request. Although

PAS is a generic metric, PAS does not account for timing

characteristics and does not adequately capture the nuances of

side-channel attacks. In the next section, we show the relative

LLC latency differences as observed by the attacker.

D. Access Time Difference with BITP

In this section, we evaluate the security effectiveness for

cross-core LLC eviction based Evict+Time, Evict+Reload, and

Prime+Probe attacks by running AES-128, GnuPG, and Poppler.

In case of Evict+Time and Evict+Reload attacks, to find out

the cache set that contains the critical cache block addresses,

the spy mmaps the virtual addresses of interest. In case of

Prime+Probe attack, it creates an eviction-set(s) before the

prime process. In miss/hit type attacks, the attacker will be

successful if it gets longer/shorter LLC access (execution) time.

1) Evict+Time Attack on AES: In Evict+Time attack, the

attacker attacks AES-128 where it evicts an AES cache block

containing table entries and then call a routine to encrypt with
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Fig. 4. LLC access time observed by the attacker while attacking GnuPG.
Y-axis shows LLC access time. X-axis: attack epochs.

random plain-text and measures the encryption time. Note

that, as Evict+Time is a miss-type attack, the attacker will be

successful if it gets LLC misses for certain plain-text values,

increasing the average encryption time. However, with BITP,

the average encryption time does not change much (thanks to

LLC hits) and the attack is unsuccessful. Figure 3 shows the

average encryption time for each plaintext values normalized

to encryption time averaged across all the plaintext values. We

can see, plaintext values from 112 to 126 show LLC misses

(higher avg. encryption time), which helps the attacker in the

baseline.

2) Evict+Reload attack on GnuPG: GnuPG [18] is an open-

source implementation of OpenPGP standard. We use the

GnuPG 1.4.13 version that uses modular exponentiation in the

form of square-and-multiply [38] Algorithm (refer Algorithm

1), where each occurrence of square-modulo-multiply-modulo

corresponds to the exponent bit one whereas each occurrence

of square-modulo not followed by a multiply operation corre-

sponds to a zero. A complete trace of the square-and-multiply

can help in recovering the exponent as mentioned in [5], [39],

[40]. Note that modular exponentiation is the main computation

in many other public-key ciphers like RSA and ElGamal. We

run a simulated 2-core system with an attacker on core-0

and GnuPG on core-1. The attacker creates 10,000 epochs

where each epoch is of 6,000 cycles (this gap is required for a

successful attack. Note that this number may change with the

cache and DRAM organization and it should be determined

empirically). In each epoch, the attacker evicts and reloads the

addresses corresponding to the square and multiply functions

(addresses of interest).
The attacker measures the access time to infer about LLC

hits and misses, and with BITP, the attacker should get the

time closer to the hit latency of the LLC. Figure 4 shows the

LLC access time for the critical accesses (square and multiply

functions) as observed by the attacker within a representative

window of 50 epochs (epoch # 1000 to 1050). For illustration

purpose, we pick a small window. However, we observe a

similar trend for the rest of the epochs. From Figure 4, In the

baseline, the attacker can differentiate the LLC hits and misses

by observing the access latencies and can infer the secret key

bit (if multiply follows the square in one epoch, then the bit is

one else zero). However, with BITP, the attacker gets access

time closer to LLC hits to the addresses of interest as BITP

prefetches them before the attacker reloads. Note that, there is
no latency difference between an LLC hit to a demand cache
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block and an LLC hit to a prefetched cache block.
3) Prime+Probe attack on Poppler: This section explains

the effect of BITP on a pdf rendering library called Poppler

[19]. We run the attacker on core-0 and pdftops on core-1.

The approach used in [41] that attacks four different functions

of pdf2ps motivates our attack. We show the LLC hits for each

function with the baseline system and with BITP in Figure 5.

