
CS779 Competition: Machine Translation System for India

Shivam Pal
231110608

{pshivam23}@iitk.ac.in
Indian Institute of Technology Kanpur (IIT Kanpur)

Abstract

I’ve developed a machine translation system capable of translating sentences from seven Indian
languages, which include Bengali, Hindi, Gujarati, Kannada, Malayalam, Tamil, and Telugu, into
English. The system employs a transformer-based encoder-decoder model in combination with a
sentence-piece (byte pair encoding) tokenizer. In our testing, we achieved a charF++ score of 0.474,
a Rogue score of 0.478, and a Bleu score of 0.198 on the evaluation dataset. Our system secured the
top position in the competition, ranking 1st.

1 Competition Result

Codalab Username: S 231110608
Final leaderboard rank on the test set: 1
charF++ Score wrt to the final rank: 0.474
ROGUE Score wrt to the final rank: 0.478
BLEU Score wrt to the final rank: 0.198

2 Problem Description

The objective is to perform machine translation from seven Indian languages specifically Bengali,
Hindi, Gujarati, Kannada, Malayalam, Tamil and Telugu into English. We can formally define it as
following.
Let D = {(xi, yi)}Ni=1 be a training set where xi = xi

1:n is the sequence of length n (source language
sentence) and yi = yi1:m is the sequence of length m (target language sentence). Where xi

j ∈ Vs (source

vocab set) and yij ∈ Vt (target vocab set) and 1 ≤ n,m ≤ L where L is largest sequence length. Let

also assume that xi ∼ pX and yi ∼ pY . Then for a given source sentence x its translation can be define
as following.

ŷ = argmax
t

pθ̂(t | x)

where t ∈ T set of all possible sequences in target language. θ̂ can be approximated by maximizing
the posterior of training data.

θ̂ = argmax
θ

N∑
i=1

log pθ(y
i | xi)

Quality of translation can be calculated via some quality function Q(ŷ, y) e.g. charF++, ROGUE,
BLEU.

1



3 Data Analysis

Source-English # sents avg tgt-len avg src-len max tgt-len max src-len

Hindi 80797 17 19 257 216

Bengali 68848 17 14 100 84

Gujarati 47482 18 16 96 93

Kannada 46794 16 12 100 78

Malayalam 54057 15 11 107 108

Tamil 58361 17 13 2080 74

Telugu 44904 16 12 100 81

Table 1: Training data Statistics

We excluded sentences with a length exceeding 32 words from the dataset, which accounted for ap-
proximately 97% of the original dataset. The remaining dataset was then divided into an 80% portion
for training and a 20% portion for validation through a random split. Furthermore, we eliminated
any Unicode characters outside their respective language’s defined range, with spaces being the sole
exception. The specific Unicode ranges for each language are provided below.

Language Hindi Bengali Gujarati Tamil Telugu Kannada Malayalam

Unicode Range 2304-2432 2432-2560 2688-2816 2944-3072 3072-3200 3200-3328 3328-3456

Table 2: Unicode Range of Indian Language

4 Model Description

Transformer

We implemented a encoder-decoder architecture for machine translation based on the paper Attention
is All you Need [1]. We follow the base implementation from Pytorch1 tutorial. Model architecture is
shown in the figure1. Figure source2.

1https://pytorch.org/
2https://en.wikipedia.org/wiki/Transformer_(machine_learning_model)

2

https://pytorch.org/
https://en.wikipedia.org/wiki/Transformer_(machine_learning_model)


Figure 1: Transformer Architecture

LetK,Q, V be key, query and value matrices respectively the attention can be calculate as following.

Attention(Q,K, V ) = softmax(
QKT

√
dk

)V

5 Experiments

Tokenizer

We employed the sentence-piece3 tokenizer, which is a language-agnostic tokenization tool. In our
approach, we trained the source tokenizer using all source sentences, regardless of their language,
and the target tokenizer using English sentences. Across various experiments, we explored different
vocabulary sizes and model types, including byte-pair and unigram, to optimize our results.

Model token src vocab tgt vocab embd size no. heads Hidden dim # decoder # encoder

Model-1 Unigram 56K 8K 512 4 512 3 3

Model-2 Unigram 56K 8K 256 4 512 2 3

Model-3 Unigram 50K 10K 256 4 512 2 3

Model-4 Unigram 64K 16K 256 4 512 2 2

Model-5 BPE 64K 16K 256 4 512 2 2

Table 3: Models

Every model presented in the table was trained using Cross-Entropy loss, a learning rate of 1e− 4,
and a batch size of 128. Model-4 and Model-5 underwent training with Cross-Entropy loss, and
an additional label smoothing value of 0.3 was applied. To avoid overfitting, early stopping was
implemented by monitoring both training and validation loss during training.

3https://github.com/google/sentencepiece

3

https://github.com/google/sentencepiece


6 Results

Models charF++ score Rogue score Bleu score Decoding Strategy

Model-1 0.306 0.341 0.079 Greedy

Model-2 0.355 0.396 0.114 Greedy

Model-3 0.399 0.446 0.144 Greedy

Model-5 0.444 0.464 0.166 Beam-5

Model-5(LB) 0.474 0.478 0.198 Beam-5

Model-4(LB) 0.476 0.481 0.196 Beam-5

Table 4: Results

The results indicate that when model-5 and model-4 are trained with label smoothing, their perfor-
mance is notably enhanced. Label smoothing serves as a method to discourage the model from being
overly confident in its predictions. It mitigates the disparity between the highest probability label and
other labels, which ultimately proves beneficial during the decoding process with beam search. It’s
evident that using label smoothing results in a significant improvement, as indicated by an increase in
the Bleu score of 0.03.

7 Error Analysis

Our translation system has its flaws and often makes errors, yet it functions effectively when dealing
with brief and straightforward sentences. However, its performance deteriorates when confronted with
lengthy sentences. Among the various languages, it excels most in translating Malayalam.

8 Conclusion

We can deduce that the selection of vocabulary size plays a pivotal role in constructing an effec-
tive translation system. Opting for an excessively large vocabulary size might cause the model to
overfit, while an overly small vocabulary size may result in numerous unknown (UNK) predictions.
Furthermore, we have observed that implementing label smoothing is highly significant in mitigating
overfitting, and it also offers advantages when dealing with beam search during the translation process.

References

[1] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L. u. Kaiser, and
I. Polosukhin, “Attention is all you need,” in Advances in Neural Information Processing Systems
(I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett,
eds.), vol. 30, Curran Associates, Inc., 2017.

4


	Competition Result
	Problem Description
	Data Analysis
	Model Description
	Experiments
	Results
	Error Analysis
	Conclusion

