Indian Institute of Technology Kanpur ASSIGNMENT
CS771 Introduction to Machine Learning

Instructor: Purushottam Kar
Date: January 29, 2023
Total: 60 marks

1 What should | submit, where should | submit and by when?

Your submission for this assignment will be one PDF (.pdf) file and one ZIP (.zip) file. Instruc-
tions on how to prepare and submit these files is given below.

Assignment Package:
https://www.cse.iitk.ac.in/users/purushot/courses/ml/2022-23-w/material/assn/assnl.
Z1ip

Deadline for all submissions: 14 February, 2023, 9:59PM IST

Code Validation Script: https://colab.research.google.com/drive/1UBmZ81i0jJu-HfZd1fKOAPBMIxXZk3GxQv?
usp=sharing

Code Submission: https://forms.gle/zt5WnScZeRKdbnMF8

Report Submission: on Gradescope

There is no provision for “late submission” for this assignment

1.1 How to submit the PDF report file

1. The PDF file must be submitted using Gradescope in the group submission mode. Note
that this means that auditors may not make submissions to this assignment.

2. Make only one submission per assignment group on Gradescope, not one submission per
student. Gradescope allows you to submit in groups - please use this feature to make a
group submission.

3. Ensure that you validate your submission files on Google Colab before making your sub-
mission (validation details below). Submissions that fail to work with our automatic judge
since they were not validated will incur penalties.

4. Link all group members in your group submission. If you miss out on a group member
while submitting, that member may end up getting a zero since Gradescope will think
that person never submitted anything.

5. You may overwrite your group’s submission (submitting again on Gradescope simply
overwrites the old submission) as many times as you want before the deadline.

6. Do not submit Microsoft Word or text files. Prepare your report in PDF using the style
file we have provided (instructions on formatting given later).

1.2 How to submit the code ZIP file

1. Your ZIP file should contain a single Python (.py) file and nothing else. The reason we
are asking you to ZIP that single Python file is so that you can password protect the ZIP

https://www.cse.iitk.ac.in/users/purushot/courses/ml/2022-23-w/material/assn/assn1.zip
https://www.cse.iitk.ac.in/users/purushot/courses/ml/2022-23-w/material/assn/assn1.zip
https://colab.research.google.com/drive/1UBmZ8iOjJu-HfZdlfKO4PBM9xZkGGxQv?usp=sharing
https://colab.research.google.com/drive/1UBmZ8iOjJu-HfZdlfKO4PBM9xZkGGxQv?usp=sharing
https://forms.gle/zt5WnScZeRKdbnMF8

10.

11.

file. Doing this safeguards you since even after you upload your ZIP file to your website,
no one can download that ZIP file and see your solution (you will tell the password only
to the instructor). If you upload a naked Python file to your website, someone else may
guess the location where you have uploaded your file and steal it and you may get charged
with plagiarism later.

. We do not care what you name your ZIP file but the (single) Python file sitting inside

the ZIP file must be named “submit.py”. There should be no sub-directories inside the
ZIP file — just a single file. We will look for a single Python (.py) file called “submit.py”
inside the ZIP file and delete everything else present inside the ZIP file.

. Do not submit Jupyter notebooks or files in other languages such as C/Matlab/Java. We

will use an automated judge to evaluate your code which will not run code in other formats
or other languages (submissions in other languages may simply get a zero score).

. Password protect your ZIP file using a password with 8-10 characters. Use only alphanu-

meric characters (a-z A-Z 0-9) in your password. Do not use special characters, punc-
tuation marks, whitespaces etc in your password. Specify the file name properly in the
Google form.

. Remember, your file is not under attack from hackers with access to supercomputers. This

is just an added security measure so that even if someone guesses your submission URL,
they cannot see your code immediately. A length 10 alphanumeric password (that does
not use dictionary phrases and is generated randomly e.g. 2x4kPh02V9) provides you
with more than 55 bits of security. It would take more than 1 million years to go through
all > 25 combinations at 1K combinations per second.