More details about the attack are available in [41] where the

authors describe how they probe the addresses of interest (four

functions) to identify more than 100 pdf files. The attacker uses

10,000 epochs each of 8,000 cycles, where the attacker primes

and probes the addresses corresponding to four functions that

are accessed by the victim core. Typically, an LLC hit takes in

between 40 to 126 cycles depending on which LLC slice (bank)

has the requested address and an LLC miss takes around 150

to 325 cycles. So if an attacker sets a threshold of 130 cycles

for an LLC hit and anything above 130 cycles as an LLC miss,

then BITP makes sure that the attacker always gets LLC hit,

access latency of fewer than 90 cycles. Figure 5 shows the

shorter access times (less than 130 cycles) with “0” and more

than 130 cycles as longer access time with “1” as observed

with the baseline for all the four functions. It also shows the

effectiveness of BITP that results in LLC shorter access times

for all the functions all the time. Note that the shorter access

time includes L2 hits too.

Probability distribution of LLC access time: Figure 6

shows the probability distribution function of LLC access time

averaged across all the cross-core LLC-eviction attacks. Note

that, with BITP, the attacker gets access time closer to LLC

hits. LLC misses have two components: DRAM row-buffer hits

TABLE II
SUMMARY OF SECURITY RESULTS ACROSS ALL ATTACKS.

Baseline BITP
PAS 0.125 0
Avg. access time 172 cycles 63 cycles
Range of TPR 0.77 to 0.91 0.04 to 0.11
Range of CSV 0.81 to 0.93 0.07 to 0.13

Higher the better for the attacker
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Fig. 7. True positive rate (TPR) versus epoch length.

and row-buffer conflicts. Table II summarizes the effectiveness

of BITP in terms of four different metrics related to all the

three cross-core cache side-channel attacks. Note that, with

PIFG model (a mathematical model), PAS of BITP is zero.

However, the range of values of TPR (0.04 to 0.11) and CSV

(0.07 to 0.13) are non-zero (though closer to zero) because of

noise that comes from the experiments.

E. Eviction Attacks in Non-inclusive LLCs

A recent work that will appear in SP ’19 [8] shows cross-

core eviction attacks in non-inclusive caches. The premise

of the attack is ”shared inclusive, and extended sliced cache
coherence directory”. The authors exploit the inclusive directory

to create cross-core evictions that create inclusion victims

(back-invalidation hits) at the L2. Similar to the inclusive LLC,

we trigger BITP on every eviction at the extended coherence

directory that creates back-invalidation hits. So, fundamentally,

any attack that creates back-invalidation-hits will be mitigated

by our approach (irrespective of inclusive and non-inclusive

LLC), which makes a solid case for BITP.

F. BITP with Intelligent Attackers

We discuss some other ways of launching a cross-core LLC

eviction attack and how BITP handles them.

Prime+Reprime+Probe attack [42]: An attacker can

launch a Prime+Probe attack, where the attacker primes the

LLC and reprimes the LLC to make sure the primed cache

blocks at the LLC are not present in its private L2. The

attacker ensures that the reprime process keeps the prime data

to a new cache set in the LLC, but to the same cache set in

the L2s. In case of systems that use huge pages (OS page

size of 1MB and 1GB) it is relatively easy because 20 to 30

bits (for 1MB and 1GB pages) of page offset will not change

during the page translation. Depending on the cache indexing,

the attacker can evict the cache blocks only from the L1/L2

caches while leaving them in the LLC. In this case, there will

not be back-invalidation-hits at the attacker’s L2. However,

back-invalidation-hits will be there at the victim’s L2 in both
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the Prime and Reprime steps, which trigger BITP from the

victim’s L2 and makes sure that the victim gets L2 and LLC

hits, no eviction of attacker’s blocks. So, in the Probe step,

the attacker gets LLC hits because its blocks are not evicted

by the victim.

Invalidate+Evict+Reload attack: There are a few ciphers

that updates(writes) and reads the data. In this case, the

attacker may first invalidate the victim block(s) in the victim’s

L2 through cache coherence, and then evict its blocks from its

private caches and then from the LLC. In such cases, the LLC

eviction will not cause back-invalidation hits. However, this

methodology is non-deterministic and impractical as explained

below. After the invalidation (STORE access from the attacker)

of the victim’s private block, the attacker would have the same

block in the M state (assuming MOESI protocol) at its L1.