. Make sure that the ZIP file does indeed unzip when used with that password (try

unzip -P your-password file.zip
on Linux platforms).

Upload the password protected ZIP file to your IITK (CC or CSE) website (for CC, log
on to webhome.cc.iitk.ac.in, for CSE, log on to turing.cse.iitk.ac.in).

. Fill in the following Google form to tell us the exact path to the file as well as the password

https://forms.gle/ztbWnScZeRKdbnMF8

. Do not host your ZIP submission file on file-sharing services like GitHub or Dropbox or

Google drive. Host it on IITK servers only. We will autodownload your submissions
and GitHub, Dropbox and Google Drive servers often send us an HTML page (instead of
your submission) when we try to download your file. Thus, it is best to host your code
submission file locally on IITK servers.

While filling in the form, you have to provide us with the password to your ZIP file in
a designated area. Write just the password in that area. For example, do not write
“Password: helloworld” in that area if your password is “helloworld”. Instead, simply
write “helloworld” (without the quotes) in that area. Remember that your password
should contain only alphabets and numerals, no spaces, special or punctuation characters.

While filling the form, give the complete URL to the file, not just to the directory that
contains that file. The URL should contain the filename as well.

(a) Example of a proper URL:
https://web.cse.iitk.ac.in/users/purushot/mlassnl/my_submit.zip

webhome.cc.iitk.ac.in
turing.cse.iitk.ac.in
https://forms.gle/zt5WnScZeRKdbnMF8
https://web.cse.iitk.ac.in/users/purushot/mlassn1/my_submit.zip

12.

13.

14.

15.

(b) Example of an improper URL (file name missing):
https://web.cse.iitk.ac.in/users/purushot/mlassnl/

(¢) Example of an improper URL (incomplete path):
https://web.cse.iitk.ac.in/users/purushot/

We will use an automated script to download all your files. If your URL is malformed or
incomplete, or if you have hosted the file outside II'TK and it is difficult for us to download
automatically.

Make sure you fill in the Google form with your file link before the deadline. We will close
the form at the deadline.

Make sure that your ZIP file is actually available at that link at the time of the deadline.
We will run a script to automatically download these files after the deadline is over. If
your file is missing, we will treat this as a blank submission.

We will entertain no submissions over email, Piazza etc. All submissions must take place
before the stipulated deadline over the Gradescope and the Google form. The PDF file
must be submitted on Gradescope at or before the deadline and the ZIP file must be
available at the link specified on the Google form at or before the deadline.

https://web.cse.iitk.ac.in/users/purushot/mlassn1/
https://web.cse.iitk.ac.in/users/purushot/

Problem 1.1 (Uncovering the Mask of Xorro). Melbo was unhappy that the arbiter and XOR
PUF devices were broken so easily using a simple linear model. In an effort to make an un-
breakable PUF, Melbo came up with another idea devices called ring oscillators. Below, we first
describe a traditional ring oscillator, then we describe a more interesting ring oscillator using
XOR gates (called a XOR Ring Oscillator or XORRO) and finally we describe how to create a
powerful PUF using multiple XORROs.

&W%W
T B e B B e e

to t1 to tp -

f 1 ’—|>—[>“—I>ﬂ—l>°—>—r t=2ty+t;
t0+t1 ’—[>°—[>°—[>°—[>°‘[>°—% t =2ty +2t;

Figure 1: A simple ring oscillator using 5 inverters.

Ring Oscillator (RO). The figure above shows a simple ring oscillator created using 5
NOT gates. The NOT gates are inverters since they invert their input — a 0 input yields a 1
output and a 1 input gives a 0 output. The name of this device is very apt since the NOT gates
are connected in a ring and the output of the last NOT gate (marked as O/P) oscillates between
0 and 1. To see why there is an oscillation, notice that if a bit is inverted an odd number of
times, the final output will be inverted i.e. a 0 inverted an odd number of times times will yield
a 1 and a 1 inverted an odd number of times will give us a 0.