To ensure that the block is not present in the entire cache

hierarchy, the attacker does the following: (i) evicts the

block from L1 (4 accesses for a 4-way L1, being dirty,

block would enter the L1 write-back queue), block gets

updated at the L2 if needed, (ii) evicts the updated block

from L2 (8 accesses for an 8-way L2), block would enter L2

write-back queue, and the block gets updated at the LLC if

needed, and finally (iii) evicts the block from the LLC (16

accesses for a 16-way LLC). Note that there would be a gap

between L1 eviction and L2 update from the L1 write-back

queue, and same at the LLC level. We find this attack is

impractical because in the best case, the attacker has to

perform 29 to 50 accesses to different levels of caches. We

perform the same on Intel Skylake and Intel Haswell machines.

G. Revisiting The Notion of Time

Sensitivity to the epoch length: In Section II, we have

discussed the length of the epochs (5000 to 10000 cycles).

We also test shorter (starting from zero cycles) and longer

monitor intervals for the effectiveness of BITP. As mentioned

in Section III-F, the victim accesses the LLC after an interval,

which is of 2000 cycles. So, fundamentally, the attack will not

be effective even in the baseline case if the attacker uses an

epoch of less than 2000 cycles. For example, in a Prime+Probe

attack, the attacker has to evict 16 cache blocks of a given

cache set then the victim accesses and evicts few blocks, and

then again the attacker has to access the block addresses of

interest. Figure 7 shows the effect of epoch length on TPR

across all the eviction attacks and we find an epoch length

between 6000 cycles to 10,000 cycles is the best for most

of the cross-core eviction based LLC attacks. This shows

the effectiveness of BITP as small epoch length will make

an attack weak and with a good enough epoch length, BITP

makes the attack weak.

Time gap between back-invalidation hit and prefetch
response: This time gap should be less than the gap between

back-invalidation-hit and the victim’s access. We find, there is

an average gap of just more than 2000 cycles between the

Evict or Prime step and the victim’s access. That is why the

attacker chooses a long epoch. If the attacker chooses a small

epoch of say 2000 to 4000 cycles, then most of the time the

attacker will miss at the LLC. We find two insights: (i) It is

sufficient to prefetch anytime in between Evict and the Reload

of the attacker for all the miss-type attacks. (ii) However, for

the hit-type attacks, the prefetcher should prefetch before the

victim accesses, and makes sure that by the time the victim

accesses it finds hits at the L2 (no access to LLC from the

attacker corresponds no information leakage at the LLC).

Based on our simulations, in the best/worst case, a prefetch

response takes 72/323 processor cycles (averaged among

4-core, 8-core, and 16-core simulations with one, two, and

four DRAM controllers).

Motivated attacker: Note that if a motivated attacker

reloads during the prefetch response interval (for a fixed

epoch as shown in Figure 7), then it will be unsuccessful. If

an attacker knows about BITP and tries to reload just after

the eviction then it would be successful with a TPR of less

than 0.002 (TPR of the baseline system is 0.9). To make our

case even stronger, we run all the attacks on real machines

(on Intel Skylake and Intel Haswell) where once we finish

evictions of all the blocks, we reload immediately creating a

multi-threaded attacker, and find even a lower TPR. We find

two scenarios dominating this experiment: (i) Attacker reloads

before victim’s access and (ii) an overlap between attacker’s

reload and victim’s access.

H. Security Comparison with Recent Works

SHARP prevents cross-core eviction of blocks that create

back-invalidation hits and hence prevents cross-core side-

channel attacks at the LLC by sending queries to L2 and

probing the coherence directory. SHARP does not allow a

spy to perform cross-core eviction if the eviction results in

inclusion victims (back-invalidation-hits) at the L2 of the victim.

To realize that, before evicting a cache block from an LLC set,

SHARP-4 sends up to four queries (4 block addresses based

on the replacement priority order, for example, LRU to LRU-3

positions if the LLC uses LRU replacement policy) one by

one to the L2 cache. The moment it finds that a query does

not create an inclusion victim then it evicts the block from the

LLC. In the worst case, if all the four queries fail to provide

a block that prevents inclusion victims; it uses the coherence

vector to find out if the rest of the blocks that are present in

the set will cause inclusion victim. In the rare case, SHARP

evicts a block randomly and if the # random evictions cross

a threshold, then it raises an interrupt to the OS.

RIC [15] is a relaxed inclusive cache hierarchy that prevents

back-invalidations of thread-private data and read-only data.

RIC takes the help of system software (OS) to identify the

read-only pages and it augments an additional bit (relaxed

inclusion bit) per cache block to identify the read-only block.

During an eviction, if the relaxed inclusion bit of the block is

set, then RIC does not back-invalidates private caches. RIC is

simpler (in terms of design aspects) compared to SHARP.

Security: Both SHARP and RIC provide the same level

of protection as BITP. SHARP and RIC fool the attacker
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TABLE III
SHARP [16], RIC [15], AND BITP: A COMPARISON.

BITP RIC SHARP
Needs OS sup-
port?

No Yes, to identify read-
only pages and thread
private data, to flush
the stale data in L2s,
and to prevent thread
migration

Yes (interrupt han-
dling)

Affects LLC
eviction
priority chain?

No No Yes

Needs
coherence
directory
support?

No No Yes (for probing)

Does thread
migration
affect?

No No (if OS flushes the
stale private data) and
Yes otherwise

Yes (SHARP
uses the core-id
information to
prevent cross-core
back-invalidations
but allows intra-core
back-invalidations)

Hardware
Overhead

Zero RI bit/tag, 64KB for
32MB LLC

alarm-counter
(12-bit) per core

TABLE IV
PARAMETERS OF THE SIMULATED SYSTEM.

Processor 1/2/4/8/16-cores, 3.7 GHz, out of order
L1 D/I, L2 32 KB (4 way), 256KB (8 way, inclusive)
Shared L3 2MB× cores, #slices=#cores, 16 way, inclu-

sive
MSHRs 16, 16, 16/128/256 MSHRs

at L1, L2, L3 with 1/8/16 cores
Cache line size 64B in L1, L2 and L3
Replacement policy SHiP++ [20] and HAWKEYE [21]
L2 prefetchers Best Offset [43]
On-chip interconnect Ring
DRAM controller 1/2/4 controllers for 1/8/16-cores, Open Row,

64 read/write queues, FR-FCFS, drain-when-
full

DRAM bus split-transaction, 800 MHz, BL=8
DRAM DDR3 1600 MHz (11-11-11)

Max bandwidth/channel - 12.8 GB/sec

by preventing back-invalidation-hits, (in terms of PIFG, by

making p4 zero), resulting in PAS of zero. We compare

SHARP and RIC with BITP in terms of PAS, LLC access

time, TPR, and CSV, and find that all these techniques are

equally effective. Table III shows the subtle issues that are

involved with SHARP and RIC and why BITP scores better

over SHARP and RIC. BITP does not demand OS intervention

and it does not incur additional hardware. Apart from these

important points, BITP does not affect the LLC replacement

policy chain. SHARP affects the replacement priority, which

causes performance degradation with SHiP++ and HAWKEYE

based policies (details in Section IV-C).

IV. PERFORMANCE EVALUATION

A. Simulation Methodology

We use the x86 based gem5 [25] simulator to simulate

single-core SPEC CPU 2006 [22] benchmarks and multi-core

(4-core to 16-core) multi-programmed mixes. To simulate the

CloudSuite [24] benchmarks, we use the CRC-2 framework

that provides traces of CloudSuite benchmarks. Table IV shows

TABLE V
CLASSIFICATION OF BENCHMARKS.