Since the O/P is connected back as input to the first NOT gate, after 5 inversions, O/P
will flip. Then that output is fed back again and thus, after 5 inversions, O/P will flip again.
However, NOT gates do not give their output instantly — there is a delay. Suppose the 5 NOT
gates are such that if 0 is input to them, they give their output (which will be 1) after 59 seconds
i =0,1,...,4. Similarly, if the NOT gates are input 1, then they give the output 0 after &}
seconds ¢ = 0,1,...,4. We assume that delays caused due to the wires connecting the NOT
gates is absorbed in the 5;- values themselves.

This means that if the value of O/P is 0 at ¢t = 0, then it will flip to 1 after ty = &) + 01 +
69 + 63 + 49 seconds. Similarly, it will flip back to 0 after t; = 6 + 69 + 65 + d9 + &5 seconds.
Note that it may be the case that tg # t;. However, it can be safely assumed that tg and ¢;
remain constant over time and do not change. It is also very difficult to manufacture an RO
with precise the same values of tg, ¢; which is why the frequency of the RO

def 1

ottt

f

can be treated as a unique fingerprint of the RO.

XOR Ring Oscillator (XORRO). The simple RO does not allow multiple challenge-
response pairs (CRP) to be created. To remedy this, we notice that the XOR gate can also act
as a configurable inverter. The XOR gate takes two inputs and the output is 1 only if exactly
one of the inputs is 1. If both or neither of the inputs is 1 then the output is 0. Note that if
the second input to a XOR gate is fixed to 1 then the XOR gate starts acting as an inverter

XORRO

O/P

(2% aq a aArg_1

Figure 2: A configurable ring oscillator using 5 XOR gates.

with respect to the first input since XOR(0,1) = 1 and XOR(1,1) = 0. Similarly, if the second
input to a XOR gate is fixed to 0 then the XOR gate starts acting as an identity with respect
to the first input since XOR(0,0) = 0 and XOR(1,0) = 1. Using this, the XOR Ring Oscillator
is created as shown in the figure above.

The XORRO has R XOR gates and for each gate, the second input is linked to a config bit
that tells us whether that XOR gate will act like an inverter or an identity. The first inputs of
all the XOR gates is connected in a ring to create a ring oscillator. Note that in order for the
XORRO to indeed oscillate, an odd number of XOR gates must act as inverters. This means an
odd number of config bits ag, . ..ar_1 must be set to 1 otherwise the XORRO will not oscillate.

The XORRO offers us flexibility to create multiple challenge responses pairs since there are
more delay parameters now. Let &3y, 03, 8%, 57 be the time that the i*® XOR gate takes before
giving its output when the input to that gate is, respectively 00, 01, 10 and 11.

Note that the XORRO does not have a unique oscillation frequency as its oscillation fre-
quency depends on the config bits a « [ag, a1, ...,ar—1] send into the XORRO. This gives us
potentially 27 different oscillation frequencies and we can set a particular frequency simply by
setting the corresponding config bits. Note that it is very difficult to manufacture a XOR gate
with exactly these 2 frequencies but we assume that the frequencies remain stable over time.

XORRO 0]

— Counter

XORRO 1 Q

Response

ao e aR_l
Figure 3: A Simple XORRO PUF using 2 XORROs.

Simple XORRO PUF. The above realization allows us to create a PUF as shown above.
We take two XORROs. Our challenge is an R bit string that is fed into both XORROs as their
config bits. Each of the XORROs will now start oscillating. The (oscillating) outputs of the
two XORROs is fed into a counter which can find out which XORRO has a higher frequency.
If the upper XORRO (in this case XORRO 0) has a higher frequency, the counter outputs 1
else if the lower XORRO (in this case XORRO 1) has a higher frequency, the counter outputs
0. The output of the counter is our response to the challenge. Assume that it will never be the
case that both XORROs have the same frequency i.e. the counter will never be confused.

a=[ag,ay, ..., ap_1] P = [po, Py,) Ps—1] q=[q0, 91, -, Gs-1]

XORRO 0 \I\/I}W
U
X
XORRO L 9 Response
Counter | esponst
XORRO 2
N
: Tiy Y
U
X
XORRO 1
251

Figure 4: An Advanced XORRO PUF using 2° XORROs.