Benchmarks Type
h264ref, perlbench, povray, sjeng, gamess, namd L2 fitting
astar, bzip2, calculix, hmmer, xalancbmk, namd
classification, cloud9, bodytrack, dedup, x264, ferret,
freqmine, swaptions, blackscholes, raytrace, fluid.,
vips

LLC fitting

mcf, libquantum, sphinx3, omnetpp, gobmk,
GemsFDTD, bwaves, gcc, lbm, leslie3d, milc,
zeusmp, catus., tonto, wrf, soplex, cassandra, nutch,
streaming, streamcl., facesim, canneal

LLC thrash-
ing

TABLE VI
REPRESENTATIVE WORKLOAD MIX TYPES.

Mix type
1 All L2 fitting (L2F)
2 All LLC fitting (LLCF)
3 All LLC thrashing (LLCT)
4 50% L2F + 50% LLCF (0.5L2F-0.5LLCF)
5 50% L2F + 50% LLCT (0.5L2F-0.5LLCT)
6 50% LLCF + 50% LLCT (0.5LLCF-0.5LLCT)
7 25% LLCT + 75% Ł2F (0.25LLCT-0.75L2F)
8 Random mix

the parameters used in our simulated system. Note that for

multi-core mixes, the shared resources are scaled to prevent

resource constraints. For simulating CloudSuite benchmarks,

we use a modified version of ChampSim [44] interfaced with

DRAMSim2 [45]. We simulate the region of interest for

250M instructions with a warm-up of 200M instructions. For

CloudSuite benchmarks, we use the 100M traces as provided

by the CRC-2. For PARSEC, we use the sim-medium input

set and simulate the region-of-interest. For multi-programmed

mixes, we continue our simulation till the slowest application

finishes its 250M instructions (same methodology as prior

works such as [17]). However, we report the results only for

the region of interest of each application. Table V classifies all

the SPEC CPU 2006 and CloudSuite benchmarks into three

categories : (i) L2 fitting (working set fits in L2), (ii) LLC fitting

(working set fits in LLC), and (iii) LLC thrashing (working

set thrashes LLC) as used in [17].

Metrics: We use the L2+LLC misses per kilo instruction

(MPKI) to measure the reduction or increase in the L2+LLC

misses. For single-core simulations, we use speedup as the

metric, i.e., Exectimebaseline

Exectimetechnique
. For multi-programmed mixes,

we use harmonic mean of speedups (fair-speedup (FS)) [46].

FS = N
N−1∑

i=0

IPCalone
i

IPC
together
i

, where IPC
together
i is the IPC of core i

when it runs along with other N -1 applications nd IPCalone
i is

the IPC of core i when it runs alone on a N -core multi-core

system.

B. Single-core and Multi-core Results

Single-core results: Though, BITP is effective in mitigating

cross-core side-channel attacks at the LLC for multi-cores,

it is essential to report its effect on single-core simulations

as single-core performance should not be compromised for

cross-core security. With BITP, improvement/degradation in
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Fig. 8. Normalized L2+LLC MPKI and performance for 4-core multi-
programmed mixes. SHiP:SHiP++ and GM: geometric mean.

performance depends on LLC MPKI, the fraction of LLC
evictions that cause back-invalidation-hits and their reuse.

(i) L2 fitting applications do not contribute to LLC

accesses, and hence LLC misses and back-invalidations. The

fraction of back-invalidations-hits are close to zero. So the

performance improvement is negligible.

(ii) LLC fitting applications evict cache blocks rarely

at the LLC, which causes LLC back-invalidations and their

corresponding hits, also rare (< 1%), causing a negligible

impact on the IPC.

(iii) LLC thrashing applications miss significantly at

the LLC, which causes significant back-invalidations. However,

again the back-invalidation-hits are marginal (less than 7% in

most of the benchmarks). So BITP brings prefetched blocks

for 7% of total LLC evictions improving performance by

2.19% only. In summary, for single-core simulations, BITP

has no impact on system performance for L2 fitting and LLC

fitting benchmarks. It improves performance by an average

2.19% for LLC thrashing applications, only.

Multi-core results: For multi-core evaluation, We create

120 representative 4-core mixes (15 from each type as

mentioned in Table VI). We pick 15 mixes from each type

to get a cohesive picture of BITP. We also create 50 and 25

8-core and 16-core representative mixes, respectively.

Based on the single-core performance results, it is
expected that multi-programmed mixes that contain L2-fitting
applications along with LLC fitting or LLC thrashing
applications would get performance benefit because L2-fitting
applications’ blocks will be back-invalidated by LLC-thrashing
applications. We observe and validate this expected trend.

Figure 8 shows the effect of BITP on LLC+L2 misses and

fair-speedup. On average (across all 4-core mixes (31,465

mixes, 28 choose 4 with repetitions)), the effect of BITP is

marginal on LLC misses (average reduction of 2% and 3%

with SHiP++ and HAWKEYE) and fair-speedup (average

improvement of 1.1% with SHiP++ and HAWKEYE). There

are few mix types like 0.5L2F-0.5LLCF, 0.25LLCT-0.75L2F,

and 0.5L2F-0.5LLCT, where BITP improves the system

performance by 3%, in which one application evicts blocks of

other applications, aggressively. With BITP, these evictions
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Fig. 9. Performance of BITP for 8/16-core (16/32MB L3, 2/4 DRAM
controllers) systems.

cause back-invalidation-hits that cause prefetching of the

corresponding blocks, resulting in subsequent L2/LLC hits.

For example, in one of the mixes, with HAWKEYE, BITP

improves performance close to 3%, where LLC thrashing

applications are lbm and mcf (more than 99% of cache blocks

of zero reuse). So with BITP, performance of lbm and mcf
does not increase. However, the cross-core evictions caused by

lbm and mcf that have resulted in back-invalidation-hits, get

allocated again for benchmarks like h264ref and sjeng.

Similarly, there are mixes that contain LLC fitting and LLC

thrashing applications only, where the effectiveness of BITP is

marginal. In few mixes, where the reuse of back-invalidated

blocks is low, it increases LLC misses by polluting the LLC

(bringing in cache blocks that get no further cache hits)

causing performance degradation of 0.03%. Overall, BITP

improves performance marginally.

Moving from 4-core to 8-/16-core systems: BITP scales

well with large core count as there is no hardware overhead.

Also, the effectiveness remains the same (average performance

improvement of less than 1%) even with 8-core and 16-core

mixes as well. Figure 9 shows performance improvement with

8-core and 16-core multi-programmed mixes. Apart from

the effect of reuse of back-invalidated blocks, few mixes

get affected because, with BITP, the miss access pattern is

different at the DRAM compared to the baseline, which causes

a marginal increase/decrease in the LLC MPKI. Overall, on

average, BITP does not affect system performance and scales

well, which makes BITP a simple, scalable, yet effective

choice for mitigating cross-core side-channel attacks at the

LLC.

CloudSuite and PARSEC benchmarks: The effectiveness

of BITP remains the same (average performance improvement

of less than 0.5%) with CloudSuite benchmarks too. Figure

10 shows the reduction in LLC misses and improvement in

the execution time. We do not report fair-speedup for these

benchmarks as these are system workloads and multi-threaded

in nature with synchronization primitives that affect the actual

instruction count. As expected, the applications that get

penalized because of back-invalidation-hits get the maximum

improvement. Figure 11 shows the effectiveness of BITP on

for 8 and 16-threaded parallel applications from the PARSEC

benchmark suite. The trend remains the same for PARSEC
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also (avg. improvement of just 1.09%) as in some applications

it improve the execution time by bringing back the shared

data into the cache hierarchy.