Advanced XORRO PUF. Worried by the previous failures, Melbo does not want to take
any chances this time and decides to make the PUF even stronger. Instead of having just 2
XORROs, Melbo now takes 2° XORROs and extends the challenge vector to have 25 more bits
which we call select bits. The first S of these select bits is interpreted as a number between 0
and 2% — 1 and used to select the corresponding XORRO as the firss XORRO. This selection is
done by using a multiplexer. The next S select bits are used to select another XORRO as the
second XORRO. For example, if the S = 3 (i.e. there are 28 = 8 XORROs) and the 2S bits
are 110010 then the XORRO number 6 will get selected as the first XORRO (as 110 = 6) and
XORRO number 2 will get selected as the second XORRO (as 010 = 2).

Note that for this selection scheme to work, the XORROs are numbered from 0 to 7, not 1
to 8. Also, notice that the counter will definitely get confused if the same XORRO is chosen
twice e.g. if the select bits are 110110 or 010010. Thus, we are assured that the first S select
bits are not the same as the second S select bits. The frequencies of the two selected XORROs
are compared using a counter. If the XORRO selected by the upper MUX (in this case MUX
0) has a higher frequency, the counter outputs 1 else if the XORRO selected by the lower MUX
(in this case MUX 1) has a higher frequency, the counter outputs 0. The output of the counter
is our response to the challenge. Note that the challenge now has R + 2S5 bits.

Melbo thinks that with 2% possible frequencies in each XORRO and 2% XORROS, there is
no way any machine learning model, let alone a linear one, can predict the responses if given a
few thousand challenge-response pairs. Your job is to prove Melbo wrong! You will do this by
showing that even in this case, there does exist a model that can perfectly predict the responses
of a XOR-PUF and this model can be learnt if given enough challenge-response pairs (CRPs).

Your Data. We have provided you with data from an Advanced XORRO PUF with R =
64,5 = 4 i.e. it has 64+ 4+ 4 = 72 bit challenges. The training set consists of 60000 CRPs and
the test set consists of 40000 CRPs. If you wish, you may create (held out/k-fold) validation
sets out of this data in any way you like. Your job is to learn a model that can accurately predict
the responses on the test set. However, a twist in the tale is that unlike in the Arbiter/XOR
PUF case where a single linear model was sufficient to break the PUF, here you will need an
ensemble model that contains M > 1 linear models (more details below).

Your Task. The following enumerates 4 parts to the question. Parts 1,2,4 need to be answered
in the PDF file containing your report. Part 3 needs to be answered in the Python file.

1. By giving a detailed mathematical derivation (as given in the lecture slides), show how
a simple XORRO PUF can be broken by a single linear model. Recall that the simple
XORRO PUF has just two XORROs and has no select bits and no multiplexers (see above
figure and discussion on Simple XORRO PUF). Thus, the challenge to a simple XORRO
PUF has just R bits. More specifically, give derivations for a map ¢ : {0, 1}R — RP
mapping R-bit 0/1-valued challenge vectors to D-dimensional feature vectors (for some
D > 0) and show that for any simple XORRO PUF, there exists a linear model i.e.
w € RP,b € R such that for all challenges ¢ € {0, 1}R , the following expression

1 + sign(w " ¢(c) +b)
2

gives the correct response. (10 marks)

2. Show how to extend the above linear model to crack an Advanced XORRO PUF. Do this
by treating an advanced XORRO PUF as a collection of multiple simple XORRO PUFs.