Energy Consumption: Figure 12 shows the normalized

energy consumption with BITP. We use CACTI 6.5 [47],

DRAM Micron power model [48], and Orion 2.0 [49] for

modeling energy related to caches, DRAM, and interconnect,

respectively. Compared to the baseline, there is a slight

variation with the maximum overhead of 1.9% for PARSEC

benchmarks, which is because of interconnect traffic that

comes from back-invalidations of S state blocks at the LLC,

which leads to multiple back-invalidation hits and multiple

prefetch requests. However, Beyond LLC, all these requests

merged into one prefetch request.

Sensitivity studies: So far, we use L2:L3 ratio of 1:8.

When we bridge the difference between L2 and LLC

capacity (LLC is just 256KB or 512KB per core, with

L2:L3 ratio of 1.00 and 0.5, which is opposite of the

current trend as the shared resources are more constrained),

the fraction of back-invalidations that hit at L2 become

significant. As expected, with BITP, the performance improves

significantly (average improvement of more than 20% and

10%, respectively). Figure 13 (a) shows the improvement

in performance with different L2:L3 ratios averaged across

all multi-core mixes, which corroborates the conclusions of

TLA [17]. So, for smaller LLCs, BITP improves performance

significantly and at the same time prevents information leakage.
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Fig. 13. (a) Normalized performance of BITP for different L2/L3s. (b) LLC
evictions that cause RRPV increments with SHARP in %.

C. Comparison with the prior works

SHARP prevents cross-core evictions that cause back-

invalidation-hits on LRU based replacement policies by sending

four block addresses to L2, as mentioned in Section III-H. How-

ever, when we try to do the same with SHiP++ and HAWKEYE,

some mixes are significantly affected. For example, one of the

4-core mixes show a performance degradation of 4.8% with

SHARP that uses SHiP++ replacement policy.

The primary reason for this behavior is that while preventing
cross-core evictions, SHARP increases the RRPVs of multiple
blocks (in contrast to LRU) and because of which these blocks
get evicted quickly.

For example, on a two-core system, if a core is trying to evict

a block with RRPV=3 and the block is present in another core’s

L2 cache, SHARP does not evict the block and explores other

possible cache blocks that will not create inclusion victims.

There are cases, where the rest of the blocks belong to RRPV

values of less than 3 and the replacement policy increments

their RPPV values. In the worst case, rest of the blocks may

have RRPV values of 0 (cache friendly blocks) and to prevent

cross-core evictions, SHARP increments their RRPVs to 3

(causing early evictions). This situation becomes equally worse

for SHARP with HAWKEYE as HAWKEYE uses 3-bit RRPV

values (0 to 7).

RRPV Increments: Figure 13 (b) shows the fraction of

evictions that result in RRPV increments. Note that this scenario

is not critical in LRU based policies as SHARP evicts blocks

from LRU position to LRU-3 position. However, with all the

RRIP based chains, all the blocks within a cache set get affected

if they share the same RRPV values. This increases LLC misses

and with a detailed DRAM model (in contrast to a fixed latency

of SHARP), degrades performance significantly.

Also, to prevent cross-core evictions resulting in inclusion
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victims at other cores, a core evicts its useful blocks at the LLC

and L2. Applications with the large working set (LLC thrashing

type) suffer from this behavior. On average SHARP degrades

performance by 1.7% (maximum degradation of 5.1%).

Compared to SHARP, RIC does not suffer from this behavior.

There are few mixes in which BITP performs slightly better (in

the order of 0.5%) than RIC in which an L2 block reference is

not present in L2 and LLC (with RIC) but present in L2 (with

BITP). Note that, in RIC [15], the authors report significant

performance improvement with RIC for an 8-core system with

2MB LLC (256KB per core with per core L2:L3 ratio of

1.0) and 4MB LLC (L2:L3 ratio of 1:2). Figure 13 shows

performance improvement in the same magnitude with BITP

for per core L2:L3 ratios of 1 and 1:2. Based on the simulation

results, we corroborate the findings of RIC [15] for small LLCs

shared by a large number of cores and we conclude the same

for BITP too. Based on the experiments, we find both RIC and

BITP are effective and the magnitude of the effectiveness is

the same. Note that both RIC and SHARP use a fixed latency

DRAM model that also contributes to improving the margin

of performance improvement. In case of an LRU replacement

policy at the LLC, the effectiveness of SHARP, RIC, and BITP

are similar. However, LRU policy is less effective for the multi-

core system when compared with SHiP++ and HAWKEYE.