For example, you may use M = 2571(2% —1) linear models, one for each pair of XORROs,
to crack the advanced XORRO PUF. (10 marks)

3. Write code to solve this problem by learning the M linear models w', ..., w™. You may
use any linear classifier formulation e.g. LinearSVC, LogisticRegression, RidgeClassifier
etc., to learn the linear model. However, the use of non-linear models is not allowed. You
are allowed to use scikit-learn routines to learn the linear model you have chosen (i.e. you
do not need to solve the SVM/LR/RC optimization problems yourself). Submit code for
your chosen method in submit.py. Note that your code will need to implement at least
2 methods namely

(a) my_fit () that should take CRPs for the advanced XORRO PUF as training data
and learn the M linear models.

(b) my_predict() that should take test challenges and predict responses on them.

We will evaluate your method on a different dataset than the one we have given you and
check how good is the method you submitted (see below for details). Note that your
learnt model must be a collection of one or more linear models. The use of non-
linear models such as decision trees, random forests, nearest neighbors, neural networks,
kernel SVMs etc is not allowed. (35 marks)

4. Report outcomes of experiments with both the sklearn.svm.LinearSVC and
sklearn.linear_model.LogisticRegression methods when used to learn the ensemble linear
model. In particular, report how various hyperparameters affected training time and
test accuracy using tables, charts. Report these experiments with both LinearSVC and
LogisticRegression methods even if your own submission uses just one of these methods
or some totally different linear model learning method e.g. RidgeClassifier) In particular,
you must report the affect of training time and test accuracy of at least 2 of the following:

(a) changing the loss hyperparameter in LinearSVC (hinge vs squared hinge)

(b) setting C hyperparameter in LinearSVC and LogisticRegression to high/low/medium
values

(¢) changing the tol hyperparameter in LinearSVC and LogisticRegression to high/low/medium
values

(d) changing the penalty (regularization) hyperparameter in LinearSVC and Logisti-
cRegression (12 vs 11)

You may of course perform and report all the above experiments and/or additional ex-
periments not mentioned above (e.g. changing the solver, max_iter etc) but reporting
at least 2 of the above experiments is required. You do not need to submit code for these
experiments — just report your findings in the PDF file. Your submitted code should only
include your final method (e.g. learning M models using LinearSVC) with hyperparameter
settings that you found to work the best. (5 marks)

Parts 1,2,4 need to be answered in the PDF file containing your report. Part 3 needs to be
answered in the Python file.

Evaluation Measures and Marking Scheme. We created two Advanced XORRO PUFs — a
public one and a secret one. Both had R = 64,5 = 4 i.e. 72-bit challenges but the PUFs all
have different delays in their XOR gates so a model that is able to predict the public XORRO
PUF delays is expected to do very poorly at predicting the secret XORRO PUF delays and vice
versa. The train/test sets we have provided you with the assignment package were created using
CRPs from the public XORRO PUF. We similarly created a secret train and secret test set using
CRPs from the secret XORRO PUF. We will use your code to train on our secret train set and
use the learnt model to make predictions on our secret test set. Note that the secret train/test
set may not have the same number of train/test points as the public train/test set that we have
provided you. However, we assure you that the public and secret PUFs look similar otherwise
so that hyperparameter choices that seem good to you during validation (e.g. step length,
stopping criterion etc), should work decently on our secret dataset as well. We will repeat the
evaluation process described below 5 times and use the average performance parameters so as
to avoid any unluckiness due to random choices inside your code in one particular trial. We will
award marks based on four performance parameters

1. How fast is your my_fit method able to finish training (7 marks)

2. What is the on-disk size of your learnt model (after a pickle dump) (8 marks)
3. How fast is your my_predict method able to make predictions (10 marks)

4. How high is the test prediction accuracy offered by your model? (10 marks)

Thus, the total marks for the code evaluation is 35 marks. For more details, please check the
evaluation script on Google Colab (linked below). Once we receive your code, we will execute
the evaluation script to award marks to your submission.

Validation on Google Colab. Before making a submission, you must validate your submission
on Google Colab using the script linked below.

Link: https://colab.research.google.com/drive/1UBmZ81i0jJu-Hf Zd1fKO4PBMIxZkGGxQv?
usp=sharing

Validation ensures that your submit.py does work with the automatic judge and does not
give errors due to file formats etc. Please use IPYNB file at the above link on Google Colab and
the dummy secret train and dummy secret test set (details below) to validate your submission.

Please make sure you do this validation on Google Colab itself. Do not download the
IPYNB file and execute it on your machine — instead, execute it on Google Colab
itself. This is because most errors we encounter are due to non-standard library versions etc on
students personal machines. Thus, running the IPYNB file on your personal machine defeats
the whole purpose of validation. You must ensure that your submission runs on Google Colab
to detect any library conflict. Please note that there will be penalties for submissions

https://colab.research.google.com/drive/1UBmZ8iOjJu-HfZdlfKO4PBM9xZkGGxQv?usp=sharing
https://colab.research.google.com/drive/1UBmZ8iOjJu-HfZdlfKO4PBM9xZkGGxQv?usp=sharing

which were not validated on Google Colab and which subsequently give errors with
our automated judge.

Dummy Submission File and Dummy Secret Files. In order to help you understand how we
will evaluate your submission using the evaluation script, we have included a dummy secret
train and secret test set in in the assignment package itself (see the directory called dummy).
However, note that these are just copies of the train and test dataset we provided you. The
reason for providing the dummy secret dataset is to allow you to check whether the evaluation
script is working properly on Google Colab or not. Be warned that the secret dataset on
which we actually evaluate your submission will be a different one. We have also included a
dummy submission file dummy_submit.py to show you how your code must be written to return
a model with my_fit() and predictions with my_predict(). Note that the model used in
dummy_submit.py is a very bad model which will give poor accuracies. However, this is okay
since its purpose is to show you the code format.

Using Internet Resources. You are allowed to refer to textbooks, internet sources, research
papers to find out more about this problem and for specific derivations e.g. the XORRO PUF
problem. However, if you do use any such resource, cite it in your PDF file. There is no penalty
for using external resources so long as they are acknowledged but claiming someone else’s work
(e.g. a book or a research paper) as one’s own work without crediting the original author will
attract penalties.

Restrictions on Code Usage. You are allowed to use the numpy module in its entirety and
any sklearn submodule that learns linear models. To do so, you may include submodules of
sklearn e.g. import sklearn.svm or import sklearn.linearmodel etc. However, the use of
any non-linear model is prohibited e.g. decision trees, random forests, nearest neighbors,
neural networks, kernel SVMs etc. The use of other machine learning libraries such as scipy,
libsvim, keras, tensorflow is also prohibited. Use of prohibited modules and libraries for
whatever reason will result in penalties. For this assignment, you should also not download
any code available online or use code written by persons outside your assignment group (we
will relax this restriction for future assignments). Direct copying of code from online sources
or amongst assignment groups will be considered and act of plagiarism for this assignment and
penalized according to pre-announced policies.

(60 marks)

2 How to Prepare the PDF File

Use the following style file to prepare your report.
https://media.neurips.cc/Conferences/NeurIPS2022/Styles/neurips_2022.sty

For an example file and instructions, please refer to the following files
https://media.neurips.cc/Conferences/NeurIPS2022/Styles/neurips_2022.tex
https://media.neurips.cc/Conferences/NeurIPS2022/Styles/neurips_2022.pdf

You must use the following command in the preamble
\usepackage [preprint] {neurips_2022}

instead of \usepackage{neurips_2022} as the example file currently uses. Use proper KIEX
commands to neatly typeset your responses to the various parts of the problem. Use neat

https://media.neurips.cc/Conferences/NeurIPS2022/Styles/neurips_2022.sty
https://media.neurips.cc/Conferences/NeurIPS2022/Styles/neurips_2022.tex
https://media.neurips.cc/Conferences/NeurIPS2022/Styles/neurips_2022.pdf

math expressions to typeset your derivations. Remember that all parts of the question need
to be answered in the PDF file. All plots must be generated electronically - no hand-drawn
plots would be accepted. All plots must have axes titles and a legend indicating what the
plotted quantities are. Insert the plot into the PDF file using proper IIEX \includegraphics
commands.