Summary: Based on 4-/8-/16-core simulations, we find that

SHARP degrades system performance (in terms of fair-speedup)

for 42% of mixes by more than 4.7%. Table VII summarizes

the performance results for multi-core systems. A recent paper

discusses some of the subtle issues that are not discussed

in the original SHARP paper [50]. Based on Table VII and
Table III, we can conclude that BITP eliminates information
leakage with no hardware overhead, performance overhead,
and additional support from the OS, compiler, run-time systems.
Apart from performance reasons, as already mentioned, with

SHARP, processor core generates an interrupt to notify the OS

about the suspicious activity. BITP is simpler and free from

additional hardware/software intervention.

V. RELATED WORK

This section discusses side-channel mitigation techniques

apart from SHARP [16] and RIC [15]. Several cache partition-

ing techniques [10], [13], [51], [52] have been proposed to

mitigate side-channel attacks. However, all these attacks affect

system performance and fairness significantly. CATalyst [10]

partitions the LLC into insecure and secure partitions. Also,

within the secure partition, it prevents replacement of cache

blocks that store the secure data. CATalyst demands changes

to the programming language and run-time. Random fill cache

[12] is a technique that is proposed to mitigate reuse-based

side-channel attack at the L1. Another technique that thwarts

side-channel attack is by random L1 cache mapping instead

of standard cache mapping technique.

Timewarp [11] and fuzzy timing [53] are some of the run-

time system techniques that try to fudge the timing information

(mostly rdtsc) by adding noise. These techniques demand

changes at the ISA level, applications level, and for some

TABLE VII
SHARP [16], RIC [15], AND BITP: A PERFORMANCE COMPARISON.

BITP RIC SHARP
Avg. perf. +1.2% +1.1% -1.7%
Max. perf. +4.5% +4.2% +1.8%
Min. perf. -0.02% -0.08% -5.1%
DRAM traffic (de-
mand+prefetch)

+1.05%
(improves)

+1.73% -3.12%
(degrades)

changes, it needs virtualization support, which is a substantial

modification for an architect. These fuzzing techniques do not

mitigate attacks that use new techniques (e.g., performance

counters) to keep track of micro-architecture events. For

applications that need to use rdtsc, these techniques demand

changes at the system administrator level. Compared to all

these techniques, BITP is simpler and yet efficient in mitigating

LLC side-channel attacks.

There are few other mitigation techniques, such as CC-Hunter

[54] and replayconfusion [55] that detect covert channels and

not side-channels. HexPADS [56] is a technique that uses

heuristics (based on the LLC access counts of the attacker)

in mitigating side-channel attacks. However, this technique

is affected by false-positives. TLA [17] can be argued to be

secure. However, an attacker can control its access patterns

(hence temporal locality) to nullify the effects of TLA, making

it a baseline inclusive cache. Also, TLA does not assure that

it will not create back-invalidation-hits, which motivates the

SHARP [16] proposal.

VI. CONCLUSION

This paper proposed back-invalidation-hits triggered prefetch-

ing (BITP) that mitigates various cross-core eviction based

side-channel attack strategies at the last-level cache (LLC)

by prefetching the addresses of interest. We showed the

effectiveness of BITP by simulating attacks on AES-128,

GnuPG and Poppler and quantified the probability of attack

success and other relevant metrics for security effectiveness.

We also showed the effect of BITP on system performance

and fairness with the use of fair-speedup metric. We conclude

that BITP does not compromise on system performance and

system fairness for security and makes a case for secure but

inclusive LLC. Overall, BITP is a prefetching framework that

is simple (no additional hardware structures, no intervention

from software writer and OS) yet effective to mitigate LLC

cross-core side-channel attacks.
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