3 How to Prepare the Python File

The assignment package contains a skeleton file submit . py which you should fill in with the code
of the method you think works best among the methods you tried. You must use this skeleton
file to prepare your Python file submission (i.e. do not start writing code from scratch). This
is because we will autograde your submitted code and so your code must have its input output
behavior in a fixed format. Be careful not to change the way the skeleton file accepts input and
returns output.

1. The skeleton code has comments placed to indicate non-editable regions. Do not remove
those comments. We know they look ugly but we need them to remain in the code to
keep demarcating non-editable regions.

2. We have provided you with data points in the file train.dat in the assignment package
that has 60000 data points, having a 72-bit challenge and a 1 bit response. You may
use this as training data in any way to tune your hyperparameters (e.g. C, tol etc) by
splitting into validation sets in any fashion (e.g. held out, k-fold). You are also free to use
any fraction of the training data for validation, etc. Your job is to do really well in terms
of coming up with an algorithm that can learn a model to predict the responses in the
test set accurately and speedily, produce a model that is not too large, and also perform
learning as fast as possible.

3. The code file you submit should be self contained and should not rely on any other files
(e.g. other .py files or else pickled files etc) to work properly. Remember, your ZIP
archive should contain only one Python (.py) file. This means that you should store any
hyperparameters that you learn inside that one Python file itself using variables/functions.

4. We created two XORRO PUFs — a public one and a secret one. Using the public XORRO
PUF, we created CRPs that were split into the train and test set we have provided you
with the assignment package. We similarly created CRPs using the secret XORRO PUF
and created a secret train and secret test set with it. We will use your code to train on
our secret train set and use the learnt model to test on our secret test set. Both the public
and secret XOR-PUFs have R = 64,5 = 4 i.e. 72-bit challenges. However, the delays
in the public an secret PUFs are not the same so a linear model that is able to predict
the public XORRO PUF responses will do poorly at predicting the secret XORRO PUF
responses and vice versa. Moreover, note that the secret train set is not guaranteed to
contain 60000 points and the secret test set is not guaranteed to contain 40000 points (for
example, our secret test set may have 59000 points or 41000 points etc). However, the
public and secret PUF's look similar otherwise so that hyperparameter choices that seem
good to you during validation (e.g. C, tol etc), should work decently on the secret dataset
as well.

5. Certain portions of the skeleton code have been marked as non-editable. Please do not
change these lines of code. Insert your own code within the designated areas only. If

10

10.

you tamper with non-editable code (for example, perform system operations), we may
simply refuse to run your code and give you a zero instead (we will inspect each code file
manually).

. You are allowed to freely define new functions, new variables, new classes in inside your

submission Python file while not changing the non-editable code.

. The use of any non-linear model is prohibited e.g. decision trees, random forests, nearest

neighbors, neural networks, kernel SVMs etc. The use of other machine learning libraries
such as scipy, libsvm, keras, tensorflow is also prohibited.

. Do take care to use broadcasted and array operations as much as possible and not rely

on loops to do simple things like take dot products, calculate norms etc otherwise your
solution will be slow and you may get less marks.

. Before submitting your code, make sure you validate on Google Colab to confirm that

there are no errors etc.

You do not have to submit the evaluation script to us — we already have it with us. We
have given you access to the Google Colab evaluation script just to show you how we
would be evaluating your code and to also allow you to validate your code.

11

	What should I submit, where should I submit and by when?
	How to submit the PDF report file
	How to submit the code ZIP file

	How to Prepare the PDF File
	How to Prepare the Python File

